Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author郭詠竹zh_TW
dc.contributor.authorYung-Chu Kuoen
dc.date.accessioned2024-09-19T16:10:45Z-
dc.date.available2024-09-20-
dc.date.copyright2024-09-19-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. Davis, J.R., Aluminum and aluminum alloys. 1993: ASM international.
2. Mondolfo, L.F., Aluminum alloys: structure and properties. 2013: Elsevier.
3. Ashby, M.F. and D. CEBON, Materials selection in mechanical design. Le Journal de Physique IV, 1993. 3(C7): p. C7-1-C7-9.
4. Kaufman, J.G., Introduction to aluminum alloys and tempers. 2000: ASM international.
5. Totten, G.E. and D.S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes. Vol. 1. 2003: CRC press.
6. Milkereit, B., et al., Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials, 2019. 12(24).
7. Totten, G.E. and D.S. MacKenzie, Handbook of Aluminum: Volume 2: Alloy production and materials manufacturing. 2003: CRC press.
8. Lumley, R., Fundamentals of aluminium metallurgy: production, processing and applications. 2010: Elsevier.
9. Buchheit, R., A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. Journal of the Electrochemical Society, 1995. 142(11): p. 3994.
10. IJ, P., Recent developments in light alloys. Materials transactions, JIM, 1996. 37(1): p. 12-31.
11. Starke Jr, E.A. and J.T. Staley, Application of modern aluminum alloys to aircraft. Progress in aerospace sciences, 1996. 32(2-3): p. 131-172.
12. Bauccio, M., ASM metals reference book. 1993: ASM international.
13. Huda, Z., N.I. Taib, and T. Zaharinie, Characterization of 2024-T3: An aerospace aluminum alloy. Materials Chemistry and Physics, 2009. 113(2): p. 515-517.
14. Sha, G., et al., Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes. Acta Materialia, 2011. 59(4): p. 1659-1670.
15. Mrówka-Nowotnik, G. and J. Sieniawski, Analysis of intermetallic phases in 2024 aluminium alloy. Solid State Phenomena, 2013. 197: p. 238-243.
16. Gao, M., C. Feng, and R.P. Wei, An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys. Metallurgical and Materials Transactions A, 1998. 29: p. 1145-1151.
17. Hughes, A.E., R. Parvizi, and M. Forsyth, Microstructure and corrosion of AA2024. Corrosion Reviews, 2015. 33(1-2): p. 1-30.
18. Birbilis, N., et al., A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corrosion Science, 2016. 113: p. 160-171.
19. Shih, H.C., N.J. Ho, and J.C. Huang, Precipitation behaviors in Al-Cu-Mg and 2024 aluminum alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1996. 27(9): p. 2479-2494.
20. Vasquez, M.J., G. Halada, and C. Clayton, The application of synchrotron-based spectroscopic techniques to the study of chromate conversion coatings. Electrochimica acta, 2002. 47(19): p. 3105-3115.
21. Hughes, A. and A. Boag, Proceedings of ‘Aluminium surface science and technology’. ATB Metallurgie, 2006. 45(1-4): p. 551-–556.
22. Jakab, M., D. Little, and J. Scully, Experimental and modeling studies of the oxygen reduction reaction on AA2024-T3. Journal of the Electrochemical Society, 2005. 152(8): p. B311.
23. Juffs, L., The Distribution of Intermetallic Phases and Conversion Coating Deposition on Macroscopic Models of Aluminium Alloys. 2002: RMIT University.
24. Boag, A., Relationship between microstructure and stable pitting initiation in aerospace aluminium alloy 2024-T3. 2008.
25. McCafferty, E., Introduction to corrosion science. 2010: Springer Science & Business Media.
26. Luo, C., et al., Continuous and discontinuous localized corrosion of a 2xxx aluminium–copper–lithium alloy in sodium chloride solution. Journal of Alloys and Compounds, 2016. 658: p. 61-70.
27. 廖啓民, 鋁合金的腐蝕與防治. 防蝕工程, 1991. 5(4): p. 29-40.
28. Bobby Kannan, M., P. Bala Srinivasan, and V.S. Raja, 8 - Stress corrosion cracking (SCC) of aluminium alloys, in Stress Corrosion Cracking, V.S. Raja and T. Shoji, Editors. 2011, Woodhead Publishing. p. 307-340.
29. Tsai, T.C. and T.H. Chuang, Role of grain size on the stress corrosion cracking of 7475 aluminum alloys. Materials Science and Engineering: A, 1997. 225(1): p. 135-144.
30. Davis, J., J. Destefani, and H. Frissell, Metals Handbook. Vol. 13: Corrosion. ASM International, 1987, 1987: p. 1415.
31. Birbilis, N. and R.G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. Journal of the Electrochemical Society, 2005. 152(4): p. B140.
32. Wei, R.P., C.-M. Liao, and M. Gao, A transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys. Metallurgical and Materials Transactions A, 1998. 29: p. 1153-1160.
33. Li, J., B. Hurley, and R. Buchheit, Effect of temperature on the localized corrosion of AA2024-t3 and the electrochemistry of intermetallic compounds during exposure to a dilute NaCl solution. Corrosion, 2016. 72(10): p. 1281-1291.
34. Li, J.C., N. Birbilis, and R.G. Buchheit, Electrochemical assessment of interfacial characteristics of intermetallic phases present in aluminium alloy 2024-T3. Corrosion Science, 2015. 101: p. 155-164.
35. Hashimoto, T., et al., Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corrosion Science, 2016. 103: p. 157-164.
36. Guo, Y. and G.S. Frankel, Characterization of trivalent chromium process coating on AA2024-T3. Surface and Coatings Technology, 2012. 206(19-20): p. 3895-3902.
37. Hughes, A.E., et al., Non-chromate deoxidation of AA2024-T3 using Fe(III)-HF-HNO3. Surface and Interface Analysis, 2005. 37(1): p. 15-23.
38. Tiringer, U., J. Kovac, and I. Milosev, Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3. Corrosion Science, 2017. 119: p. 46-59.
39. Zhang, J., M. Klasky, and B.C. Letellier, The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear materials, 2009. 384(2): p. 175-189.
40. Hughes, A.E., et al., Study of deoxidation of 2024-T3 with various acids. Materials Science and Technology, 2001. 17(12): p. 1642-1652.
41. Qi, J., et al., An Optimized Trivalent Chromium Conversion Coating Process for AA2024-T351 Alloy. Journal of the Electrochemical Society, 2017. 164(7): p. C390-C395.
42. Pinc, W., et al., Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Applied Surface Science, 2009. 255(7): p. 4061-4065.
43. Joshi, S., W.G. Fahrenholtz, and M.J. O'Keefe, Effect of alkaline cleaning and activation on aluminum alloy 7075-T6. Applied Surface Science, 2011. 257(6): p. 1859-1863.
44. Trinidad, C., et al., Effect of surface preparation treatments on copper enrichment on 2024 aluminium alloy surface. Applied Surface Science, 2021. 560: p. 149991.
45. ALTECH CUSTOM COATERS LTD. CHROMATE CONVERSION (ALODINE). [Internet] 2023; Available from: https://altechcustomcoaters.com/chromate-conversion/.
46. Hagans, P.L. and C.M. Haas, Chromate conversion coatings. 1994.
47. Muecke, G.K. and P. Möller, The not-so-rare earths. Scientific American, 1988. 258(1): p. 72-77.
48. Hinton, B.R.W., D.R. Arnott, and N.E. Ryan, INHIBITION OF ALUMINUM ALLOY CORROSION BY CEROUS CATIONS. Metals forum, 1984. 7(4): p. 211-217.
49. Hinton, B.R.W., D.R. Arnott, and N.E. Ryan, CERIUM CONVERSION COATINGS FOR THE CORROSION PROTECTION OF ALUMINIUM. Materials Forum, 1986. 9(3): p. 162-173.
50. Arnott, D.R., et al., Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy. Applications of Surface Science, 1985. 22-23: p. 236-251.
51. Takenaka, T., et al., Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 2007. 53(1): p. 117-121.
52. Mansfeld, F., et al., Pitting and surface modification of SIC/Al. Corrosion Science, 1987. 27(9): p. 997-1000.
53. Mansfeld, F., Y. Wang, and H. Shih, The CeMo process for the development of a stainless aluminum. Electrochimica Acta, 1992. 37(12): p. 2277-2282.
54. Dabalà, M., et al., Cerium-based conversion layers on aluminum alloys. Applied Surface Science, 2001. 172(3-4): p. 312-322.
55. Hughes, A.E., et al., Development of cerium-based conversion coatings on 2024-T3 Al alloy after rare-earth desmutting. Surface and Interface Analysis, 2004. 36(4): p. 290-303.
56. Scholes, F.H., et al., The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Applied Surface Science, 2006. 253(4): p. 1770-1780.
57. de Frutos, A., et al., Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys. Surface & Coatings Technology, 2008. 202(16): p. 3797-3807.
58. Alba-Galvín, J.J., et al., Application of commercial surface pretreatments on the formation of cerium conversion coating (Cecc) over high-strength aluminum alloys 2024-t3 and 7075-t6. Metals, 2021. 11(6): p. 930.
59. Yu, P., et al., The phase stability of cerium species in aqueous systems: II. The systems. Equilibrium considerations and pourbaix diagram calculations. Journal of the Electrochemical Society, 2006. 153(1): p. C74-C79.
60. Volaric, B., et al., The Effect of Deposition Parameters on the Properties of CeCl3 and LaCl3 Conversion Coatings Deposited on Three Al-Based Substrates. Corrosion, 2020. 76(1): p. 18-38.
61. Kendig, M.W. and R.G. Buchheit, Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion, 2003. 59(5): p. 379-400.
62. Atlas of electrochemical equilibria in aqueous solutions. NACE, 1966.
63. Gharabagh, R.S. and A.S. Rouhaghdam, Investigation of Pretreatment Effects on the Formation of Lanthanum based Conversion Coating on AA2024-T3. Protection of Metals and Physical Chemistry of Surfaces, 2017. 53(1): p. 112-117.
64. US CORROSION SERVICES. Electron Microscopy Analysis. [Internet]; Available from: https://uscorrosion.com/index.php/electron-microscopy-analysis/.
65. ISO 10289:1999, Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates — Rating of test specimens and manufactured articles subjected to corrosion tests, ICS: 25.220.20, 25.220.40. 1999. p. 22.
66. Shen, G.-T., et al., Microstructural evolution and corrosion behavior of constituent particles of 2024-T3 Al alloy during zirconium conversion coating. Applied Surface Science, 2023: p. 157657.
67. Ilevbare, G., et al., In situ confocal laser scanning microscopy of AA 2024-T3 corrosion metrology: I. Localized corrosion of particles. Journal of the Electrochemical Society, 2004. 151(8): p. B453.
68. Fallah, V., et al., Simulation of early-stage clustering in ternary metal alloys using the phase-field crystal method. Acta Materialia, 2013. 61(10): p. 3653-3666.
69. Makar, G. and J. Kruger, Corrosion of magnesium. International materials reviews, 1993. 38(3): p. 138-153.
70. Liu, Y., et al., Influence of nitric acid pre-treatment on Al-Cu alloys. Electrochimica Acta, 2008. 53(13): p. 4454-4460.
71. Verdalet-Guardiola, X., et al., Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy. Surface and Coatings Technology, 2018. 344: p. 276-287.
72. Yu, P. and T.J. O’Keefe, The Phase Stability of Cerium Species in Aqueous Systems: III. The Systems Dimeric Ce (IV) Species. Journal of the Electrochemical Society, 2005. 153(1): p. C80.
73. Bêche, E., et al., Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surface and Interface Analysis, 2008. 40(3‐4): p. 264-267.
74. Sunding, M.F., et al., XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. Journal of Electron Spectroscopy and Related Phenomena, 2011. 184(7): p. 399-409.
75. Zähr, J., et al., Characterisation of oxide and hydroxide layers on technical aluminum materials using XPS. Vacuum, 2012. 86(9): p. 1216-1219.
76. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221.
77. National Institute of Standards and Technology. NIST X-ray Photoelectron Spectroscopy Database. [Internet] 2023; Available from: https://dx.doi.org/10.18434/T4T88K.
78. Harwell XPS Knowledge Base. [Internet] 2022; Available from: https://www.harwellxps.guru/knowledgebase/cerium/.
79. Thermo Fisher Scientific. Copper X-ray photoelectron spectra, copper electron configuration, and other elemental information. [Internet]; Available from: https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/periodic-table/transition-metal/copper.html.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95881-
dc.description.abstract2024-T3鋁合金具有高強度重量比和良好的疲勞強度等優點,是航太產業中載具零件的重要材料,然而,添加銅、鎂等合金元素使機械性質提升的同時,卻也會在合金製造過程中產生異質相使抗蝕能力下降。為了增加其使用壽命,通常會對鋁合金施行表面處理,例如化成處理技術。稀土金屬化成處理為環保無毒、成分簡單的化成系統,是取代六價鉻化成處理的良好方案。
本研究探討了2024-T3鋁合金微米級晶出相在前處理與稀土金屬化成處理的演變,並利用鹽霧測試比較本材料在兩種稀土金屬化成處理(CeCC與CeLa)後的腐蝕機制。
2024-T3鋁合金的晶出相主要可以分為Al-Cu-Fe-Mn-Si相、Al2Cu(ϴ)相與Al2CuMg(S)相三種, 在酸洗1/3/5/10分鐘後晶出相呈現不同的形貌,Al-Cu-Fe-Mn(-Si)相在酸洗10分鐘後輕微去合金化,Al2Cu(ϴ)相產生腐蝕壕溝和蝕坑,而S相則有蝕坑、海綿狀殘骸及露出下方S相的樣貌。前處理參數中以3分鐘硝酸酸洗處理為較適合的參數。
經鈰化成處理(CeCC)與添加鑭之鈰化成處理(CeLa)後,本材料上CeLa皮膜覆蓋率較高,其厚度約為CeCC皮膜的三倍。CeCC和CeLa化成皮膜在Al-Cu-Fe-Mn(-Si)和θ相上較厚是因為這些晶出相作為局部陰極會促進皮膜沉積,在S相上較薄,因其變成蝕坑的形貌,與底材無太大差異。XPS結果顯示化成皮膜以鈰與鑭的氫氧化物/氧化物組成,也有氫氧化鋁及氧化鋁層之存在。
鹽霧試驗結果顯示,2024-T3鋁合金經CeLa化成處理比CeCC化成處理具有更好的抗腐蝕能力。雖然CeCC和CeLa試片表面在4小時鹽霧測試後沒有明顯的腐蝕跡象,但橫截面顯示嚴重的內部腐蝕。腐蝕起始於化成皮膜缺陷、脫水裂紋、惰性晶出相的壕溝處與伽凡尼效應,導致試片表面堆積腐蝕產物,並在合金內部形成沿晶腐蝕和蝕孔,在三種晶出相中,S相受到的腐蝕損傷最小。
zh_TW
dc.description.abstract2024-T3 aluminum alloy is crucial in the aerospace industry for its high specific strength and excellent fatigue strength. However, the addition of alloying elements like copper and magnesium during manufacturing introduces heterogeneous phases that can diminish its corrosion resistance. Surface treatments, such as conversion coating, are usually applied to enhance its lifespan, with rare-earth metal conversion coating emerging as a non-toxic and environmentally friendly alternative to hexavalent chromium conversion process.
This study investigates the evolution of constituent particles in 2024-T3 aluminum alloy during pretreatment and rare-earth metal conversion coating, comparing the corrosion mechanisms after salt spray tests between two types of conversion coating: CeCC and CeLa.
The constituent particles in 2024-T3 aluminum alloy mainly include three types: Al-Cu-Fe-Mn-Si, Al2Cu (θ), and Al2CuMg (S). After acid desmutting for 1/3/5/10 minutes, these constituent particles show varying morphologies. Al-Cu-Fe-Mn(-Si) phase undergoes slight dealloying after 10 minutes, θ phase (Al2Cu) develops trenching and pits, while S phase shows pits, sponge-like remnants, and underlying S phase.The preferable pretreatment is 3-minute nitric acid desmutting.
Following CeCC and CeLa conversion coatings, CeLa exhibits higher coverage and approximately three times the thickness of CeCC. CeCC and CeLa coatings are thicker on Al-Cu-Fe-Mn(-Si) and θ phases due to their role as local cathodes facilitating coating deposition, whereas they are thinner on S-phase due to its pit morphology, which resembles the matrix. The XPS results indicate that the conversion coating is composed of cerium and lanthanum hydroxides/oxides, as well as the presence of aluminum hydroxide/oxide layer.
Salt spray test demonstrates that CeLa on 2024-T3 aluminum alloy exhibits superior corrosion resistance compared to CeCC. While the surfaces of CeCC and CeLa samples show no significant corrosion after 4 hours of salt spray test, cross-sections reveal severe internal corrosion. Corrosion initiates at defects in the conversion coating, dehydration cracks, and galvanic corrosion from inert constituent particles, resulting in accumulation of corrosion products on the surface and intergranular corrosion and pits within the alloy. Among three constituent particles, S phase exhibits the least corrosion damage.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-19T16:10:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-19T16:10:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xii
第一章 前言 1
第二章 文獻回顧 2
2.1 鋁合金簡介 2
2.1.1 鋁及鋁合金之介紹 2
2.1.2 鋁合金之命名與分類 3
2.2 鋁合金加工製造及熱處理過程 7
2.1.1 簡述 7
2.2.2 均質化 7
2.2.3 固溶處理 7
2.2.4 淬火 7
2.2.5 冷加工 7
2.2.6 時效處理 8
2.3 鋁合金析出物 9
2.3.1 熱處理型鋁合金析出物種類 9
2.3.2 2024-T3鋁合金與其析出物 11
2.4 鋁合金腐蝕行為 14
2.4.1 鋁的腐蝕行為 14
2.4.2 均勻腐蝕 15
2.4.3 間隙腐蝕 15
2.4.4 沿晶腐蝕 16
2.4.5 剝落腐蝕 17
2.4.6 應力腐蝕破裂 18
2.4.7 網狀腐蝕 19
2.4.8 伽凡尼腐蝕 20
2.4.9 孔蝕 21
2.4.10 2024-T3鋁合金的腐蝕行為 21
2.5 鋁合金表面處理 26
2.5.1 改質前處理 26
2.5.2 化成處理 29
2.5.2.1 鉻鹽化成處理 29
2.5.2.2 稀土金屬化成處理 29
第三章 實驗步驟與方法 35
3.1 2024-T3鋁合金試片研磨與拋光 35
3.2 2024-T3鋁合金試片前處理與化成處理 36
3.3 微結構及化學組成分析 37
3.3.1 光學顯微鏡 37
3.3.2 掃描式電子顯微鏡 37
3.3.3 能量散佈光譜儀 38
3.3.4 感應耦合電漿質譜儀 38
3.3.5 X光光電子能譜儀 39
3.4 開路電位分析 39
3.5 鹽霧試驗 39
第四章 結果與討論 40
4.1 2024-T3鋁合金底材分析 40
4.2 2024-T3鋁合金拋光 40
4.2.1 拋光之表面形貌 40
4.3 2024-T3鋁合金前處理 46
4.3.1 鹼洗及不同酸洗時間之表面形貌 46
4.3.2 不同酸洗時間之ICP-MS 52
4.4 2024-T3鋁合金化成處理 56
4.4.1 化成處理之開路電位(OCP) 56
4.4.2 化成處理後之表面形貌 57
4.4.3 化成處理後之XPS分析 70
4.5 2024-T3鋁合金之鹽霧試驗分析 78
第五章 結論 91
第六章 未來展望 92
第七章 參考文獻 93
-
dc.language.isozh_TW-
dc.title2024-T3鋁合金稀土金屬化成處理與抗蝕性之研究zh_TW
dc.titleThe Corrosion Resistance of Rare-Earth Metal Conversion Coating on Aluminum Alloy 2024-T3en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡文達;林景崎;汪俊延;侯文星zh_TW
dc.contributor.oralexamcommitteeWen-Ta Tsai ;Jing-Chie Lin;Jyun-Yan Wang;Wen-Hsing Houen
dc.subject.keyword2024-T3鋁合金,晶出相,前處理,稀土金屬化成處理,抗蝕性,微結構分析,zh_TW
dc.subject.keyword2024-T3 aluminum alloy,constituent particles,pretreatment,rare-earth metal conversion coating,corrosion resistance,microstructure analysis,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202403758-
dc.rights.note未授權-
dc.date.accepted2024-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved