Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林維怡zh_TW
dc.contributor.advisorWei-Yi Linen
dc.contributor.author陳喻盈zh_TW
dc.contributor.authorYu-Ying Chenen
dc.date.accessioned2024-09-18T16:23:38Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation陳華俊(2022)。叢枝菌根菌共生可緩解番茄鹽鹼逆境壓力。國立臺灣大學生物資源暨農學院農藝學研究所碩士論文。
柯志寧,李丹玉,陳薏安,陳華俊,林維怡 (2024)。篩選可促進小米生長之有益細菌。作物、環境與生物資訊 (已接受)。
Ahmadi, F. I., Karimi, K., & Struik, P. C. (2018). Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South African Journal of Botany, 115, 5-11.
Aini, N., Dwi Yamika, W. S., & Pahlevi, R. W. (2019). The effect of nutrient concentration and inoculation of PGPR and AMF on the yield and fruit quality of hydroponic cherry tomatoes (Lycopersicon esculentum Mill. var. cerasiforme). Journal of Applied Horticulture, 21(2),116-122.
Akbar, A., Han, B., Khan, A. H., Feng, C., Ullah, A., Khan, A. S., He, L., & Yang, X. (2022). A transcriptomic study reveals salt stress alleviation in cotton plants upon salt tolerant PGPR inoculation. Environmental and Experimental Botany, 200, 104928.
Albacete, A., Ghanem, M. E., Martínez-Andújar, C., Acosta, M., Sánchez-Bravo, J., Martínez, V., Lutts, S., Dodd, I. C., & Pérez-Alfocea, F. (2008). Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany, 59(15), 4119-4131.
Amaresan, N., Jayakumar, V., Kumar, K., & Thajuddin, N. (2019). Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition. Microbial pathogenesis, 136, 103713.
Ames, B. N. (1966). Assay of inorganic phosphate, total phosphate and phosphatases. Methods in enzymology (Vol. 8, pp. 115-118). Academic Press.
AraúJo, W. L., Marcon, J., Maccheroni, W., Van Elsas, J. D., Van Vuurde, J. W. L., & Azevedo, J. O. L. C. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in Citrus plants. Applied and Environmental Microbiology, 68(10), 4906-4914.
Arora, S., & Vanza, M. (2017). Microbial approach for bioremediation of saline and sodic soils. In S. Arora, A. Singh, & Y. Singh (Eds.), Bioremediation of salt affected soils: An Indian perspective (pp. 87-100). Springer.
Arshad, M. J., Khan, M. I., Ali, M. H., Farooq, Q., Hussain, M. I., Seleiman, M. F., & Asghar, M. A. (2024). Enhanced wheat productivity in saline soil through the combined application of poultry manure and beneficial microbes. BMC Plant Biology, 24(1), 423.
Bashan, Y., & de-Bashan, L. E. (2010). Chapter Two - How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 108, pp. 77-136). Academic Press.
Bassil, E., Zhang, S., Gong, H., Tajima, H., & Blumwald, E. (2018). Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiology, 179(2), 616-629.
Bates, L. S., Waldren, R. a., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
Bent, E., & Chanway, C. (1998). The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Canadian Journal of Microbiology, 44, 980–988.
Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.
Bhise, K. K., Bhagwat, P. K., & Dandge, P. B. (2017). Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech, 7(2), 105.
Bisht, R., Chaturvedi, S., Srivastava, R., Sharma, A., & Johri, B. (2009). Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Tropical Ecology, 50(2), 231.
Blanchard, A. E., & Lu, T. (2015). Bacterial social interactions drive the emergence of differential spatial colony structures. BMC systems biology, 9, 1-13.
Borde, M., Dudhane, M., & Kulkarni, M. (2017). Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions (pp. 71-86). Springer International Publishing.
Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126(3), 1024-1030.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Brundrett, M., & Abbott, L. (2007). Arbuscular mycorrhizas in plant communities. In K. Sivasithamparam, K.W. Dixon & R.L.Barrett (Eds.), Microorganisms in Plant Conservation and Biodiversity. (pp. 151-193). Kluwer Academic Publishers.
Chang, O.-C., & Lin, W.-Y. (2023). Variation of growth and transcriptome responses to arbuscular mycorrhizal symbiosis in different foxtail millet lines. Botanical Studies, 64(1), 16.
Chen, D., Saeed, M., Ali, M. N. H. A., Raheel, M., Ashraf, W., Hassan, Z., Hassan, M. Z., Farooq, U., Hakim, M. F., Rao, M. J., Naqvi, S. A. H., Moustafa, M., Al-Shehri, M., & Negm, S. (2023). Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy, 13(2), 550.
Chiarini, L., Bevivino, A., Tabacchioni, S., & Dalmastri, C. (1998). Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biology and Biochemistry, 30(1), 81-87.
Deng, C., Zhang, N., Liang, X., Huang, T., & Li, B. (2022). Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. Journal of the Science of Food and Agriculture, 102(14), 6650-6657.
Dursun, A., Yildirim, E., Turan, M., Ekinci, M., Kul, R., & Parlakova Karagoz, F. (2019). Determination of the effects of bacterial fertilizer on yield and growth parameters of tomato. Journal of Agricultural Science and Technology, 21(5), 1227-1234.
El-Beltagi, H. S., Ahmad, I., Basit, A., Abd El-Lateef, H. M., Yasir, M., Tanveer Shah, S., ... & Zohaib Ikram, M. (2022). Effect of azospirillum and azotobacter species on the performance of cherry tomato under different salinity levels. Gesunde Pflanzen, 74(2), 487-499.
El-Esawi, M. A., Alaraidh, I. A., Alsahli, A. A., Alamri, S. A., Ali, H. M., & Alayafi, A. A. (2018). Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiology and Biochemistry, 132, 375-384.
Estaun, V., Calvet, C., & Hayman, D. (1987). Influence of plant genotype on mycorrhizal infection: response of three pea cultivars. Plant and Soil, 103, 295-298.
Fang, S., Hou, X., & Liang, X. (2021). Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 12, 667458.
Farahat, M. G., Mahmoud, M. K., Youseif, S. H., Saleh, S. A., & Kamel, Z. (2020). Alleviation of salinity stress in wheat by ACC deaminase-producing Bacillus aryabhattai EWR29 with multifarious plant growth-promoting attributes. Plant Archives, 20(1), 417-429.
Ferreira, C. M. H., Soares, H. M. V. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799.
Fouda, A., Hassan, S.E., Eid, A.M., El-Din Ewais, E. (2019). The interaction between plants and bacterial endophytes under salinity stress. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham.
Garcia‐Abellan, J. O., Fernandez‐Garcia, N., Lopez‐Berenguer, C., Egea, I., Flores, F. B., Angosto, T., Capel, J., Lozano, R., Pineda, B., Moreno, V., Olmos, E., & Bolarin, M. C. (2015). The tomato res mutant which accumulates JA in roots in non‐stressed conditions restores cell structure alterations under salinity. Physiologia Plantarum, 155(3), 296-314.
Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 990(1), 87-92.
Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566-576.
Ha-Tran, D. M., Nguyen, T. T. M., Hung, S.-H., Huang, E., & Huang, C.-C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. International Journal of Molecular Sciences, 22(6), 3154.
Han, H., & Lee, K. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210-215.
Hansda, A., Kumar, V., & Anshumali. (2017). Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech, 7, 1-11.
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463-499.
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
Ho, T. T. H., Schwier, C., Elman, T., Fleuter, V., Zinzius, K., Scholz, M., Yacoby, I., Buchert, F., & Hippler, M. (2022). Photosystem I light-harvesting proteins regulate photosynthetic electron transfer and hydrogen production. Plant Physiology, 189(1), 329-343.
Husen, E. (2003). Screening of soil bacteria for plant growth promotion activities in vitro. Indonesian Journal of Agricultural Science, 4(1), 27-31.
Ismail, A., Takeda, S., & Nick, P. (2014). Life and death under salt stress: same players, different timing? Journal of Experimental Botany, 65(12), 2963-2979.
Jat Baloch, M. Y., Zhang, W., Sultana, T., Akram, M., Shoumik, B. A. A., Khan, M. Z., & Farooq, M. A. (2023). Utilization of sewage sludge to manage saline–alkali soil and increase crop production: is it safe or not? Environmental Technology & Innovation, 32, 103266.
Ji, J., Zhang, J., Wang, X., Song, W., Ma, B., Wang, R., Li, T., Wang, G., Guan, C., & Gao, X. (2024). The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine. Microbiological Research, 280, 127590.
Jäderlund, L., Arthurson, V., Granhall, U., & Jansson, J. K. (2008). Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS microbiology Letters, 287(2), 174-180.
Johnson, N. C., Wilson, G. W. T., Bowker, M. A., Wilson, J. A., & Miller, R. M. (2010). Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences, 107(5), 2093-2098.
Kang, D. J., Seo, Y. J., Lee, J. D., Ishii, R., Kim, K. U., Shin, D. H., Park, S. K., Jang, S. W., & Lee, I. J. (2005). Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt‐tolerant and salt‐sensitive rice cultivars. Journal of Agronomy and Crop Science, 191(4), 273-282.
Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., Hamayun, M., & Lee, I.-J. (2014). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 9(1), 673-682.
Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. vii. chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729-735.
Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., Giannoglou, M., Chanioti, S., ... & Efthimiadou, A. (2021). Evaluation of plant growth promoting bacteria strains on growth, yield and quality of industrial tomato. Microorganisms, 9(10), 2099.
Khan, A. A., Wang, T., Hussain, T., Amna, Ali, F., Shi, F., Latef, A. A. H. A., Ali, O. M., Hayat, K., Mehmood, S., Zainab, N., Muneer, M. A., Munis, M. F. H., Soliman, M. H., & Chaudhary, H. J. (2021). Halotolerant-Koccuria rhizophila (14asp)-induced amendment of salt stress in pea plants by limiting Na+ uptake and elevating production of antioxidants. Agronomy, 11(10), 1907.
Khan, M. A., Hamayun, M., Asaf, S., Khan, M., Yun, B.-W., Kang, S.-M., & Lee, I.-J. (2021). Rhizospheric Bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Frontiers in Plant Science, 12, 665590.
Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369(1-2), 1-23.
Kumar, D., Kumar, A., & Sharma, J. (2016). Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresources and Bioprocessing, 3(1), 53.
La, V. H., Lee, B.-R., Zhang, Q., Park, S.-H., Islam, M. T., & Kim, T.-H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Horticulture, Environment, and Biotechnology, 60(1), 31-40.
Li, R., Shi, F., & Fukuda, K. (2010). Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 68(1), 66-74.
Li, T., Hu, Y., Du, X., Tang, H., Shen, C., & Wu, J. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii Seedlings by activating photosynthesis and enhancing antioxidant systems. PloS one, 9(10), 109492.
Li, X., Sun, P., Zhang, Y., Jin, C., & Guan, C. (2020). A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environmental and Experimental Botany, 174, 104023.
Liang, S.-C., Yong, J., Ma-Bo, L., Wen-Xu, Z., Nan, X., & Hui-hui, Z. (2019). Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. Journal of Plant Interactions, 14(1), 482-491.
Llanes, A., Andrade, A., Alemano, S., & Luna, V. (2016). Alterations of endogenous hormonal levels in plants under drought and salinity. American Journal of Plant Sciences, 07(09), 1357-1371.
Läuchli, A., & Grattan, S. (2012). Soil pH extremes. In S. Shabala (Ed.), Plant Stress Physiology (pp194–209). CAB International.
Maggio, A., Raimondi, G., Martino, A., & De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282.
Magán, J., Gallardo, M., Thompson, R. B., & Lorenzo, P. (2008). Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricultural Water Management, 95, 1041-1055.
Mashabela, M. D., Masamba, P., & Kappo, A. P. (2023). Applications of metabolomics for the elucidation of abiotic stress tolerance in plants: a special focus on osmotic stress and heavy metal toxicity. Plants, 12(2), 269.
Mateus, I. D., Masclaux, F. G., Aletti, C., Rojas, E. C., Savary, R., Dupuis, C., & Sanders, I. R. (2019). Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. The ISME Journal, 13(5), 1226-1238.
Mayak, S., Tirosh, T., & Glick, B. (1999). Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Journal of plant growth regulation, 18, 49-53.
Mehla, N., Sindhi, V., Josula, D., Bisht, P., & Wani, S. H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In: Khan, M., Khan, N. (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer Singapore.
Mena-Violante, H. G., & Olalde-Portugal, V. (2007). Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113(1), 103-106.
Mukherjee, G., Saha, C., Naskar, N., Mukherjee, A., Mukherjee, A., Lahiri, S., Majumder, A. L., & Seal, A. (2018). An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Scientific Reports, 8(1), 6979.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250.
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429-448.
Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53(10), 1141-1149.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
Nasuelli, M., Novello, G., Gamalero, E., Massa, N., Gorrasi, S., Sudiro, C., Hochart, M., Altissimo, A., Vuolo, F., & Bona, E. (2023). PGPB and/or AM fungi consortia affect tomato native rhizosphere microbiota. Microorganisms, 11(8), 1891.
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270.
Neshat, M., Abbasi, A., Hosseinzadeh, A., Sarikhani, M. R., Dadashi Chavan, D., & Rasoulnia, A. (2022). Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiology and Molecular Biology of Plants, 28(2), 347-361.
Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A., & Al-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209, 21-32.
Ordookhani, K., Khavazi, K., Moezzi, A., & Rejali, F. (2010). Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African Journal of Agricultural Research, 5(10), 1108-1116.
Owen, D., Williams, A. P., Griffith, G. W., & Withers, P. J. A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecology, 86, 41-54.
Park, Y.-G., Mun, B.-G., Kang, S.-M., Hussain, A., Shahzad, R., Seo, C.-W., Kim, A.-Y., Lee, S.-U., Oh, K. Y., Lee, D. Y., Lee, I.-J., & Yun, B.-W. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PloS one, 12(3), e0173203.
Patani, A., Prajapati, D., Ali, D., Kalasariya, H., Yadav, V. K., Tank, J., Bagatharia, S., Joshi, M., & Patel, A. (2023). Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum Mill.). Frontiers in Plant Science, 14, 1168155.
Phillips, J., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161.
Poria, V., Dębiec-Andrzejewska, K., Fiodor, A., Lyzohub, M., Ajijah, N., Singh, S., & Pranaw, K. (2022). Plant growth-promoting bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Frontiers in Plant Science, 13, 999866.
Probanza, A., Lucas Garcı́a, J. A., Ruiz Palomino, M., Ramos, B., & Gutiérrez Mañero, F. J. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 20(2), 75-84.
Qi, R., Lin, W., Gong, K., Han, Z., Ma, H., Zhang, M., Zhang, Q., Gao, Y., Li, J., & Zhang, X. (2021). Bacillus co-inoculation alleviated salt stress in seedlings cucumber. Agronomy, 11(5), 966.
Raklami, A., Bechtaoui, N., Tahiri, A.-I., Anli, M., Meddich, A., & Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Frontiers in Microbiology, 10, 1106.
Raklami, A., Bechtaoui, N., Tahiri, A.-I., Slimani, A., Bargaz, A., Meddich, A., & Oufdou, K. (2021). Co-inoculation with rhizobacteria and mycorrhizae can improve wheat/faba bean intercrop performance under field conditions. Frontiers in Agronomy, 3, 734923.
Rasouli, F., Kiani Pouya, A., & Karimian, N. (2013). Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma, 193-194, 246-255.
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. US Government Printing Office.
Ruiz-Lozano, J. M., & Azcón, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10(3), 137-143.
Safdarian, M., Askari, H., Shariati J, V., & Nematzadeh, G. (2019). Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Scientific Reports, 9(1), 1792.
Santander, C., Sanhueza, M., Olave, J., Borie, F., Valentine, A., & Cornejo, P. (2019). Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. Journal of Soil Science and Plant Nutrition, 19, 321-331.
Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H., & Maiti, T. K. (2018). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 169(1), 20-32.
Sawada, H., Shim, I.-S., & Usui, K. (2006). Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—Modulation by salt stress in rice seedlings. Plant Science, 171(2), 263-270.
Schüβler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105(12), 1413-1421.
Schröder, P., Beckers, B., Daniels, S., Gnädinger, F., Maestri, E., Marmiroli, N., Mench, M., Millan, R., Obermeier, M. M., Oustriere, N., Persson, T., Poschenrieder, C., Rineau, F., Rutkowska, B., Schmid, T., Szulc, W., Witters, N., & Sæbø, A. (2018). Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of The Total Environment, 616-617, 1101-1123.
Shahid, M., Al-Khattaf, F. S., Danish, M., Zeyad, M. T., Atef Hatamleh, A., Mohamed, A., & Ali, S. (2022). PGPR Kosakonia Radicincitans KR-17 increases the salt tolerance of radish by regulating ion-homeostasis, photosynthetic molecules, redox potential, and stressor metabolites. Frontiers in Plant Science, 13, 919696.
Shahid, M., Ameen, F., Maheshwari, H. S., Ahmed, B., AlNadhari, S., & Khan, M. S. (2021). Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Applied Soil Ecology, 158, 103809.
Shaygan, M., & Baumgartl, T. (2022). Reclamation of salt-affected land: a review. Soil Systems, 6(3), 61.
Shi, D. C., & Zhao, K. F. (1997). Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution. Acta Prataculturae Sinica., 6, 51-61.
Shi, L.-N., Lu, L.-X., Ye, J.-R., & Shi, H.-M. (2022). The endophytic strain ZS-3 enhances salt tolerance in Arabidopsis thaliana by regulating photosynthesis, osmotic stress, and ion homeostasis and inducing systemic tolerance. Frontiers in Plant Science, 13, 820837.
Shim, I.-S., Momose, Y., Yamamoto, A., Kim, D.-W., & Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39(3), 285-292.
Sholi, N. (2012). Effect of salt stress on seed germination, plant growth, photosynthesis and ion accumulation of four tomato cultivars. American Journal of Plant Physiology, 7, 269-275.
Silva, A. M. M., Jones, D. L., Chadwick, D. R., Qi, X., Cotta, S. R., Araújo, V. L. V. P., Matteoli, F. P., Lacerda-Júnior, G. V., Pereira, A. P. A., Fernandes-Júnior, P. I., & Cardoso, E. J. B. N. (2023). Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress? Microbiological Research, 271, 127350.
Šimura, J., Antoniadi, I., Široká, J., Tarkowská, D. e., Strnad, M., Ljung, K., & Novák, O. (2018). Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology, 177(2), 476-489.
Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260.
Soka, G., & Ritchie, M. (2014). Arbuscular mycorrhizal symbiosis and ecosystem processes: prospects for future research in tropical soils. Open Journal of Ecology, 4(1), 11-22.
Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Pereira, M. C. T., & Santos, M. A. (2016). Triple combinations with PGPB stimulate plant growth in micropropagated banana plantlets. Applied Soil Ecology, 103, 31-35.
Svenningsen, N. B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A., Cruz-Paredes, C., Nybroe, O., & Jakobsen, I. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. The ISME Journal, 12(5), 1296-1307.
Syeed, S., Sehar, Z., Masood, A., Anjum, N. A., & Khan, N. A. (2021). Control of elevated ion accumulation, oxidative stress, and lipid peroxidation with salicylic acid-induced accumulation of glycine betaine in salinity-exposed Vigna radiata L. Applied Biochemistry and Biotechnology, 193(10), 3301-3320.
Szabo, S., Hossain, M. S., Adger, W. N., Matthews, Z., Ahmed, S., Lázár, A. N., & Ahmad, S. (2016). Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustainability Science, 11(3), 411-421.
Tank, N., & Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions, 5(1), 51-58.
Tiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 1510.
Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605-611.
Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310.
Verslues, P. E., & Zhu, J. K. (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions, 33(2), 375-379.
Vierheilig, H., Bennett, R., Kiddle, G., Kaldorf, M., & Ludwig‐Müller, J. (2000). Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate‐containing plant species. New Phytologist, 146(2), 343-352.
Wada, K. C., & Takeno, K. (2010). Stress-induced flowering. Plant Signaling & Behavior, 5(8), 944-947.
Wang, X., Geng, S., Ri, Y.-J., Cao, D., Liu, J., Shi, D., & Yang, C. (2011). Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 130(1), 248-255.
Wang, Y., Mopper, S., & Hasenstein, K. H. (2001). Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. Journal of Chemical Ecology, 27(2), 327-342.
Watts‐Williams, S. J., Emmett, B. D., Levesque‐Tremblay, V., Maclean, A. M., Sun, X., Satterlee, J. W., Fei, Z., & Harrison, M. J. (2019). Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant, Cell & Environment, 42(5), 1758-1774.
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487-511.
Wintermans, J., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta, 109(2), 448-453.
Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22(1), 598-608.
Yan, S.-P., Zhang, Q.-Y., Tang, Z.-C., Su, W.-A., & Sun, W.-N. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics, 5(3), 484-496.
Yang, C., Chong, J., Li, C., Kim, C., Shi, D., & Wang, D. (2007). Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 294(1-2), 263-276.
Yao, L., Wu, Z., Zheng, Y., Kaleem, I., & Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46(1), 49-54.
Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. (2020). How plant hormones mediate salt stress responses. Trends in Plant Science, 25(11), 1117-1130.
Yue, H., Mo, W., Li, C., Zheng, Y., & Li, H. (2007). The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil, 297(1-2), 139-145.
Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95857-
dc.description.abstract農業的不當灌溉和過度抽取地下水,導致土壤鹽鹼化問題日漸嚴重,影響作物生長與生產。前人研究指出,施用有益植物生長的土壤微生物,如叢枝菌根菌(arbuscular mycorrhizal fungi,AMF)和促進植物生長細菌(Plant Growth Promoting Bacteria,PGPB),可促進植株生長勢、增強植物對逆境的耐受性,進而提高產量。本研究欲評估從鹽鹼田分離之叢枝菌根菌與從狼尾草分離之耐鹽細菌對番茄鹽鹼耐受性的影響;首先評估不同品種番茄與三種源自鹽鹼土的AMF之間的親和性,選擇花蓮亞蔬21號與 Albahypha sp.的組合在鹽鹼逆境下進行試驗,結果顯示接種Albahypha sp.可提升番茄在逆境生長的光合效率和抗氧化酵素活性;進一步測試耐鹽鹼內生菌Kocuria sp. Pp13和Bacillus aryabhattai Pp16與AMF共接種於番茄對逆境耐受性的影響,結果顯示植株僅接種Pp13和Pp16的處理對生長勢和逆境指標明顯優於對照組和AMF處理,比較接種Pp13、Pp16的單一和複合菌種接種處理試驗,結果發現,所有接種處理在株高和地上部鮮重均顯著高於對照組,且單一菌種的效益比複合接種佳,此外,不同PGPB處理的葉片荷爾蒙濃度存在差異,暗示不同菌株促進番茄抵禦逆境的機制各異,意外的是,接種處理的植株在逆境下生長較佳,但鈉離子吸收量明顯大於對照組。本研究發現不同微生物組合對番茄在鹽逆境下的生長和逆境耐受性的影響明顯不同,其中單獨接種Pp13和Pp16對番茄逆境耐受性的效益顯示這二隻菌株作為微生物肥料及土壤改良劑開發的潛力。zh_TW
dc.description.abstractImproper irrigation and excessive groundwater extraction have exacerbated soil salinization, leading to the reduction of crop growth and production. Previous studies have demonstrated that the application of plant growth promoting microorganisms, such as arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB), can enhance plant growth, improve stress tolerance, and consequently increase yield. This study aims to evaluate the effects of inoculation with AMF isolated from saline-alkaline fields and salt-alkali tolerant bacteria isolated form Pennisetum purpureum Schumach on tomato growth under the saline-alkaline stress. First, we tested the affinity between five different tomato cultivars and three AMF strains derived from saline-alkaline soil. Based on the results of evaluation, Albahypha sp. and Hualien-Yasu No.21 was selected for further experiments. The results showed that inoculation with Albahypha sp. increased the photosynthesis efficiency and the peroxidase activity of Hualien-Yasu No.21 when growing under saline-alkaline conditions. We also tested the effects of co-inoculation with salt-alkali tolerant endophytic bacteria Kocuria sp. Pp13, Bacillus aryabhattai Pp16 and Albahypha sp. on saline-alkaline stress tolerance of tomatoes. We found that tomatoes treated with Pp13 and Pp16 exhibited better growth and stress tolerance compared to mock, AMF only and co-inoculation treatments. Moreover, we also noticed that plants inoculated with either Pp13 or Pp16 performed better than double inoculation treatment under stress conditions. Additionally, variations in leaf hormone concentrations between different PGPB treatments suggested that the involvement of phytohormone-mediated stress tolerance was varied by PGPB strains. Surprisingly, Pp13- and Pp16-inoculated tomatoes with better stress tolerance accumulated higher amount of sodium ions in leaves compared to mock-treated plants. In conclusion, our study showed the effects of different microbial combinations on tomato growth and saline-alkaline tolerance and the great potential of Pp13 and Pp16 for development as microbial fertilizers and soil amendments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:23:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:23:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 i
中文摘要 ii
Abstract iii
縮寫表 v
1.前言 1
1.1土壤鹽鹼化的影響 1
1.2植物在鹽逆境與鹼逆境下的應對機制 1
1.3對植物生長有益的微生物 2
1.3.1叢枝菌根菌 3
1.3.2促進植物生長細菌 3
1.3.3共接種對植物的影響 4
1.4研究目的與動機 5
2.材料與方法 7
2.1鹽鹼介質製備 7
2.2叢枝菌根菌接種源 7
2.3細菌接種源 7
2.4細菌PGPB特性測試 8
2.4.1細菌株溶磷活性(Phosphate solubilization ability)分析 8
2.4.2細菌株吲哚乙酸產出能力(IAA production)試驗 8
2.5番茄品系及種植 9
2.6 AMF與番茄的親和性評估 9
2.7番茄耐鹽鹼能力測試 10
2.8施用PGPB或AMF對番茄鹽鹼耐受性的影響 10
2.9番茄根部染色及菌根菌感染率測定 11
2.10生理指標測定 11
2.10.1葉片相對葉綠素含量測量 11
2.10.2葉綠素螢光測定 11
2.10.3始花日期調查與果實品質測量 12
2.10.4葉綠素含量測定 12
2.10.5蛋白質定量 13
2.10.6磷酸濃度測定 13
2.10.7相對水分含量(Relative Water Content,RWC)測定 13
2.10.8離子滲漏率測定 14
2.10.9丙二醛(Malondialdehyde,MDA)含量測定 14
2.10.10總可溶性醣(Total Soluble Sugar,TSS)含量測定 14
2.10.11脯胺酸(Proline)含量測定 15
2.11植體元素分析 15
2.12荷爾蒙含量測定 15
2.13抗氧化酵素測定 16
2.13.1過氧化氫酶(catalase,CAT)活性測定 16
2.13.2抗壞血酸過氧化酶(ascorbate peroxidase,APX)活性測定 16
2.13.3過氧化酶(peroxidase,POD)活性測定 17
2.14 統計分析 17
3.結果 18
3.1番茄與叢枝菌根菌親和性評估 18
3.2花蓮亞蔬21號的鹽鹼逆境耐受性評估 19
3.3花蓮亞蔬21號在鹽鹼逆境下接種AMF試驗 20
3.3.1生理性狀 20
3.3.2氧化與滲透逆境指標 20
3.3內生菌PGPB特性測試 21
3.3.1細菌溶磷能力 21
3.3.2細菌IAA產量 22
3.4花蓮亞蔬21號於鹽鹼逆境下複合接種AMF與PGPB之影響 22
3.4.1生理性狀 22
3.4.2光合作用指標 23
3.4.3氧化與滲透逆境指標 23
3.5花蓮亞蔬21號在鹽鹼逆境下接種PGPB試驗 24
3.5.1生理性狀 24
3.5.2光合作用指標 24
3.5.3氧化與滲透逆境指標 25
3.5.4葉片離子含量 25
3.5.5荷爾蒙濃度 26
3.6花蓮亞蔬21號在鹽鹼逆境下接種PGPB之產量試驗 26
3.6.1老葉光合作用指標量測 26
3.6.2氧化與滲透逆境指標 27
3.6.3始花日期與果實重量 27
3.6.4 果實品質指標 27
4.討論 28
4.1番茄與叢枝菌根菌親和性評估 28
4.2花蓮亞蔬21號在鹽鹼逆境下接種AMF的影響 28
4.3內生菌PGPB特性測試 29
4.4花蓮亞蔬21號在鹽鹼逆境下接種PGPB的影響 30
4.5花蓮亞蔬21號於鹽鹼逆境下複合接種AMF與PGPB之影響 34
4.6結論與未來展望 35
5.參考文獻 36
6.表次 48
7.圖次 50
8.附錄 71
-
dc.language.isozh_TW-
dc.title接種促進植物生長微生物對番茄鹽鹼逆境耐性之影響zh_TW
dc.titleEffects of Inoculation with Plant Growth Promoting Microorganisms on Tomato Saline-Alkaline Stress Toleranceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙雲洋;林素禎;許奕婷zh_TW
dc.contributor.oralexamcommitteeYun-Yang Chao;Suh-Jen Lin;Yi-Ting Hsuen
dc.subject.keyword叢枝菌根菌,促進植物生長細菌,番茄,鹽鹼逆境,植物荷爾蒙,zh_TW
dc.subject.keywordarbuscular mycorrhizal fungi,plant growth promoting bacteria,tomato,saline-alkaline stress,phytohormone,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202403922-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-07
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved