Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝zh_TW
dc.contributor.advisorMing-Ju Chenen
dc.contributor.author張馨云zh_TW
dc.contributor.authorHsin-Yun Changen
dc.date.accessioned2024-09-18T16:21:54Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationAl-Taweel, F. B., C. W. I. Douglas, and S. A. Whawell. (2016). The periodontal pathogen Porphyromonas gingivalis preferentially interacts with oral epithelial cells in S phase of the cell cycle. Infection and Immunity, 84(7), 1966–1974. doi:10.1128/IAI.00111-16
Aas, J. A., B. J. Paster, L. N. Stokes, I. Olsen, and F. E. Dewhirst. (2005). Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, 43(11), 5721–5732. doi:10.1128/JCM.43.11.5721-5732.2005
Albuquerque-Souza, E., D. Balzarini, E. S. Ando-Suguimoto, K. H. Ishikawa, M. R. L. Simionato, M. Holzhausen, and M. P. A. Mayer. (2019). Probiotics alter the immune response of gingival epithelial cells challenged by Porphyromonas gingivalis. Journal of Periodontal Research, 54(2), 115-127. doi:10.1111/jre.12608. Epub 2018 Oct 4
Amano, A., I. Nakagawa, N. Okahashi, and N. Hamada. (2004). Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. Journal of Periodontal Research, 39(2), 136-42. doi:10.1111/j.1600-0765.2004.00719.x
Badet, C. and N.B. Thebaud. (2008). Ecology of Lactobacilli in the oral cavity: A review of literature. Open Microbiology Journal, 2, 38–48. doi:10.2174/1874285800802010038
Bainbridge, B., R. K. Verma, C. Eastman, B. Yehia, M. Rivera, C. Moffatt, I. Bhattacharyya, R. J. Lamont, and L. Kesavalu. (2010). Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infection and Immunity, 78(11), 4560–4569. doi:10.1128/IAI.00703-10
Baker, P. J., R. T. Evans, and D. C. Roopenian. (1994). Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Archives of Oral Biology, 39(12), 1035-40. doi:10.1016/0003-9969(94)90055-8.
Baker, P. J., M. Dixon, and D. C. Roopenian. (2000). Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infection and Immunity, 68(10), 5864-8. doi:10.1128/IAI.68.10.5864-5868.2000
Bao, K., G. N. Belibasakis, T. Thurnheer, J. Aduse-Opoku, M. A. Curtis, and N. Bostanci. (2014). Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiology, 14, 258. doi:10.1186/s12866-014-0258-7
Beydoun, M. A., H. A. Beydoun, S. Hossain, Z. W. El-Hajj, J. Weiss, and A. B. Zonderman. (2020). Clinical and Bacterial Markers of Periodontitis and Their Association with Incident All-Cause and Alzheimer's Disease Dementia in a Large National Survey. Journal of Alzheimer's Disease, 75(1), 157-172. doi:10.3233/JAD-200064
Bodet, C., F. Chandad, and D. Grenier. (2005). Modulation of cytokine production by Porphyromonas gingivalis in a macrophage and epithelial cell co-culture model. Microbes and Infection, 7(3), 448-56. doi:10.1016/j.micinf.2004.11.021
Bronte, V. and M. J. Pittet. (2013). The spleen in local and systemic regulation of immunity. Immunity, 39(5), 806–818. doi:10.1016/j.immuni.2013.10.010
Brookes, Z. L.S., R. Bescos, L. A. Belfield, K. Ali, and A. Roberts. (2020). Current uses of chlorhexidine for management of oral disease: a narrative review. Journal of Dentistry, 103, 103497. doi:10.1016/j.jdent.2020.103497
Bui, F. Q., C. L. C. Almeida-da-Silva, B. Huynh, A. Trinh, J. Liu, J. Woodward, H. Asadi, and D. M. Ojcius. (2019). Association between periodontal pathogens and systemic disease. Journal of Biomedical Science, 42(1), 27-35. doi:10.1016/j.bj.2018.12.001
Carreras, N. L., P. Martorell, E. Chenoll, S. Genovés, D. Ramón, A. Aleixandre. (2018). Anti-obesity properties of the strain Bifidobacterium animalis subsp. lactis CECT 8145 in Zücker fatty rats. Beneficial Microbes, 9(4), 629-641. doi:10.3920/BM2017.0141
Chakravarti, A., M-A. Raquil, P. Tessier, and P. E. Poubelle. (2009). Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood, 114(8), 1633-44. doi:10.1182/blood-2008-09-178301
Chen, H., Y. Liao, X. Zhang, H. Shen, D. Shang, Z. He, W. Zhou, and Z. Song. (2023). Age-and sex-related differences of periodontal bone resorption, cognitive function, and immune state in APP/PS1 murine model of Alzheimer's disease. Journal of Neuroinflammation, 20(1), 153. doi:10.1186/s12974-023-02790-1
Chen, Y-W., M-L. Lee, C-Y. Chiang, and E. Fu. (2023). Effects of systemic Bifidobacterium longum and Lactobacillus rhamnosus probiotics on the ligature-induced periodontitis in rat. Journal of Dental Sciences, 18(4), 1477–1485. doi:10.1016/j.jds.2023.04.013
Cody, W. L., J. W. Wilson, D. R. Hendrixson, K. S. McIver, K. E. Hagman, C. M. Ott, C. A. Nickerson, and M. J. Schurr. (2008). Skim milk enhances the preservation of thawed −80℃bacterial stocks. Journal of Microbiological Methods, 75(1), 135–138. doi:10.1016/j.mimet.2008.05.006
Cornacchione, L. P., B. A. Klein, M. J. Duncan, and L. T. Hu. (2019). Interspecies inhibition of Porphyromonas gingivalis by yogurt-derived Lactobacillus delbrueckii requires active pyruvate oxidase. Applied and Environmental Microbiology, 85(18), e01271-19. doi:10.1128/AEM.01271-19
Curtis, M. A., R. S. Percival, D. Devine, R. P. Darveau, S. R. Coats, M. Rangarajan, E. Tarelli, and P. D. Marsh. (2011). Temperature-dependent modulation of Porphyromonas gingivalis lipid a structure and interaction with the innate host defenses. Journal of Infection and Immunity, 79(3), 1187–1193. doi:10.1128/IAI.00900-10
Darveau, R. P., C. M. Belton, R. A. Reife, and R. J. Lamont. (1998). Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infection and Immunity, 66(4), 1660–1665. doi:10.1128/iai.66.4.1660-1665.1998
DeBowes, L. J., D. Mosier, E. Logan, C. E. Harvey, S. Lowry, and D. C. Richardson. (1996). Association of periodontal disease and histologic lesions in multiple organs from 45 dogs. Journal of Veterinary Dentistry, 13(2), 57-60
Deshpande, R. G., M. B. Khan, and C. A. Genco. (1998). Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infection and Immunity, 66(11), 5337–5343. doi:10.1128/iai.66.11.5337-5343.1998
Diego, I., F. Veillard, M. N. Sztukowska, T. Guevara, B. Potempa, A. Pomowski, J. A. Huntington, J. Potempa, and F. X. Gomis-Rüth. (2014). Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. Journal of Biological Chemistry, 289(46), 32291–32302. doi:10.1074/jbc.M114.602052
Ding, P-H., R. P. Darveau, C-Y. Wang, and L. Jin. (2017). 3LPS-binding protein and its interactions with P. gingivalis LPS modulate pro-inflammatory response and Toll-like receptor signaling in human oral keratinocytes. PLOS One, 12(4), e0173223. doi:10.1371/journal.pone.0173223
Duarte, P. M., M. Rocha, E. Sampaio, M. J. Mestnik, M. Feres, L. C. Figueiredo, M. F. Bastos, and M. Faveri. (2010). Serum levels of cytokines in subjects with generalized chronic and aggressive periodontitis before and after non-surgical periodontal therapy: a pilot study. Journal of Periodontology, 81(7), 1056-63. doi:10.1902/jop.2010.090732
Dubey, P. and N. Mittal. (2020). Periodontal diseases- A brief review. International Journal of Oral Health Dentistry, 6(3), 177-187
El-Awady, A. R., B. Miles, E. Scisci, Z. B. Kurago, C. D. Palani, R. M. Arce, J. L. Waller, C. A. Genco, C. Slocum, M. Manning, P. V. Schoenlein, and C. W. Cutler. (2015). Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLOS Pathogens, 11(2), e1004647. doi:10.1371/journal.ppat.1004647
Ebino, K. Y. (1993). Studies on coprophagy in experimental animals. Jikken dobutsu, 42(1), 1-9. doi:10.1538/expanim1978.42.1_1
El-bagoory, G. K. M., H. M. El-guindy, M. Y. M. Shoukheba, and E. A. El-zamarany. (2021). The adjunctive effect of probiotics to nonsurgical treatment of chronic periodontitis: A randomized controlled clinical trial. Journal of Indian Society of Periodontology, 25(6), 525–531. doi:10.4103/jisp.jisp_114_21
Englund, S., G. Bölske, A. Ballagi-Pordány, and K. E. Johansson. (2001). Detection of Mycobacterium avium subsp. paratuberculosis in tissue samples by single, fluorescent and nested PCR based on the IS900 gene. Veterinary Microbiology, 81(3), 257-71. doi:10.1016/s0378-1135(01)00348-0
Enlund, K. B., C. Brunius, J. Hanson, R. Hagman, O. V. Höglund, P. Gustås, and A. Pettersson. (2020). Dog owners' perspectives on canine dental health—A questionnaire study in sweden. Frontiers in Veterinary Science, 7, 298. doi:10.3389/fvets.2020.00298
Evans, K. E. and S. W. Fox. (2007). Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Molecular and Cell Biology, 8, 4. doi:10.1186/1471-2121-8-4
Figueiredo, C. S. A., C. G. C. Rosalem, A. L. C. Cantanhede, É. B. A. F. Thomaz, and M. C. F. N. Cruz. (2017). Systemic alterations and their oral manifestations in pregnant women. Journal of Obstetrics and Gynaecology Research, 43(1), 16-22. doi:10.1111/jog.13150
Gao, L., R Kuraji, M. J. Zhang, A. Martinez, A. Radaic, P. Kamarajan, C. Le, L. Zhan, C. Ye, H. Rangé, M. R. Sailani, and Y. L. Kapila. (2022). Nisin probiotic prevents inflammatory bone loss while promoting reparative proliferation and a healthy microbiome. NPJ Biofilms and Microbiomes, 8, 45. doi:10.1038/s41522-022-00307-x
Gatej, S. M., V. Marino, R. Bright, T. R. Fitzsimmons, N. Gully, P. Zilm, R. J. Gibson, S. Edwards, and P. M. Bartold. (2018). Probiotic Lacticaseibacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. Journal of Clinical Periodontology, 45(2), 204-212. doi:10.1111/jcpe.12838
Giannini, G., I. Ragusa, G. N. Nardone, S. Soldi, M. Elli, P. Valenti, L. Rosa, E. Marra, D. Stoppoloni, and E. M. Pich. (2022). Probiotics-containing mucoadhesive gel for targeting the dysbiosis associated with periodontal diseases. International Journal of Dentistry, 2022, 5007930. doi:10.1155/2022/5007930
Gołyńska, M., I. Polkowska, M. Bartoszcze-Tomaszewska, A. Sobczyńska-Rak, and Ł. Matuszewski. (2017). Molecular-level evaluation of selected periodontal pathogens from subgingival regions in canines and humans with periodontal disease. Journal of Veterinary Research, 18(1), 51–58. doi:10.4142/jvs.2017.18.1.51
Gouveia, V. G., D. M. J. Miessi, T. E. Rocha, N. A. Gomes, M. A. A. Nuernberg, J. M. Cardoso, E. Ervolino, and L. H. Theodoro. (2022). The effects of Lactobacillus reuteri on the inflammation and periodontal tissue repair in rats: A pilot study. Saudi Dental Journal, 34(6), 516–526. doi:10.1016/j.sdentj.2022.05.004
Graves D. (2008). Cytokines that promote periodontal tissue destruction. Journal of Periodontology, 79(8), 1585-91. doi: 10.1902/jop.2008.080183
Hajishengallis, G., M. Wang, S. Liang, M. Triantafilou, and K. Triantafilou. (2008). Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proceedings of the National Academy of Sciences, 105(36), 13532–13537. doi:10.1073/pnas.0803852105
Hajishengallis, G., S. Liang, M. A. Payne, A. Hashim, R. Jotwani, M. A. Eskan, M. L. McIntosh, A. Alsam, K. L. Kirkwood, J. D. Lambris, R. P. Darveau, and M. A. Curtis. (2011). A low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and the complement pathway. Cell Host Microbe, 10(5), 497–506. doi:10.1016/j.chom.2011.10.006
Hajishengallis, G., J. L. Krauss, S. Liang, M. L. McIntosh, and J. D. Lambris. (2013). Pathogenic microbes and community service through manipulation of innate immunity. Advances in Experimental Medicine and Biology, 946, 69–85. doi:10.1007/978-1-4614-0106-3_5
Hajishengallis, G. (2014). Immunomicrobial pathogenesis of periodontitis: Keystones, pathobionts, and the host response. Trends in Immunology, 35(1), 3-11. doi:10.1016/j.it.2013.09.001
Hajishengallis, G. and P. I. Diaz. (2020). Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. Current Oral Health Reports, 7(1), 12–21. doi:10.1007/s40496-020-00249-3
Hao, T., R. Zhang, T. Zhao, J. Wu, W. K. Leung , J. Yang, and W. Sun. (2023). Porphyromonas gingivalis infection promotes inflammation via inhibition of the AhR signalling pathway in periodontitis. Cell Proliferation, 56(2), e13364. doi:10.1111/cpr.13364
Hasegawaa, Y. and K. Naganob. (2021). Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. Japanese Dental Science Review, 57, 190–200. doi:10.1016/j.jdsr.2021.09.003
Herath, T. D. K., Y. Wang, C. J. Seneviratne, R. P. Darveau, C-Y. Wang, and L. Jin. (2013). The expression and regulation of matrix metalloproteinase-3 is critically modulated by Porphyromonas gingivalis lipopolysaccharide with heterogeneous lipid A structures in human gingival fibroblasts. BMC Microbiology, 13, 73. doi:10.1186/1471-2180-13-73
Hong, M. H. H., H. Williams, C. H. Jin, and J. W. Pike. (2000). The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins. Journal of Bone and Mineral Research, 15(5), 911-8. doi:10.1359/jbmr.2000.15.5.911
Huijsmans, C. J., J. Damen, J. C. Linden, P. H. Savelkoul, and M. H. Hermans. (2010). Comparative analysis of four methods to extract DNA from paraffin-embedded tissues: effect on downstream molecular applications. BMC Research Notes, 3, 239. doi:10.1186/1756-0500-3-239
Ilievski, V., J. M. Kinchen, R. Prabhu, F. Rim, L. Leoni, T. G. Unterman, and K. Watanabe. (2016). Experimental periodontitis results in prediabetes and metabolic alterations in brain, liver and heart: Global untargeted metabolomic analyses. Journal of Oral Biology, 3(1). doi:10.13188/2377-987X.1000020
Inaba, H., Y. Kato, H. Takeuchi, A. Amano, Fumitoshi. Asai, K. Nakano, R. J. Lamont, and M. Matsumoto-Nakano. (2019). Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae. PLOS ONE, 14(3), e0213309. doi:10.1371/journal.pone.0213309
Invernici, M. M., F. A. C. Furlaneto, S. L. Salvador, A. C. Ouwehand, S. Salminen, A. Mantziari, G. Vinderola, E. Ervolino, S. I. Santana, P. H. F. Silva, and M. R. Messora. (2020). Bifidobacterium animalis subsp lactis HN019 presents antimicrobial potential against periodontopathogens and modulates the immunological response of oral mucosa in periodontitis patients. PLOS ONE, 15(9), e0238425. doi: 10.1371/journal.pone.0238425
Ito, R., K. Ishihara, M. Shoji, K. Nakayama, and K. Okuda. (2010). Hemagglutinin/Adhesin domains of Porphyromonas gingivalis play key roles in coaggregation with Treponema denticola. FEMS Immunology and Medical Microbiology, 60(3), 251-60. doi:10.1111/j.1574-695X.2010.00737.x
Jagels, M. A. , J. Travis, J. Potempa, R. Pike, and T. E Hugli. (1996). Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Journal of Infection and Immunity, 64(6), 1984–1991. doi:10.1128/iai.64.6.19841991.1996
Jain, N., U. Dutt, I. Radenkov, and S. Jain. (2023). WHO's global oral health status report 2022: Actions, discussion and implementation. Oral Diseases, 30(2), 73-79. doi:10.1111/odi.14516
Jang, D., A-H. Lee, H-Y. Shin, H-R. Song, J-H. Park, T-B. Kang, S-R. Lee, and S-H. Yang. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 2719. doi:10.3390/ijms22052719
Jia, L., N. Han, J. Du, L. Guo, Z. Luo, and Yi Liu. (2019). Pathogenesis of important virulence factors of Porphyromonas gingivalis via Toll-Like receptors. Frontiers in Cellular and Infection Microbiology, 9, 262. doi:10.3389/fcimb.2019.00262
Kang, M-S., J-S. Oh, H-C. Lee, H-S. Lim, S-W. Lee, K-H. Yang, N-K. Choi, and S-M. Kim. (2011). Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. Journal of Microbiology, 49(2), 193-9. doi:10.1007/s12275-011-0252-9
Kassebaum, N.J., E. Bernabé, M. Dahiya, B. Bhandari, C.J.L. Murray, and W. Marcenes. (2014). Global burden of severe periodontitis in 1990-2010. Journal of Dental Research, 93(11), 1045–1053. doi:10.1177/0022034514552491
Khalaf, H., S. S. Nakka, C. Sandén, A. Svärd, K. Hultenby, N. Scherbak, D. Aili, and T. Bengtsson. (2016). Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiol, 16, 188. doi:10.1186/s12866-016-0810-8
Kim, E-K., S. G. Lee, Y-H. Choi, K-C. Won, J. S. Moon, A. T. Merchant, and H-K. Lee. (2013). Association between diabetes-related factors and clinical periodontal parameters in type-2 diabetes mellitus. BMC Oral Health, 13, 64. doi:10.1186/1472-6831-13-64
Kim, E., S-M. Yang, B. Lim, S. H. Park, B. Rackerby, and H-Y. Kim. (2020). Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiology, 20(1), 96. doi:10.1186/s12866-020-01781-z
Kinane, D. F., P. G. Stathopoulou and P. N. Papapanou. (2017). Periodontal diseases. Nature Reviews Disease Primers, 3, 17038. doi:10.1038/nrdp.2017.38
Kobatake, E., R. Kobayashi, T. Kabuki, and T. Kurita-Ochiai. (2019). Lactobacillus helveticus SBT2171 upregulates the expression of β-defensin and ameliorates periodontal disease caused by Porphyromonas gingivalis. Microbiology and Immunology, 63(8), 293-302. doi:10.1111/1348-0421.12719
Kobayashi, R., T. Kono, B.A. Bolerjack, Y. Fukuyama, R.S. Gilbert, K. Fujihashi, J. Ruby, K. Kataoka, M. Wada, M. Yamamoto, and K. Fujihashi. (2011). Induction of IL-10-producing CD4+ T-cells in Chronic Periodontitis. Journal of Dental Research, 90(5), 653–658. doi:10.1177/0022034510397838
Kobayashi, R., T. Kobayashi, F. Sakai, T. Hosoya, M. Yamamoto, and T. Kurita-Ochiai. (2017). Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Scientific Reports, 7(1), 545. doi:10.1038/s41598-017-00623-9
Kristoffersen, A. K., S. J. Solli, T. D. Nguyen, and M. Enersen. (2015). Association of the rgpB gingipain genotype to the major fimbriae (fimA) genotype in clinical isolates of the periodontal pathogen Porphyromonas gingivalis. Journal of Oral Microbiology, 7, 10. doi:10.3402/jom.v7.29124
Kuboniwa, M., A. Amano, E. Hashino, Y. Yamamoto, H. Inaba, N. Hamada, K. Nakayama, G. D. Tribble, R. J. Lamont, and S. Shizukuishi. (2009). Distinct roles of long/short fimbriae and gingipains in homotypic biofilm development by Porphyromonas gingivalis. BMC Microbiology, 9, 105. doi:10.1186/1471-2180-9-105
Kurtzman, G. M., R. A. Horowitz, R. Johnson, R. A. Prestiano, and B. I. Klein. (2022). The systemic oral health connection: Biofilms. Medicine, 101(46), e30517. doi:10.1097/MD.0000000000030517
Kyllar, M., B. Doskarova, and V. Paral. (2013). Morphometric assessment of periodontal tissues in relation to periodontal disease in dogs. Journal of Veterinary Dentistry, 30(3), 146-9. doi:10.1177/089875641303000302
Lamont, R. J., A. Chan, C. M. Belton, K. T. Izutsu, D. Vasel, and A. Weinberg. (1995). Porphyromonas gingivalis invasion of gingival epithelial cells. Infection and Immunity, 63(10), 3878-85. doi:10.1128/iai.63.10.3878-3885.1995
Lamont, R. J., H. Koo, and G. Hajishengallis. (2018). The oral microbiota: dynamic communities and host interactions. Nature Reviews Microbiology, 16(12), 745–759. doi:10.1038/s41579-018-0089-x
Laudenbach, J. M. and Z. Simon. (2014). Common dental and periodontal diseases: evaluation and management. Medical Clinics of North America, 98(6), 1239-60. doi:10.1016/j.mcna.2014.08.002
Lee, J. Y., D. P. Miller, L. Wu, C. R. Casella, Y. Hasegawa, and R. J. Lamont. (2018). Maturation of the Mfa1 Fimbriae in the Oral Pathogen Porphyromonas gingivalis. Frontiers in Cellular and Infection Microbiology, 8, 137. doi:10.3389/fcimb.2018.00137
Liang, S., J. L. Krauss, H. Domon, M. L. McIntosh, K. B. Hosur, H. Qu, F. Li, A. Tzekou, J. D. Lambris, and G. Hajishengallis. (2011). The C5a receptor impairs IL-12–dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. Journal of Immunology, 186(2), 869–877. doi:10.4049/jimmunol.1003252
Ling, M. R., I. L. C. Chapple, and J. B. Matthews. (2015). Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Journal of Innate Immunity, 21(7), 714-25. doi:10.1177/1753425915589387
Liu, D., S. Yao, and G. E. Wise. (2006). Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. European Journal of Oral Sciences, 114(1), 42-9. doi:10.1111/j.1600-0722.2006.00283.x
Luan, C., J. Yan, N. Jiang, C. Zhang, X. Geng, Z. Li,1, and C. Li. (2022). Leuconostoc mesenteroides LVBH107 antibacterial activity against Porphyromonas gingivalis and anti-Inflammatory activity against P. gingivalis lipopolysaccharide-stimulated RAW 264.7 cells. Nutrients, 14(13), 2584. doi:10.3390/nu14132584
Ma, X., J-W. Yoo, Y-J. Shin, H-S. Park, Y-H. Son, and D-H. Kim. (2023). Alleviation of Porphyromonas gingivalis or its extracellular vesicles provoked periodontitis and cognitive impairment by Lactobacillus pentosus NK357 and Bifidobacterium bifidum NK391. Nutrients, 15(5), 1068. doi:10.3390/nu15051068
Maekawa, T., N. Takahashi, K. Tabeta, Y. Aoki, H. Miyashita, S. Miyauchi, H. Miyazawa, T. Nakajima, and K. Yamazaki. (2011). Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile. PLOS ONE, 6(5), e20240. doi:10.1371/journal.pone.0020240
Maekawa, T. and G. Hajishengallis. (2014). Topical treatment with probiotic Levilactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. Journal of Periodontal Research, 49(6), 785-91. doi:10.1111/jre.12164
Maekawa, T., J. L. Krauss, T. Abe, R. Jotwani, M. Triantafilou, K. Triantafilou, A. Hashim, S. Hoch, M. A. Curtis, G. Nussbaum, J. D. Lambris, and G. Hajishengallis. (2014). Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host & Microbe, 15(6), 768–778. doi:10.1016/j.chom.2014.05.012
Maisetta, G., F. L. Brancatisano, S. Esin, M. Campa, and G. Batoni. (2011). Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide's antibacterial activity in vitro. Peptides, 32(5), 1073-7. doi:10.1016/j.peptides.2011.02.003
Malek, R., J. G. Fisher, A. Caleca, M. Stinson, C. J. van Oss, J. Y. Lee, M. I. Cho, R. J. Genco, R. T. Evans, and D. W. Dyer. (1994). Inactivation of the Porphyromonas gingivalis fimA gene blocks periodontal damage in gnotobiotic rats. Journal of Bacteriology, 176(4), 1052-9. doi:10.1128/jb.176.4.1052-1059.1994
Matsuoka, T., M. Nakanishi, Y. Aiba, and Y. Koga. (2004). Mechanism of Porphyromonas gingivalis killing by Lactobacillus salivalius TI2711. Journal of Japan Surgical Society, 46, 118–126. doi:10.2329/perio.46.118
Mazlan, A. M., F. Z. M. Yusof, and S. S. M. Said. (2018). Inhibitory effect of Lactobacillus from fermented foods and drinks on Porphyromonas gingivalis. Gading Journal for Science and Technology, 1, 25-36
Metzler, A. (2016). Developing a crystal violet assay to quantify biofilm production capabilities of Staphylococcus aureus. The Ohio State University
Miyoshi, T., S. Oge, S. Nakata, Y. Ueno, H. Ukita, R. Kousaka, Y. Miura, N. Yoshinari, and A. Yoshida. (2021). Gemella haemolysans inhibits the growth of the periodontal pathogen Porphyromonas gingivalis. Scientific Reports, 11, 11742. doi:10.1038/s41598-021-91267-3
Moayyedi, P., A. C. Ford, N. J. Talley, F. Cremonini, A. E. Foxx-Orenstein, L. J. Brandt, E. M. M. Quigley. (2010). The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut, 59(3), 325-32. doi:10.1136/gut.2008.167270
Mohammed, A. and B. T. Garib. (2019). Antibacterial effect of curcumin against clinically isolated Porphyromonas gingivalis and connective tissue reactions to curcumin gel in the subcutaneous tissue of rats. BioMed Research International, 6810936. doi:10.1155/2019/6810936
Moraes, L. F. S., L. M. Grzeskowiak, T. F. S. Teixeira, and M. C. G. Peluzio. (2014). Intestinal microbiota and probiotics in celiac disease. Clinical Microbiology Reviews, 27(3), 482–489. doi:10.1128/CMR.00106-13
Morelli, L. and L. Capurso. (2012). FAO/WHO guidelines on probiotics: 10 years later. Journal of Clinical Gastroenterology, 10, 46 Suppl:S1-2. doi:10.1097/MCG.0b013e318269fdd5.
Mysak, J., S. Podzimek, P. Sommerova, Y. Lyuya-Mi, J. Bartova, T. Janatova, J. Prochazkova, and J. Duskova. (2014). Porphyromonas gingivalis: major periodontopathic pathogen overview. Journal of Immunology Research, 2014, 476068. doi:10.1155/2014/476068
Neilands, J. and B. Kinnby. (2022). Porphyromonas gingivalis initiates coagulation and secretes polyphosphates - A mechanism for sustaining chronic inflammation?. Microbial Pathogenesis, 162, 104648. doi:10.1016/j.micpath.2020.104648
Newa, M., K. H. Bhandari, L. Tang, R. Kalvapalle, M. Suresh, and M. R. Doschak. (2011). Antibody-mediated “universal” osteoclast targeting platform using calcitonin as a model drug. Pharmaceutical Research, 28(5), 1131–1143. doi:10.1007/s11095-011-0376-y
Oddie, G. W., G. Schenk, N. Z. Angel, N. Walsh, L. W. Guddat, J. Jersey, A. I. Cassady, S. E. Hamilton, and D. A. Hume. (2000). Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone, 27(5), 575-84. doi:10.1016/s8756-3282(00)00368-9
Oliveira, L. F. Ferreira, P. H. F. Silva, S. L. Salvador, E. Ervolino, R. Casarin, L. Figueiredo, M. T. Ricoldi, S. L. S. Souza, F. Furlaneto, and M. R. Messora. (2023). Probiotic consumption can modify the resilience of periodontal tissues in rats under experimental periodontitis. Journal of Periodontology, 94(2), 217-229. doi:10.1002/JPER.21-0555
Olsen, I. and S. K. Singhrao. (2018). Importance of heterogeneity in Porphyromonas gingivalis lipopolysaccharide lipid A in tissue specific inflammatory signalling. Journal of Oral Microbiology, 10(1), 1440128. doi:10.1080/20002297.2018.1440128
Özavci, V., G. Erbas, U. Parin, H. T. Yüksel, and Şükrü Kirkan. (2019). Molecular detection of feline and canine periodontal pathogens. Veterinary and Animal Science, 8, 100069. doi:10.1016/j.vas.2019.100069
Pai, S. I., H. R. Matheus, and F. P. S. Guastaldi. (2023). Effects of periodontitis on cancer outcomes in the era of immunotherapy. Lancet Healthy Longevity, 4(4), e166-e175. doi:10.1016/S2666-7568(23)00021-1
Park, S-N., J-Y. Park, and J-K Kook. (2011). Development of Porphyromonas gingivalis-specific quantitative real-time PCR primers based on the nucleotide sequence of rpoB. Journal of Microbiology, 49(2), 315-9. doi:10.1007/s12275-011-1028-y
Pan, W., Q. Wang and Q. Chen. (2019). The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science, 11(3), 30. doi:10.1038/s41368-019-0064-z
Pathirana, R. D., N. M. O'Brien-Simpson, G. C. Brammar, N. Slakeski, and E. C Reynolds. (2007). Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infection and Immunity, 75(3), 1436-42. doi:10.1128/IAI.01627-06
Pavlica, Z., M. Petelin, P. Juntes, D. Erzen, D. A. Crossley, and U. Skaleric. (2008). Periodontal disease burden and pathological changes in organs of dogs. Journal of Veterinary Dentistry, 25(2), 97-105. doi:10.1177/089875640802500210
Peeters, E., H. J. Nelis, and T. Coenye. (2008). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of Microbiological Methods, 72(2), 157-65. doi:10.1016/j.mimet.2007.11.010
Polkowska, I., B. Tymczyna-Borowicz, M. Gołyńska, and B. Nowicka. (2023). Molecular microbiological characteristics of gingival pockets in the periodontal diseases of dogs. Journal of Veterinary Research, 67(1), 115-122. doi:10.2478/jvetres-2023-0005
Rangarajan, M., J. Aduse‐Opoku, N. A. Paramonov, A. Hashim, and M. A. Curtis. (2017). Hemin binding by Porphyromonas gingivalis strains is dependent on the presence of A‐LPS. Molecular Oral Microbiology, 32(5), 365–374. doi:10.1111/omi.12178
Ricoldi, M. S. T., F. A. C. Furlaneto, L. F. F. Oliveira, G. C. Teixeira, J. P. Pischiotini, A. L. G. Moreira, E. Ervolino, M. N. Oliveira, C. S. B. Bogsan, S. L. Salvador, and M. R. Messora. (2017). Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats. PLOS ONE, 12(6), e0179946. doi:10.1371/journal.pone.0179946
Roth, G. A., H. J. Ankersmit, V. B. Brown, P. N. Papapanou, A. M. Schmidt, E. Lalla. (2007). Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiology Letters, 272(1), 106-13. doi:10.1111/j.1574-6968.2007.00736.x
Sajedinejad, N., M. Paknejad, B. Houshmand, H. Sharafi, R. Jelodar, H. S. Zahiri, and K. A. Noghabi. (2018). Ligilactobacillus salivarius NK02: A potent probiotic for clinical application in mouthwash. Probiotics and Antimicrobial Proteins, 10(3), 485-495. doi:10.1007/s12602-017-9296-4
Sato, K., N. Takahashi, T. Kato, Y. Matsuda, M. Yokoji, M. Yamada, T. Nakajima, N. Kondo, N. Endo, R. Yamamoto, Y. Noiri, H. Ohno, and K. Yamazaki. (2017). Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Scientific Reports, 7, 6955. doi:10.1038/s41598-017-07196-7
Santibáñez, R., C. Rodríguez-Salas, C. Flores-Yáñez, D. Garrido, and P. Thomson. (2021). Assessment of changes in the oral microbiome that occur in dogs with periodontal disease. Journal of Veterinary Science, 8, 291. doi:10.3390/vetsci8120291.
Santos, J. D. P., E. Cunha, T. Nunes, L. Tavares, and M. Oliveira. (2019). Relation between periodontal disease and systemic diseases in dogs. Research in Veterinary Science, 125, 136-140. doi:10.1016/j.rvsc.2019.06.007
Slots, J. (2017). Periodontitis: facts, fallacies and the future. Periodontol 2000. 75(1), 7-23. doi:10.1111/prd.12221.
Smalley, J. W. and T. Olczak. (2017). Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Molecular Oral Microbiology, 32(1), 1-23. doi:10.1111/omi.12149
Socransky, S. S., A. D. Haffajee, M. A. Cugini, C. Smith, and R. L. Kent Jr. (1998). Microbial complexes in subgingival plaque. Journal of clinical periodontology, 25(2), 134-44. doi:10.1111/j.1600-051x.1998.tb02419.x
Sun, Y., J. Li, X. Xie, F. Gu, Z. Sui, K. Zhang, and T. Yu. (2021). Macrophage-osteoclast associations: Origin, polarization, and subgroups. Frontiers in Immunology, 12, 778078. doi: 10.3389/fimmu.2021.778078
Szkaradkiewicz, A. K., J. Stopa, and T. M. Karpiński. (2014). Effect of oral administration involving a probiotic strain of Lactobacillus reuteri on pro-Inflammatory cytokine response in patients with chronic periodontitis. Archivum Immunologiae et Therapiae Experimentalis, 62(6), 495–500. doi:10.1007/s00005-014-0277-y
Takeuchi, H., T. Hirano, S. E. Whitmore, I. Morisaki, A. Amano, and R. J. Lamont. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65. (2013). PLOS Pathogens, 9(4), e1003326. doi:10.1371/journal.ppat.1003326
Tiensripojamarn, N., A. Lertpimonchai, K. Tavedhikul, A. Udomsak, P. Vathesatogkit, P. Sritara, and O. Charatkulangkun. (2021). Periodontitis is associated with cardiovascular diseases: A 13-year study. Journal of Clinical Periodontology, 48(3), 348-356. doi:10.1111/jcpe.13418
Tonetti, M. S., H. Greenwell, and K. S. Kornman. (2018). Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology, 89(Suppl 1), S159–S172. doi:10.1002/JPER.18-0006
Tyagi, A. M., K. Srivastava, M. N. Mansoori, R. Trivedi, N. Chattopadhyay, and D. Singh. (2012). Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: A new candidate in the pathogenesis of osteoporosis. PLOS ONE, 7(9), e44552. doi:10.1371/journal.pone.0044552
Uehara, A., M. Naito, T. Imamura, J. Potempa, J. Travis, K. Nakayama, H. Takada. (2008). Dual regulation of interleukin-8 production in human oral epithelial cells upon stimulation with gingipains from Porphyromonas gingivalis. Journal of Medical Microbiology, 57(4), 500-507. doi:10.1099/jmm.0.47679-0
Wallis, C., L. Milella, A. Colyer, C. O’Flynn, S. Harris, and L. J. Holcombe. (2021). Subgingival microbiota of dogs with healthy gingiva or early periodontal disease from different geographical locations. BMC Veterinary Research, 17, 7
Wang, Z., J. Tan, L. Lei, W. Sun, Y. Wu, P. Ding, L. Chen. (2018). The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the calcification of primary osteoblasts in vitro. International Immunopharmacology. 4, 57. doi:10.1016/j.intimp.2018.02.002
Wang, C., T. Cheng, X. Li, and L. Jin. (2020). Metronidazole-treated Porphyromonas gingivalis persisters invade human gingival epithelial cells and perturb innate responses. Antimicrobial Agents and Chemotherapy, 64(6), e02529-19. doi:10.1128/AAC.02529-19
Wegner, N., R. Wait, A. Sroka, S. Eick, K-A. Nguyen, K. Lundberg, A. Kinloch, S. Culshaw, J. Potempa, and P. J. Venables. (2010). Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis and Rheumatology, 62(9), 2662-72. doi:10.1002/art.27552
Wei, Z., Z. He, T. Wang, X. Wang, T. Wang, and M. Long. (2023). Lactobacillus salivarius WZ1 inhibits the inflammatory injury of mouse jejunum caused by Enterotoxigenic Escherichia coli K88 by regulating the TLR4/NF-κB/MyD88 inflammatory pathway and gut microbiota. Microorganisms, 11(3), 657. doi:10.3390/microorganisms11030657
Widyarman, A. S. and C. F. Theodorea. (2022). Novel Indigenous Probiotic Lactobacillus reuteri strain produces anti-biofilm reuterin against pathogenic periodontal bacteria. European Journal of Dentistry, 16(1), 96–101. doi:10.1055/s-0041-1731591
Xu, W., W. Zhou, H. Wang, and S. Liang. (2020). Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Advances in Protein Chemistry and Structural Biology, 120, 45–84. doi:10.1016/bs.apcsb.2019.12.001
Xu, J., L. Yu, F. Liu, L. Wan, and Z. Deng. (2023). The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Frontiers in Immunology, 5, 14. doi:10.3389/fimmu.2023.1222129
Xie H., G. S. Cook, J. W. Costerton, G. Bruce, T. M. Rose, and R. J. Lamont. (2000). Intergeneric communication in dental plaque biofilms. Journal of Bacteriology, 182(24), 7067–7069. doi:10.1128/jb.182.24.7067-7069.2000
Yang, K. M., J-S. Kim, H-S. Kim, Y-Y. Kim, J-K. Oh, H-W. Jung, D-S. Park, and K-H. Bae. (2021). Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Scientific Reports, 11, 1631. doi:10.1038/s41598-020-80921-x
Yücel, Ö. Ö., E. Berker, L. Mesci, K. Eratalay, E. Tepe, İ. Tezcan. (2015). Analysis of TNF-α (-308) polymorphism and gingival crevicular fluid TNF-α levels in aggressive and chronic periodontitis: A preliminary report. Cytokine, 72(2), 173-7. doi:10.1016/j.cyto.2015.01.001
Zhang, Q., B. Chen, F. Yan, J. Guo, X. Zhu, S. Ma, and W. Yang. (2014). Interleukin-10 inhibits bone resorption: A potential therapeutic strategy in periodontitis and other bone loss diseases. BioMed Research International, 2014, 284836. doi:10.1155/2014/284836
Zhang, W., T. Rigney, and G. Tribble. (2013). Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway. BMC Microbiology, 13, 5. doi:10.1186/1471-2180-13-5
Zhang, W., J. Ju, T. Rigney, and G. Tribble. (2014). Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral Health, 14, 89. doi:10.1186/1472-6831-14-89
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95851-
dc.description.abstract牙周病 (Periodontal disease) 是由口腔病原菌引起的發炎反應,不僅影響人類,也是犬隻常見的口腔疾病,在三歲以上的犬隻中有約三分之二患有某些程度上的牙周病。牙周病的起因是由於口腔菌群的失衡,導致微生物堆積在牙齒邊緣產生生物膜及牙菌斑,造成牙齦發炎。若不將發炎反應加以治療,感染區域會持續擴大,並且可能由牙齦炎發展為牙周病,造成骨骼破壞及流失最終可能導致牙齒鬆動及脫落,而口腔問題不只影響口腔還可能引起全身性健康問題。

Porphyromonas gingivalis是牙周病的關鍵病原菌,被認為是牙周病發展的關鍵因素。這種細菌能夠貼附並侵入宿主細胞,降低免疫系統對細菌的殺傷能力,並引發持續的炎症。目前常見的治療方法包括洗牙 (scaling) 及根面平整術 (planing),並使用抗生素和抗炎藥物進行治療,但這些方法可能導致抗藥性的產生,並破壞口腔細菌的平衡。此外,犬隻在進行洗牙時還需承受麻醉的風險,因此維護犬隻口腔健康是很重要的議題。近年來,研究人員正在嘗試使用益生菌作為一種替代治療方法,在過去研究中顯示出作為輔助療法的可能,但需要更多研究來探討預防牙周病的的功效。因此本次研究目的為使用體外試驗及動物試驗篩選可能可以預防或延緩牙周病的益生菌。

在本次研究中,首先從動物產品實驗室中選出可食用的乳酸菌 (lactic acid bacteria, LAB) 並且透過紙錠擴散試驗 (disc diffusion method)篩選可以抑制牙周病原菌P. gingivalis生長的菌株,其中選出了4株抑制效果最顯著者作為候選菌株,四株菌皆為Ligilactobacillus salivarius。接著進入抗生物膜實驗,發現四株菌皆有良好的生物膜抑制效果,所以所有菌株進入細胞實驗。而在細胞實驗中選擇牙齦上皮細胞及小鼠巨噬細胞進行實驗。在牙齦上皮細胞的實驗中,結果表明四株益生菌顯著減少P. gingivalis的貼附和侵入能力,其中APL 25表現出了良好的細胞貼附能力。此外,益生菌還能防止由病原菌引起的免疫抑制反應,並且在巨噬細胞上可以有效增加IL-10的產生並引起免疫反應。

在候選菌株中,APL25在所有細胞實驗中表現良好抑制病原菌貼附及侵入,同時改善其引起的免疫反應,並且對於細胞有較小的損傷,因此本研究選擇APL 25進行小鼠實驗。在小鼠試驗中,先在益生菌組小鼠牙齦邊緣給予一周的益生菌進行防禦,接著再使用牙周病原菌P. gingivalis進行直接塗抹的牙周病誘導。在最後結果中有先給予益生菌預防的組別有較少的骨質流失情況,並且維持良好的骨礦物質密度,同時具較低的牙齦發炎評分。此外,有給予益生菌的小鼠體內白血球數量較少,並減少脾臟及牙齦組織中的促發炎因子濃度,在血清中則可以改善病原菌引起的不良免疫抑制。不只如此,在最後一次塗抹益生菌後四周,有先給予L. salivarius的小鼠組別在口腔、牙齦組織及糞便中仍具較少的病原菌,並且與病原菌組相比具較多的乳酸菌,顯示出長時間的保護效果。

綜合本次研究結果,APL 25在體內外實驗中皆展現良好的預防或是延緩牙周病的潛力,期望在未來可以實際應用於人及犬隻,減少牙周病的發生。
zh_TW
dc.description.abstractPeriodontal disease is an inflammatory response caused by oral pathogens, affecting not only humans but also being a common oral disease in dogs, affecting over two-thirds of dogs over 3 years old having some degree of periodontal disease. The cause of periodontal disease is an imbalance in the oral microbiota, leading to the accumulation of microbes at the tooth margin, forming biofilm and dental plaque, and causing gingival inflammation. If untreated, the infection area will continue to expand, and gingivitis may develop into periodontitis, leading to bone destruction and loss, ultimately causing tooth loosening and falling out. Oral problems can not only affect the oral cavity but may also lead to systemic health issues.
Porphyromonas gingivalis is the key pathogen of periodontal disease and is considered a critical factor in the development of periodontal disease. This bacterium can adhere to and invade host cells, reducing the immune system's ability to kill the bacteria, and triggering sustained inflammation. The common treatment methods include scaling and root planing, along with the use of antibiotics and anti-inflammatory drugs and substances, but these methods may lead to the development of antibiotic resistance and disrupt the balance of oral bacteria. Additionally, dogs undergoing scaling require anesthesia, making the maintenance of canine oral health an important issue. Recent research has explored the potential of probiotics as an adjunctive therapy for periodontal disease. Although promising results have been observed, further investigation is needed to establish their efficacy. This study aimed to screen probiotic strains that might prevent or delay periodontal disease using both in vitro and in vivo experiments, with the ultimate goal of reducing its incidence in humans and dogs.
In this study, edible lactic acid bacteria (LAB) were selected from the animal product laboratory. The disc diffusion method was used to screen for strains capable of inhibiting the growth of the periodontal pathogen Porphyromonas gingivalis. Four strains of Ligilactobacillus salivarius demonstrated the most significant inhibitory effects and were chosen as candidate strains. Next, anti-biofilm experiments were conducted, showing that all four strains effectively inhibited biofilm formation. These strains were then tested in cell experiments using gingival epithelial cells and mouse macrophages. The results indicated that the four probiotic strains significantly reduced the adhesion and invasion capabilities of P. gingivalis, with strain APL 25 exhibiting excellent cell adhesion. Furthermore, the probiotics prevented the immunosuppressive response in gingival cells induced by the pathogen and increased the production of IL-10, triggering a beneficial immune response in macrophages.

Among the candidate strains, APL 25 excelled in all cell experiments by inhibiting pathogen adhesion and invasion, enhancing the immune response, and causing minimal cell damage. Consequently, APL 25 was selected for further testing in mouse experiments. In the mouse experiment, the probiotic group received APL 25 for one week as a preventive measure before inducing periodontal disease with P. gingivalis. The final results showed that the group pre-treated with probiotics had less bone loss, maintained good bone mineral density, and had lower gum inflammation scores. In addition, mice given probiotics had fewer white blood cells and reduced the concentration of pro-inflammatory factors in the spleen and gingival tissues, and serum levels improved the adverse immune suppression caused by the pathogen. Not only that, but four weeks after the last application of probiotics, the group given L. salivarius APL 25 still had fewer pathogens in the oral cavity, gingival tissues, and feces, along with a higher presence of lactic acid bacteria compared to the pathogen group, indicating a long-lasting protective effect.
In summary, the results of this study indicate that APL 25 has strong potential to prevent or delay the onset of periodontal disease in both in vitro and in vivo experiments. This strain shows promise for future application in humans and dogs to reduce the occurrence of periodontal disease.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:21:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:21:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
中文摘要 II
Abstract IV
圖次 X
表次 XI
壹、文獻探討 1
一、牙周病 1
1. 牙周病介紹 1
2. 牙周病的微生物結構 2
3. 牙齦炎及牙周病 5
4. 牙周病相關全身疾病 8
5. 牙周病治療方法 10
二、牙周病關鍵病原菌 10
1. LPS 11
2. 牙齦蛋白酶 12
3. 菌毛 14
三、益生菌的應用 17
貳、研究動機與目的 22
參、材料方法 23
一、試驗設計 23
二、體外篩選可抑制牙周病原菌之益生菌 24
(一) 益生菌生長環境挑選 24
(二) 益生菌篩選試驗 26
1. 牙周病原菌生長抑制試驗 26
2. 牙周病原菌生物膜抑制 27
3. 益生菌及牙周病原菌與細胞共培養 27
三、體內試驗評估益生菌對於牙周病的預防 31
(一) 研究材料 31
(二) 研究方法 33
1. 牙周病誘導試驗 33
2. 動物犧牲及樣本採集 33
3. 血清及器官採集 34
4. 牙周組織損傷分析 34
5. 口腔、糞便、牙齦組織菌相分析 36
(三) 統計方法 38
肆、結果 41
一、菌株最佳生長條件 41
二、體外篩選試驗 48
1. 紙錠擴散試驗 (disc diffusion method) 48
2. 生物膜抑制實驗 48
3. 病原菌及益生菌對於牙齦上皮細胞的貼附及侵入能力 53
4. 益生菌及病原菌對牙齦上皮細胞的細胞存活率 53
5. 益生菌及病原菌對牙齦上皮細胞細胞激素影響 54
6. 益生菌及病原菌對Raw264.7細胞存活率 58
7. 益生菌及病原菌對免疫細胞Raw264.7的細胞激素影響 58
三、益生菌及病原菌於小鼠體內試驗結果 65
1. 給予益生菌及病原菌後小鼠體重變化 65
2. 接種病原菌及益生菌後小鼠骨質流失情狀 65
3. 小鼠牙周組織切片H&E染色 66
4. 小鼠血液生化值 71
5. 小鼠體內促發炎因子的表達 71
6. 益生菌及病原菌於口腔及糞便中的菌量 77
伍、討論 79
一、體外篩選試驗 79
1. 紙錠擴散試驗 79
2. 生物膜抑制實驗 80
3. 病原菌及益生菌對於牙齦上皮的貼附及侵入能力 80
4. 益生菌及病原菌對牙齦上皮細胞的細胞存活率及免疫影響 81
5. 益生菌及病原菌對Raw 264.7細胞的細胞存活率及免疫影響 82
二、益生菌及病原菌於小鼠體內試驗結果 84
1. 小鼠體增重的影響 84
2. 接種病原菌及益生菌後小鼠牙齒狀況 85
3. 小鼠牙周組織病理變化 86
4. 小鼠血液分析及體內促發炎因子的表達 86
5. 益生菌及病原菌於口腔及糞便中的菌量 89
陸、結論 91
柒、參考文獻 93
-
dc.language.isozh_TW-
dc.title益生菌透過抑制牙周病原菌Porphyromonas gingivalis預防牙周病的潛力zh_TW
dc.titleThe potential of probiotics to prevent periodontitis by inhibiting the periodontal pathogen Porphyromonas gingivalisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李雅珍;陳勁初;劉嚞睿zh_TW
dc.contributor.oralexamcommitteeYa-Jane Lee;Chin-Chu Chen;Je-Ruei Liuen
dc.subject.keyword牙周病,Ligilactobacillus salivarius,益生菌,口腔保健,zh_TW
dc.subject.keywordPeriodontal disease,Ligilactobacillus salivarius,probiotics,oral health,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202403318-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
11.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved