請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95844
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育任 | zh_TW |
dc.contributor.advisor | Yuh-Renn Wu | en |
dc.contributor.author | 卓緯榮 | zh_TW |
dc.contributor.author | Wei-Rong Zhuo | en |
dc.date.accessioned | 2024-09-18T16:19:52Z | - |
dc.date.available | 2024-09-19 | - |
dc.date.copyright | 2024-09-18 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | [1] D. W. Arnold and C. Perez-Delgado, “Quantum cryptography: security for the post-quantum world,” 2020.
[2] S. Ornes, “Code wars,” Proceedings of the National Academy of Sciences, vol. 114, no. 11, pp. 2784–2787, 2017. [3] D. S. C. Putranto, R. W. Wardhani, H. T. Larasati, and H. Kim, “Another concrete quantum cryptanalysis of binary elliptic curves,” Cryptology ePrint Archive, 2022. [4] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science, pp. 124–134, Ieee. [5] Z. Zukarnain, A. Buhari, N. Harun, and R. Khalid, “Quccs: an experimental of quantum key distribution using quantum cryptography and communication simulator,” Malaysian Journal of Mathematical Sciences, vol. 13, no. S, pp. 127–140, 2019. [6] J. Gosling, The Java language specification. Addison-Wesley Professional, 2000. [7] C. B. Moler, Numerical computing with MATLAB. SIAM, 2004. [8] A. MySQL, “Mysql,” 2001. [9] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Physical review letters, vol. 68, no. 21, p. 3121, 1992. [10] H.-K. Lo and H. F. Chau, “Why quantum bit commitment and ideal quantum coin tossing are impossible,” Physica D: Nonlinear Phenomena, vol. 120, no. 1-2, pp. 177–187, 1998. [11] V. Bužek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,” Physical Review A, vol. 54, no. 3, p. 1844, 1996. [12] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín, “Almost quantum correlations,” Nature communications, vol. 6, no. 1, p. 6288, 2015. [13] G. Shaw, S. Sridharan, S. Ranu, F. Shingala, P. Mandayam, and A. Prabhakar, “Time-bin superposition methods for dps-qkd,” IEEE Photonics Journal, vol. 14, no. 5, pp. 1–7, 2022. [14] F. Basso Basset, M. Valeri, E. Roccia, V. Muredda, D. Poderini, J. Neuwirth, N. Spagnolo, M. B. Rota, G. Carvacho, and F. Sciarrino, “Quantum key distribution with entangled photons generated on demand by a quantum dot,” Science advances, vol. 7, no. 12, p. eabe6379, 2021. [15] F. Xu, B. Qi, Z. Liao, and H.-K. Lo, “Long distance measurement-device-independent quantum key distribution with entangled photon sources,” Applied physics letters, vol. 103, no. 6, 2013. [16] F. Berra, C. Agnesi, A. Stanco, M. Avesani, M. Kuklewski, D. Matter, G. Vallone, and P. Villoresi, “Synchronization of quantum communications over an optical classical communications channel,” Applied Optics, vol. 62, no. 30, pp. 7994–7999, 2023. [17] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014. [18] H.-Q. Ma, J.-L. Zhao, and L.-A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Optics letters, vol. 32, no. 6, pp. 698–700, 2007. [19] P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Physical review letters, vol. 85, no. 2, p. 441, 2000. [20] K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single-photon differential phase shift quantum key distribution,” Physical review letters, vol. 103, no. 17, p. 170503, 2009. [21] M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set equality,” Journal of computer and system sciences, vol. 22, no. 3, pp. 265–279, 1981. [22] N. Lütkenhaus, “Estimates for practical quantum cryptography,” Physical Review A, vol. 59, no. 5, p. 3301, 1999. [23] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8, no. 1, pp. 21–28, 1962. [24] M. Mehic, M. Niemiec, H. Siljak, and M. Voznak, “Error reconciliation in quantum key distribution protocols,” 2020. [25] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Transactions on Information theory, vol. 41, no. 6, pp. 1915–1923, 1995. [26] C.-H. F. Fung, X. Ma, and H. Chau, “Practical issues in quantum-key-distribution postprocessing,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 81, no. 1, p. 012318, 2010. [27] X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, and H.-K. Lo, “Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 87, no. 6, p. 062327, 2013. [28] N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack,” New Journal of Physics, vol. 4, no. 1, p. 44, 2002. [29] X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Physical review letters, vol. 94, no. 23, p. 230503, 2005. [30] E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 73, no. 1, p. 012344, 2006. [31] S. K. Ranu, G. K. Shaw, A. Prabhakar, and P. Mandayam, “Security with 3-pulse differential phase shift quantum key distribution,” in 2017 IEEE Workshop on Recent Advances in Photonics (WRAP), pp. 1–7, IEEE. [32] S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Physical review letters, vol. 108, no. 13, p. 130502, 2012. [33] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New Journal of Physics, vol. 11, no. 4, p. 045021, 2009. [34] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Physical review letters, vol. 89, no. 3, p. 037902, 2002. [35] H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Physical review letters, vol. 108, no. 13, p. 130503, 2012. [36] X. Ma and M. Razavi, “Alternative schemes for measurement-device-independent quantum key distribution,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 86, no. 6, p. 062319, 2012. [37] Z.-Y. J. Ou, Multi-photon quantum interference, vol. 43. Springer, 2007. [38] C.-K. Hong, Z.-Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Physical review letters, vol. 59, no. 18, p. 2044, 1987. [39] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 72, no. 1, p. 012326, 2005. [40] F. Xu, M. Curty, B. Qi, and H.-K. Lo, “Practical aspects of measurement-device-independent quantum key distribution,” New Journal of Physics, vol. 15, no. 11, p. 113007, 2013. [41] S. Chang, C.-C. Hsu, T.-H. Huang, W.-C. Chuang, Y.-S. Tsai, J.-Y. Shieh, and C.-Y. Leung, “Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber,” Chinese journal of physics, vol. 38, no. 3, pp. 437–442, 2000. [42] X. Ma, C.-H. F. Fung, and M. Razavi, “Statistical fluctuation analysis for measurement-device-independent quantum key distribution,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 86, no. 5, p. 052305, 2012. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95844 | - |
dc.description.abstract | 量子密鑰分發在當前的量子資訊加密中已被廣泛應用,基於量子力學的物理定律,使得通訊雙方可以無條件安全地獲得一組相同的隨機密鑰。然而,在實際應用中,由於光學元件的不完美和缺陷,可能導致密鑰生成效率下降,甚至使竊聽者能夠利用這些漏洞部分獲取密鑰資訊,從而將通訊暴露在危險中。
本論文旨在模擬研究差分相位移和獨立測量設備兩種協定。我們利用開發的模擬器分析不同元件參數的影響,包括脈衝重疊效應、相位調變失真對系統密鑰和錯誤率的影響,並探討通過調整偵測器開啟時間來優化系統的方法。接下來,我們將比較這兩種協定在密鑰生成效率上的差異,以及是否需要更高規格的儀器才能夠成功實施。我們還將分析獨立測量設備協定對比起差分相位移協定在實際上可能面臨的雙光子時間延遲和溫差對通訊的不利影響。 此外,我們使用竊聽模組評估兩種協定在竊聽者攻擊時的安全性,並得出在獨立測量設備協定中竊聽者攻擊所引起的錯誤率比差分相位移來的更高,且當竊聽者的攔截率以及偵測能力較高時,獨立測量設備協定的安全性較高,但其經過隱私放大後的安全密鑰產生效率比較低。最後則使用誘餌狀態的協定來討論此方式是否能成功揭露竊聽者的行為,並分析出此方式對於偵測竊聽者的能力極限。 | zh_TW |
dc.description.abstract | Quantum key distribution (QKD) has been widely used in current quantum information encryption. Based on the physical laws of quantum mechanics, it allows communication parties to securely obtain a set of shared random keys. However, in practical applications, due to the imperfections and defects of optical devices, the key generation efficiency may decrease, and even eavesdroppers may be able to exploit these vulnerabilities to partially obtain key information, thus exposing the communication to danger.
This paper aims to simulate and research two protocols: differential phase shift (DPS) and measurement-device-independent (MDI) QKD. We utilize our developed simulator to analyze the influence of different device parameters, including the pulse overlapping effect, and phase modulation distortion on the system key and error rate. We also explore methods to optimize system performance by adjusting the detector time window. Furthermore, we compare the efficiency of key generation between these two protocols and whether higher-specification devices are required for successful implementation. We will also analyze the advantages of biphotons time delay and temperature difference on communication in the MDI protocol compared to the DPS. In addition, we use the eavesdropping module to evaluate the security of the two protocols, and conclude that the error rate induced by eavesdropper attacks in the MDI protocol is higher than that in the DPS. When the eavesdropper's interception ratio and detection capability are high, the security of MDI protocol is higher, but its secure key generation efficiency after privacy amplification is relatively low. Finally, we use the decoy state protocol to discuss whether this method can successfully detect the eavesdropper's behavior, and analyze the limit of the eavesdropper detection capability of this method. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:19:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-18T16:19:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Implementation flow of QKD protocol . . . . . . . . . . . . . . . . . 4 1.4 Common eavesdropping method in QKD . . . . . . . . . . . . . . . 7 1.4.1 Photon number splitting attack . . . . . . . . . . . . . . . . . 8 1.4.2 Intercept-and-resend attack . . . . . . . . . . . . . . . . . . . 9 1.4.3 Side-channel attack . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2 Methodology 12 2.1 Differential phase shift QKD . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Basic concepts of DPS protocol . . . . . . . . . . . . . . . . 12 2.1.2 Information encoding . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 Information decoding and one-bit delay interference . . . . . 14 2.1.4 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Measurement-device-independent QKD . . . . . . . . . . . . . . . . 17 2.2.1 Basic concepts of MDI protocol . . . . . . . . . . . . . . . . 17 2.2.2 Information encoding . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Hong-Ou-Mandel interference in MDI-QKD . . . . . . . . . 20 2.2.4 Information decoding and Key generation . . . . . . . . . . . 23 2.2.5 Decoy method in MDI-QKD . . . . . . . . . . . . . . . . . . 28 Chapter 3 Analyzing results of DPS and MDI about device parameters 34 3.1 Performance of DPS-QKD for device parameters . . . . . . . . . . . 34 3.1.1 Laser clock rate and SPD deadtime under different communi cation distance . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 Phase modulation distortion . . . . . . . . . . . . . . . . . . 40 3.1.3 High clock rate for overlapping effects . . . . . . . . . . . . 43 3.1.4 Dispersion for overlapping effects . . . . . . . . . . . . . . . 45 3.2 Performance of MDI-QKD compared to DPS about device parameters 50 3.2.1 Laser clock rate and SPD dead time . . . . . . . . . . . . . . 50 3.2.2 Long communication distance for MDI . . . . . . . . . . . . 56 3.3 The disadvantages of MDI-QKD compared to DPS . . . . . . . . . . 58 3.3.1 Delay time between communication parties . . . . . . . . . . 58 3.3.2 Temperature difference between communication parties . . . 63 Chapter 4 Eavesdropping results of DPS and MDI-QKD under intercept and resend attack 67 4.1 The results of Eve’s attack and the influence on the QKD communi cation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 The influence of Eve’s attack on the QKD communication sys tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 The information obtained by Eve during the eavesdropping . . 73 4.2 Strategies and results for preventing Eve’s eavesdropping techniques 77 4.2.1 Privacy amplification and secure key number . . . . . . . . . 77 4.2.2 MDI decoy method . . . . . . . . . . . . . . . . . . . . . . . 85 Chapter 5 Conclusion 88 References 90 | - |
dc.language.iso | en | - |
dc.title | 分析 DPS 和 MDI 量子密鑰分發的性能差異與竊聽 | zh_TW |
dc.title | Analyzing Performance Differences and Eavesdropping in DPS and MDI Quantum Key Distribution | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林恭如;巫朝陽 | zh_TW |
dc.contributor.oralexamcommittee | Gong-Ru Lin;Jau-Yang Wu | en |
dc.subject.keyword | 量子密鑰分發,差分相位移量子密鑰分發,獨立測量設備量子密鑰分發,性能參數,攔截重發攻擊,誘餌狀態, | zh_TW |
dc.subject.keyword | QKD,DPS-QKD,MDI-QKD,performance parameters,intercept and resend attack,decoy-state, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202403527 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | 2026-09-01 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 10.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。