請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | zh_TW |
| dc.contributor.advisor | Chi-Yang Chao | en |
| dc.contributor.author | 蘇玟翰 | zh_TW |
| dc.contributor.author | Wen-Han Su | en |
| dc.date.accessioned | 2024-09-18T16:17:14Z | - |
| dc.date.available | 2024-09-19 | - |
| dc.date.copyright | 2024-09-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | (1) Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science 2014, 7 (4), 1307-1338.
(2) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. nature 2001, 414 (6861), 359-367. (3) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537. (4) Hubble, D.; Brown, D. E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy & Environmental Science 2022, 15 (2), 550-578. (5) Chae, W.; Kim, B.; Ryoo, W. S.; Earmme, T. A brief review of gel polymer electrolytes using in situ polymerization for lithium-ion polymer batteries. Polymers 2023, 15 (4), 803. (6) Liu, F.-Q.; Wang, W.-P.; Yin, Y.-X.; Zhang, S.-F.; Shi, J.-L.; Wang, L.; Zhang, X.-D.; Zheng, Y.; Zhou, J.-J.; Li, L. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances 2018, 4 (10), eaat5383. (7) Khan, K.; Tu, Z.; Zhao, Q.; Zhao, C.; Archer, L. A. Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chemistry of Materials 2019, 31 (20), 8466-8472. (8) Zhao, Q.; Liu, X.; Stalin, S.; Archer, L. In-built polymer-in-solvent and solvent-in-polymer electrolytes for high-voltage lithium metal batteries. Cell Reports Physical Science 2020, 1 (8). (9) Zhang, B.-H.; Wen, W.-X.; Wang, H.-Y.; Hou, Y.-L.; Chen, J.-Z.; Zhao, D.-L. In situ generated of hybrid interface in poly (1, 3-dioxolane) quasi solid electrolyte and extended sulfone cosolvent for lithium-metal batteries. Chemical Engineering Journal 2023, 472, 144990. (10) Bai, Y.; Ma, W.; Dong, W.; Wu, Y.; Wang, X.; Huang, F. In-situ-polymerized 1, 3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries. ACS Applied Materials & Interfaces 2023, 15 (22), 26834-26842. (11) Wen, S.; Luo, C.; Wang, Q.; Wei, Z.; Zeng, Y.; Jiang, Y.; Zhang, G.; Xu, H.; Wang, J.; Wang, C. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Materials 2022, 47, 453-461. (12) Li, C.; Hu, A.; Zhang, X.; Ni, H.; Fan, J.; Yuan, R.; Zheng, M.; Dong, Q. An intrinsic polymer electrolyte via in situ cross-linked for solid lithium-based batteries with high performance. PNAS nexus 2023, 2 (9), pgad263. (13) Zhu, J.; Zhang, J.; Zhao, R.; Zhao, Y.; Liu, J.; Xu, N.; Wan, X.; Li, C.; Ma, Y.; Zhang, H. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Storage Materials 2023, 57, 92-101. (14) Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69 (3-4), 173-183. (15) Zhang, Y.; Zuo, T.-T.; Popovic, J.; Lim, K.; Yin, Y.-X.; Maier, J.; Guo, Y.-G. Towards better Li metal anodes: challenges and strategies. Materials Today 2020, 33, 56-74. (16) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 2011, 21 (27), 9938-9954. (17) Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127. (18) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194-206. (19) Dey, A.; Sullivan, B. The electrochemical decomposition of propylene carbonate on graphite. Journal of The Electrochemical Society 1970, 117 (2), 222. (20) Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. The Journal of Physical Chemistry B 2000, 104 (51), 12282-12291. (21) Wu, F.; Yuan, Y.-X.; Cheng, X.-B.; Bai, Y.; Li, Y.; Wu, C.; Zhang, Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials 2018, 15, 148-170. (22) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Advanced science 2016, 3 (3), 1500213. (23) Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047. (24) Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J.-G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nature nanotechnology 2020, 15 (3), 224-230. (25) Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218. (26) Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. Journal of the Electrochemical Society 1997, 144 (8), L208. (27) Ramasubramanian, A.; Yurkiv, V.; Foroozan, T.; Ragone, M.; Shahbazian-Yassar, R.; Mashayek, F. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries. The Journal of Physical Chemistry C 2019, 123 (16), 10237-10245. (28) Pan, J.; Cheng, Y.-T.; Qi, Y. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Physical Review B 2015, 91 (13), 134116. (29) Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445. (30) Zhang, L.; Yang, T.; Du, C.; Liu, Q.; Tang, Y.; Zhao, J.; Wang, B.; Chen, T.; Sun, Y.; Jia, P. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nature nanotechnology 2020, 15 (2), 94-98. (31) Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. Journal of the American Chemical Society 2019, 141 (21), 8441-8449. (32) Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy 2019, 4 (9), 796-805. (33) Ko, J.; Yoon, Y. S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries? Ceramics International 2019, 45 (1), 30-49. (34) Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Temperature‐dependent nucleation and growth of dendrite‐free lithium metal anodes. Angewandte Chemie 2019, 131 (33), 11486-11490. (35) Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Advanced Energy Materials 2019, 9 (44), 1902254. (36) He, Y.; Ren, X.; Xu, Y.; Engelhard, M. H.; Li, X.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W.; Wang, C. Origin of lithium whisker formation and growth under stress. Nature nanotechnology 2019, 14 (11), 1042-1047. (37) Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagacé, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. In situ scanning electron microscopy detection of carbide nature of dendrites in Li–polymer batteries. Nano Letters 2018, 18 (12), 7583-7589. (38) Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019, 63, 103895. (39) Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of Power Sources 2014, 261, 112-119. (40) Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. Journal of power sources 1999, 81, 925-929. (41) Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Materials 2016, 28 (11), 2155-2162. (42) Sun, Z.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L. J. Robust expandable carbon nanotube scaffold for ultrahigh‐capacity lithium‐metal anodes. Advanced Materials 2018, 30 (32), 1800884. (43) Xiang, J.; Zhao, Y.; Yuan, L.; Chen, C.; Shen, Y.; Hu, F.; Hao, Z.; Liu, J.; Xu, B.; Huang, Y. A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy 2017, 42, 262-268. (44) Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced materials 2016, 28 (9), 1853-1858. (45) Kang, D.; Xiao, M.; Lemmon, J. P. Artificial Solid‐Electrolyte Interphase for Lithium Metal Batteries. Batteries & Supercaps 2021, 4 (3), 445-455. (46) Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017, 32, 271-279. (47) Sina, M.; Alvarado, J.; Shobukawa, H.; Alexander, C.; Manichev, V.; Feldman, L.; Gustafsson, T.; Stevenson, K. J.; Meng, Y. S. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance. Advanced Materials Interfaces 2016, 3 (20), 1600438. (48) Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Advanced Energy Materials 2021, 11 (16), 2100046. (49) Yildirim, H.; Kinaci, A.; Chan, M. K.; Greeley, J. P. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS applied materials & interfaces 2015, 7 (34), 18985-18996. (50) Garcia, B.; Lavallée, S.; Perron, G.; Michot, C.; Armand, M. Room temperature molten salts as lithium battery electrolyte. Electrochimica Acta 2004, 49 (26), 4583-4588. (51) Li, T.; Zhang, X.-Q.; Shi, P.; Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 2019, 3 (11), 2647-2661. (52) Tong, J.; Wu, S.; Von Solms, N.; Liang, X.; Huo, F.; Zhou, Q.; He, H.; Zhang, S. The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes. Frontiers in chemistry 2020, 7, 945. (53) Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569. (54) Huan, Y.; Fan, Y.; Li, Y.; Yin, B.; Hu, X.; Dong, D.; Wei, T. Factors influencing Li+ migration in garnet-type ceramic electrolytes. Journal of Materiomics 2019, 5 (2), 214-220. (55) Zheng, F.; Kotobuki, M.; Song, S.; Lai, M. O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources 2018, 389, 198-213. (56) Jiang, Z.; Han, Q.; Wang, S.; Wang, H. Reducing the interfacial resistance in all‐solid‐state lithium batteries based on oxide ceramic electrolytes. ChemElectroChem 2019, 6 (12), 2970-2983. (57) Xue, Z.; He, D.; Xie, X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253. (58) Kumar, Y.; Hashmi, S.; Pandey, G. Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 2011, 201 (1), 73-80. (59) Johansson, P. First principles modelling of amorphous polymer electrolytes: Li+–PEO, Li+–PEI, and Li+–PES complexes. Polymer 2001, 42 (9), 4367-4373. (60) Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. European polymer journal 2006, 42 (1), 21-42. (61) Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of energy chemistry 2019, 37, 126-142. (62) Ren, W.; Ding, C.; Fu, X.; Huang, Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Materials 2021, 34, 515-535. (63) Siyal, S. H.; Li, M.; Li, H.; Lan, J.-L.; Yu, Y.; Yang, X. Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Applied Surface Science 2019, 494, 1119-1126. (64) Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J. A.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chemistry of Materials 2021, 33 (22), 8812-8821. (65) Wang, Y.; Fu, L.; Shi, L.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. Gel polymer electrolyte with high Li+ transference number enhancing the cycling stability of lithium anodes. ACS applied materials & interfaces 2019, 11 (5), 5168-5175. (66) Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4 (2), e12232. (67) Cheng, H.; Zhu, J.; Jin, H.; Gao, C.; Liu, H.; Cai, N.; Liu, Y.; Zhang, P.; Wang, M. In situ initiator-free gelation of highly concentrated lithium bis (fluorosulfonyl) imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy 2021, 20, 100623. (68) Hosseinioun, A.; Paillard, E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. Journal of membrane science 2020, 594, 117456. (69) Fan, W.; Li, N. W.; Zhang, X.; Zhao, S.; Cao, R.; Yin, Y.; Xing, Y.; Wang, J.; Guo, Y. G.; Li, C. A dual‐salt gel polymer electrolyte with 3D cross‐linked polymer network for dendrite‐free lithium metal batteries. Advanced science 2018, 5 (9), 1800559. (70) Dai, K.; Ma, C.; Feng, Y.; Zhou, L.; Kuang, G.; Zhang, Y.; Lai, Y.; Cui, X.; Wei, W. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries. Journal of materials chemistry A 2019, 7 (31), 18547-18557. (71) La Monaca, A.; De Giorgio, F.; Soavi, F.; Tarquini, G.; Di Carli, M.; Paolo Prosini, P.; Arbizzani, C. 1, 3‐Dioxolane: A Strategy to Improve Electrode Interfaces in Lithium Ion and Lithium‐Sulfur Batteries. ChemElectroChem 2018, 5 (9), 1272-1278. (72) Okada, M.; Yamashita, Y.; Ishii, Y. Polymerization of 1, 3‐dioxolane. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1964, 80 (1), 196-207. (73) Alamgir, M.; Moulton, R.; Abraham, K. Li+-conductive polymer electrolytes derived from poly (1, 3-dioxolane) and polytetrahydrofuran. Electrochimica acta 1991, 36 (5-6), 773-782. (74) Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy 2019, 4 (5), 365-373. (75) Li, W.; Gao, J.; Tian, H.; Li, X.; He, S.; Li, J.; Wang, W.; Li, L.; Li, H.; Qiu, J. SnF2‐catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angewandte Chemie International Edition 2022, 61 (6), e202114805. (76) Liu, F.; Li, T.; Yang, Y.; Yan, J.; Li, N.; Xue, J.; Huo, H.; Zhou, J.; Li, L. Investigation on the copolymer electrolyte of poly (1, 3‐dioxolane‐co‐formaldehyde). Macromolecular Rapid Communications 2020, 41 (9), 2000047. (77) Ren, Z.; Li, J.; Cai, M.; Yin, R.; Liang, J.; Zhang, Q.; He, C.; Jiang, X.; Ren, X. An in situ formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries. Journal of Materials Chemistry A 2023, 11 (4), 1966-1977. (78) Chen, D.; Zhu, M.; Kang, P.; Zhu, T.; Yuan, H.; Lan, J.; Yang, X.; Sui, G. Self‐enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Advanced Science 2022, 9 (4), 2103663. (79) Mi, Y. Q.; Deng, W.; He, C.; Eksik, O.; Zheng, Y. P.; Yao, D. K.; Liu, X. B.; Yin, Y. H.; Li, Y. S.; Xia, B. Y. In Situ Polymerized 1, 3‐Dioxolane Electrolyte for Integrated Solid‐State Lithium Batteries. Angewandte Chemie International Edition 2023, 62 (12), e202218621. (80) Ma, J.; Wu, Y.; Jiang, H.; Yao, X.; Zhang, F.; Hou, X.; Feng, X.; Xiang, H. In situ directional polymerization of poly (1, 3‐dioxolane) solid electrolyte induced by cellulose paper‐based composite separator for lithium metal batteries. Energy & Environmental Materials 2023, 6 (3), e12370. (81) Zhang, J.; Ren, W.; Chen, S.; Liu, Y.; Guo, Z.; Dang, J.; Wu, W.; Wang, J. The Fabrication of in Situ Polymerization of 1, 3-Dioxlane/Poly (vinyl alcohol)/Polyethylenimine Quasi-Solid Polymer Electrolyte for a Lithium Metal Battery Operated at Low Temperatures. Energy & Fuels 2023, 37 (23), 18046-18055. (82) Ren, W.; Zhang, Y.; Lv, R.; Guo, S.; Wu, W.; Liu, Y.; Wang, J. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures. Journal of Power Sources 2022, 542, 231773. (83) Yu, J.; Lin, X.; Liu, J.; Yu, J. T.; Robson, M. J.; Zhou, G.; Law, H. M.; Wang, H.; Tang, B. Z.; Ciucci, F. In situ fabricated quasi‐solid polymer electrolyte for high‐energy‐density lithium metal battery capable of subzero operation. Advanced Energy Materials 2022, 12 (2), 2102932. (84) Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328. (85) Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochimica acta 1998, 43 (10-11), 1569-1574. (86) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources 2011, 196 (22), 9743-9750. (87) Lux, S. F.; Chevalier, J.; Lucas, I. T.; Kostecki, R. HF formation in LiPF6-based organic carbonate electrolytes. ECS Electrochemistry Letters 2013, 2 (12), A121. (88) Zhang, S.; Xu, K.; Jow, T. Low-temperature performance of Li-ion cells with a LiBF 4-based electrolyte. Journal of Solid State Electrochemistry 2003, 7, 147-151. (89) Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-11618. (90) Langevin, S. A.; McGuire, M. M.; Le, N. Q.; Ragasa, E.; Hamann, T.; Ferguson, G.; Chung, C.; Domenico, J.; Ko, J. S. Developing a nitrile-based lithium-conducting electrolyte for low temperature operation. Journal of Materials Chemistry A 2022, 10 (37), 19972-19983. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95835 | - |
| dc.description.abstract | 商用鋰離子電池經常使用有機溶劑液態電解質,但其存在電解質洩漏、高可燃性及低溫性能不佳等問題。以聚合物為基材吸附電解液的膠態聚合物電解質(GPEs)能夠捕捉有機溶劑,防止洩漏和快速蒸發,被認為是提高安全性的有效策略。此外,GPEs能夠在寬溫度範圍內保持恆定的流變行為,提高低溫適應性。
1,3-二氧戊環(1, 3-dioxolane, DOL)是一種經常使用於液態電解質的溶劑,能夠在電池內部進行陽離子開環聚合反應進行原位成膠,將液態DOL轉化為聚合物的polyDOL電解質。透過此操作可以在電池內部原位生成GPE,從而使電解質與電極之間的良好界面接觸。並且由於製造工藝簡單且反應條件溫和,此方法適合大規模生產。 在本研究中,我們引入碳酸乙烯酯(Ethylene carbonate, EC)和氟代碳酸乙烯酯(Fluoroethylene carbonate, FEC)作為DOL的共溶劑來製備原位聚合GPE,並系統化研究鋰鹽組成和濃度對凝膠行為和GPE導電性的影響。我們進一步添加了三羥甲基丙烷三縮水甘油醚(Trimethylolpropane triglycidyl ether, TPTE)作為交聯劑,以抑制聚DOL的結晶性並提高凝膠的長期完整性。透過調整DOL前驅液的組成,調整熱、機械和電化學性質,使GPE具有高導電性、長期穩定性及與電極良好的界面接觸,並具備低溫適應性。最具潛力的GPE是由DOL/EC/FEC和TPTE組成的前驅液製備而成,在20°C下顯示出5.08 x 10-4 S cm-1的導電性,在-20°C下顯示出1.77 x 10-4 S cm-1的導電性。在電流密度為1.0 mA cm-2和充放電時間各2小時的條件下,鋰對稱電池在恆電流循環中表現出超過400小時的穩定循環,表明本研究中開發的GPE在鋰金屬電池的低溫運行中具有很高的潛力。 | zh_TW |
| dc.description.abstract | Commercial lithium-ion batteries employ organic solvent-based liquid electrolytes are the most common setup as far. However, the risk of electrolyte leakage, high flammability as well as unsatisfactory cell performance at sub-zero temperatures are issues to be resolved. Gel polymer electrolytes (GPEs) comprising a polymeric matrix and absorbed liquid electrolytes are considered to be an effective strategy to enhance the safety, as the GPEs could trap organic solvent to prevent leakage and rapid vaporization. Furthermore, the low-temperature applicability would be improved as GPEs could retain constant rheology behaviors through a wide range of temperature.
1,3-Dioxolane (DOL) is a commonly used solvent for liquid electrolytes, and which can undergo in-situ gelation within the battery via cationic ring opening polymerization to convent the liquid DOL into a polymeric poly(DOL) electrolyte. Through this operation, a GPE could be obtained in-situ to allow good interfacial contact between the electrolyte and the electrodes. With the advantages of simple fabrication process and mild reaction conditions, this method is suitable for large-scale manufacturing. In this study, we introduced ethylene carbonate (EC) and fluoroethylene carbonate (FEC) as co-solvents of DOL to prepare in-situ GPEs. The effect of the compositions and concentrations of lithium salts on the gelation behavior and the conductivity of the GPE are systematically investigated. We further added trimethylolpropane triglycidyl ether (TPTE) as crosslinking reagent to suppress the crystallinity of polyDOL and improve the long term integrity of the gel. By systematically tuning the composition of the precursor DOL liquid electrolytes, the thermal, mechanical, and electrochemical properties are tailored to enable the GPE exhibits high conductivity, long term stability and good interfacial contact with the electrodes, along with sub-zero temperature applicability. The most promising GPE is prepared from the precursor LE consisting of DOL/EC/FEC with TPTE , and which shows a viscoelastic gel behavior to enable a conductivity of 5.08 x 10-4 (S cm-1) at 20°C and 1.77 x 10-4 (S cm-1) at -20°C. The lithium symmetric cell upon galvanostatic cycling at a current density of 1.0 mA cm-2 and 2h/2h charging/discharging time demonstrates stable cycling over 400 hours, suggesting a high potential of the GPE developed in this work for lithium metal batteries with capability of low temperature operation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:17:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-18T16:17:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III ABSTRACT IV 目次 VI 圖次 IX 表次 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與架構 2 第二章 文獻回顧 5 2.1 鋰金屬電池 5 2.2 膠態電解質 10 2.2.1 Ex-situ膠態電解質 10 2.2.2 In-situ 膠態電解質 14 2.3 以1,3-二氧環戊烷為原料之原位聚合膠態電解質 17 2.3.1 polyDOL之原位聚合膠態電解質 18 2.3.2 抑制polyDOL結晶的方式 21 2.3.3 膜材對in-situ polyDOL系統的影響 26 2.3.4 polyDOL系統於低溫環境之應用 29 第三章 實驗步驟與原理 32 3.1 實驗藥品 32 3.2 實驗儀器 34 3.3 材料製備 35 3.3.1 EBT與EPT系列GPE之製備 35 3.3.2 EBT-X與FEBT-X系列GPE之製備 35 3.3.3 CR2032鈕扣型電池組裝 35 3.4 材料分析 37 3.4.1 化學結構之鑑定 37 3.4.2 膠態電解質成膠巨觀形貌分析 37 3.4.3 熱重分析 38 3.4.4 微差熱分析 38 3.4.5 流變性質分析 38 3.4.6 原位聚合膠態電解質於隔離膜中之形貌 39 3.4.7 離子傳導度量測 39 3.4.8 線性掃描伏安法 40 3.4.9 鋰離子遷移係數量測 40 3.4.10 恆電流充放電循環測試(Galvanostatic cycling test) 41 3.4.11 鋰金屬表面形貌分析 42 3.4.12 電池循環充放電量測 42 第四章 結果與討論 43 4.1 本研究的樣品製備與命名 43 4.2 polyDOL的合成與分析 45 4.3 EBT與EPT系列性質探討 47 4.3.1 EBT與EPT系列GPE的巨觀成膠行為研究 47 4.3.2 EBT與EPT系列GPE的傳導度行為 49 4.4 GPE的巨觀成膠行為研究 51 4.5 GPE的熱性質分析 54 4.6 GPE的流變性質 58 4.7 GPE填充於隔離膜之微結構分析 59 4.8 GPE之電化學性質 61 4.8.1 離子傳導度 61 4.8.2 線性掃描伏安法(LSV)與電化學穩定性 63 4.8.3 恆電流充放電循環測試(Galvanostatic cycling test) 65 4.8.4 鋰離子遷移係數 69 4.8.5 GPE於低溫環境時的性能表現 70 第五章 結論 73 第六章 未來展望 74 參考文獻 75 附錄 86 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 以原位聚合法製備鋰金屬電池膠態電解質及其在零下溫度的應用 | zh_TW |
| dc.title | Gel Polymer Electrolytes Prepared from in-situ Polymerization for Lithium Metal Batteries Operated at Sub-zero Temperatures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳乃立;蔡協致 | zh_TW |
| dc.contributor.oralexamcommittee | Nae-Lih Wu;Hsieh-Chih Tsai | en |
| dc.subject.keyword | 鋰金屬電池,膠態高分子電解質,類固態高分子電解質,原位聚合法,1,3-二氧戊環,低溫鋰電池, | zh_TW |
| dc.subject.keyword | lithium metal battery (LMB),gel polymer electrolyte (GPE),quasi-solid polymer electrolyte (QSPE),in-situ polymerization,1, 3-dioxolane,low-temperature lithium battery, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202403487 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2027-09-01 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2027-09-01 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
