Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95831Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽 | zh_TW |
| dc.contributor.advisor | Feng-Yu Tsai | en |
| dc.contributor.author | 郭傅彥 | zh_TW |
| dc.contributor.author | Fu-Yen Kuo Galvez | en |
| dc.date.accessioned | 2024-09-18T16:16:04Z | - |
| dc.date.available | 2024-09-19 | - |
| dc.date.copyright | 2024-09-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | (1) Huang, H. D.; Ren, P. G.; Zhong, G. J.; Olah, A.; Li, Z. M.; Baer, E.; Zhu, L. Promising strategies and new opportunities for high barrier polymer packaging films. Prog Polym Sci 2023, 144.
(2) Nielsen, L. E. Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry 1967, 1 (5), 929-942. (3) Cussler, E. L.; Hughes, S. E.; Ward, W. J.; Aris, R. Barrier Membranes. J Membrane Sci 1988, 38 (2), 161-174. DOI: Doi 10.1016/S0376-7388(00)80877-7. (4) Tan, B.; Thomas, N. L. A review of the water barrier properties of polymer/clay and polymerigraphene nanocomposites. J Membrane Sci 2016, 514, 595-612. DOI: 10.1016/j.memsci.2016.05.026. (5) Ray, S. S.; Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 2003, 28 (11), 1539-1641. DOI: 10.1016/j.progpolymsci.2003.08.002. (6) Moradihamedani, P. Recent development in polymer/montmorillonite clay mixed matrix membranes for gas separation: a short review. Polym Bull 2023, 80 (5), 4663-4687. DOI: 10.1007/s00289-022-04266-3. (7) Debeli, D. K.; Wu, L. B.; Huang, F. F. PBAT-based biodegradable nanocomposite coating films with ultra-high oxygen barrier and balanced mechanical properties. Polym Degrad Stabil 2023, 216. (8) Picard, E.; Gauthier, H.; Gérard, J. F.; Espuche, E. Influence of the intercalated cations on the surface energy of montmorillonites:: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites. J Colloid Interf Sci 2007, 307 (2), 364-376. DOI: 10.1016/j.jcis.2006.12.006. (9) Cui, Y. B.; Kundalwal, S. I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313-333. DOI: 10.1016/j.carbon.2015.11.018. (10) Morimune, S.; Nishino, T.; Goto, T. Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. Acs Appl Mater Inter 2012, 4 (7), 3596-3601. DOI: 10.1021/am3006687. (11) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385-388. DOI: 10.1126/science.1157996. (12) Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335 (6067), 442-444. DOI: 10.1126/science.1211694. (13) Yu, L.; Lim, Y. S.; Han, J. H.; Kim, K.; Kim, J. Y.; Choi, S. Y.; Shin, K. A graphene oxide oxygen barrier film deposited via a self-assembly coating method. Synthetic Met 2012, 162 (7-8), 710-714. DOI: 10.1016/j.synthmet.2012.02.016. (14) Ren PG, L. X., Ren F, Zhong GJ, Ji X, Xu L. Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties. Polym Test 2017, 58, 173-180. (15) Lee, C. Preparation of High-Performance Gas Barrier Epoxy/graphene Nanocomposites via In-situ Polymerization. in National Taiwan University 2022. (16) Ricci, A.; Cataldi, A.; Zara, S.; Gallorini, M. Graphene-Oxide-Enriched Biomaterials: A Focus on Osteo and Chondroinductive Properties and Immunomodulation. Materials 2022, 15 (6). (17) Bouakaz, B. S.; Pillin, I.; Habi, A.; Grohens, Y. Synergy between fillers in organomontmorillonite/graphene-PLA nanocomposites. Appl Clay Sci 2015, 116, 69-77. DOI: 10.1016/j.clay.2015.08.017. (18) Lai, C. L.; Fu, Y. J.; Chen, J. T.; Wang, D. M.; Sun, Y. M.; Huang, S. H.; Hung, W. S.; Hu, C. C.; Lee, K. R. Composite of cyclic olefin copolymer with low graphene content for transparent water-vapor-barrier films. Carbon 2015, 90, 85-93. DOI: 10.1016/j.carbon.2015.04.006. (19) Vitale, A.; Merlo, S.; Rizza, G.; Melilli, G.; Sangermano, M. UV Curing of Perfluoropolyether Oligomers Containing Graphene Nanosheets to Enhance Water-Vapor Barrier Properties. Macromol Chem Phys 2014, 215 (16), 1588-1592. DOI: 10.1002/macp.201400225. (20) Kwon, H.; Kim, D.; Seo, J.; Han, H. Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending. Macromol Res 2013, 21 (9), 987-994. DOI: 10.1007/s13233-013-1124-4. (21) Chang, K. C.; Ji, W. F.; Lai, M. C.; Hsiao, Y. R.; Hsu, C. H.; Chuang, T. L.; Wei, Y.; Yeh, J. M.; Liu, W. R. Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polym Chem-Uk 2014, 5 (3), 1049-1056. DOI: 10.1039/c3py01178j. (22) Huang, H. D.; Ren, P. G.; Chen, J.; Zhang, W. Q.; Ji, X.; Li, Z. M. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membrane Sci 2012, 409, 156-163. DOI: 10.1016/j.memsci.2012.03.051. (23) Yousefi, N.; Gudarzi, M. M.; Zheng, Q. B.; Lin, X. Y.; Shen, X.; Jia, J. J.; Sharif, F.; Kim, J. K. Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Compos Part a-Appl S 2013, 49, 42-50. DOI: 10.1016/j.compositesa.2013.02.005. (24) Tseng, I. H.; Liao, Y. F.; Chiang, J. C.; Tsai, M. H. Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 2012, 136 (1), 247-253. DOI: 10.1016/j.matchemphys.2012.06.061. (25) Liu, Y. W.; Liu, J. J.; Ding, Q.; Tan, J. H.; Chen, Z. Q.; Chen, J. Y.; Zuo, X. R.; Tang, A.; Zeng, K. J. Polyimide/Graphene Nanocomposites with Improved Gas Barrier and Thermal Properties due to a "Dual-Plane" Structure Effect. Macromol Mater Eng 2018, 303 (7). (26) Chang, C. H.; Huang, T. C.; Peng, C. W.; Yeh, T. C.; Lu, H. I.; Hung, W. I.; Weng, C. J.; Yang, T. I.; Yeh, J. M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50 (14), 5044-5051. DOI: 10.1016/j.carbon.2012.06.043. (27) Cho, J.; Jeon, I.; Kim, S. Y.; Lim, S.; Jho, J. Y. Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene. Acs Appl Mater Inter 2017, 9 (33), 27984-27994. DOI: 10.1021/acsami.7b10474. (28) Tsai, M. H.; Tseng, I. H.; Liao, Y. F.; Chiang, J. C. Transparent polyimide nanocomposites with improved moisture barrier using graphene. Polym Int 2013, 62 (9), 1302-1309. DOI: 10.1002/pi.4421. (29) Hsu, Y. Thermosetting Polyacrylate/Graphene Composite for High Performance Gas Barrier Films. in National Taiwan University 2019. (30) Fang, G. Graphene/ Cyclic Olefin Copolymer Nanocomposite Films as High-Performance Moisture Barriers. in National Taiwan University 2017. (31) Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. S. The mechanics of graphene nanocomposites: A review. Compos Sci Technol 2012, 72 (12), 1459-1476. DOI: 10.1016/j.compscitech.2012.05.005. (32) Halpin, J. C.; Thomas, R. L. Ribbon Reinforcement of Composites. J Compos Mater 1968, 2 (4), 488-&. DOI: Doi 10.1177/002199836800200409. (33) Dong, M.; Sun, Y. W.; Dunstan, D. J.; Young, R. J.; Papageorgiou, D. G. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. Nanoscale 2024. DOI: 10.1039/d4nr01356e. (34) López-Polín, G.; Gómez-Herrero, J.; Gómez-Navarro, C. Confining Crack Propagation in Defective Graphene. Nano Lett 2015, 15 (3), 2050-2054. (35) Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T.; et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 2017, 8. (36) Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS. Acs Nano 2011, 5 (12), 9703-9709. DOI: 10.1021/nn203879f. (37) Bortz, D. R.; Heras, E. G.; Martin-Gullon, I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules 2012, 45 (1), 238-245. DOI: 10.1021/ma201563k. (38) Cheng, H. K. F.; Sahoo, N. G.; Tan, Y. P.; Pan, Y. Z.; Bao, H. Q.; Li, L.; Chan, S. H.; Zhao, J. H. Poly(vinyl alcohol) Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide. Acs Appl Mater Inter 2012, 4 (5), 2387-2394. DOI: 10.1021/am300550n. (39) Ma, L.; Wang, G. J.; Dai, J. F. Influence of structure of amines on the properties of amines-modified reduced graphene oxide/polyimide composites. J Appl Polym Sci 2016, 133 (34). (40) Pinto, A. M.; Cabral, J.; Tanaka, D. A. P.; Mendes, A. M.; Magalhaes, F. D. Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 2013, 62 (1), 33-40. DOI: 10.1002/pi.4290. (41) Istrate, O. M.; Paton, K. R.; Khan, U.; O'Neill, A.; Bell, A. P.; Coleman, J. N. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level. Carbon 2014, 78, 243-249. DOI: 10.1016/j.carbon.2014.06.077. (42) Khan, U.; May, P.; O'Neill, A.; Coleman, J. N. Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 2010, 48 (14), 4035-4041. DOI: 10.1016/j.carbon.2010.07.008. (43) Vallés, C.; Kinloch, I. A.; Young, R. J.; Wilson, N. R.; Rourke, J. P. Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites. Compos Sci Technol 2013, 88, 158-164. DOI: 10.1016/j.compscitech.2013.08.030. (44) Huang, T.; Xin, Y. S.; Li, T. S.; Nutt, S.; Su, C.; Chen, H. M.; Liu, P.; Lai, Z. L. Modified Graphene/Polyimide Nanocomposites: Reinforcing and Tribological Effects. Acs Appl Mater Inter 2013, 5 (11), 4878-4891. DOI: 10.1021/am400635x. (45) Pokharel, P.; Lee, D. S. High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 2014, 253, 356-365. DOI: 10.1016/j.cej.2014.05.046. (46) Ryu, S. H.; Shanmugharaj, A. M. Influence of long-chain alkylamine-modifled graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem Eng J 2014, 244, 552-560. DOI: 10.1016/j.cej.2014.01.101. (47) Zhou, T. N.; Chen, F.; Tang, C. Y.; Bai, H. W.; Zhang, Q.; Deng, H.; Fu, Q. The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos Sci Technol 2011, 71 (9), 1266-1270. DOI: 10.1016/j.compscitech.2011.04.016. (48) Yang, J.; Bai, L.; Feng, G.; Yang, X. Y.; Lv, M. J.; Zhang, C. A.; Hu, H.; Wang, X. B. Thermal Reduced Graphene Based Poly(ethylene vinyl alcohol) Nanocomposites: Enhanced Mechanical Properties, Gas Barrier, Water Resistance, and Thermal Stability. Ind Eng Chem Res 2013, 52 (47), 16745-16754. DOI: 10.1021/ie401716n. (49) Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 2017, 90, 75-127. DOI: 10.1016/j.pmatsci.2017.07.004. (50) Ardebili, H.; Zhang, J.; Pecht, M. G. Encapsulation Technologies for Electronic Applications, 2nd Edition. Mater Pr Elect Appl 2019, 1-498. (51) Gavgani, J. N.; Adelnia, H.; Gudarzi, M. M. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 2014, 49 (1), 243-254. DOI: 10.1007/s10853-013-7698-6. (52) Randall D, L. S. The PUs book. Wiley 2002. (53) He, Y.; Xie, D. L.; Zhang, X. Y. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J Mater Sci 2014, 49 (21), 7339-7352. DOI: 10.1007/s10853-014-8458-y. (54) Joshi, M.; Adak, B.; Butola, B. S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Prog Mater Sci 2018, 97, 230-282. DOI: 10.1016/j.pmatsci.2018.05.001. (55) Perumal, S.; Lee, H. M.; Cheong, I. W. A study of adhesion forces between vinyl monomers and graphene surfaces for non-covalent functionalization of graphene. Carbon 2016, 107, 74-76. DOI: 10.1016/j.carbon.2016.05.049. (56) Zhang, J. Z.; Xu, Y. H.; Cui, L.; Fu, A. P.; Yang, W. R.; Barrow, C.; Liu, J. Q. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π-π It stacking interactions. Compos Part a-Appl S 2015, 71, 1-8. DOI: 10.1016/j.compositesa.2014.12.013. (57) Zhao, X.; Zhang, Q. H.; Chen, D. J.; Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites (vol 43, pg 2357, 2010). Macromolecules 2011, 44 (7), 2392-2392. DOI: 10.1021/ma200335d. (58) Lee, P. H.; Wu, T. T.; Tian, K. Y.; Li, C. F.; Hou, C. H.; Shyue, J. J.; Lu, C. F.; Huang, Y. C.; Su, W. F. Work-Function-Tunable Electron Transport Layer of Molecule-Capped Metal Oxide for a High-Efficiency and Stable p-i-n Perovskite Solar Cell. Acs Appl Mater Inter 2020, 12 (41), 45936-45949. DOI: 10.1021/acsami.0c10717. (59) Lee, P. H.; Wu, T. T.; Li, C. F.; Glowienka, D.; Huang, Y. X.; Huang, S. H.; Huang, Y. C.; Su, W. F. Featuring Semitransparent p-i-n Perovskite Solar Cells for High-Efficiency Four-Terminal/Silicon Tandem Solar Cells. Sol Rrl 2022, 6 (4). DOI: ARTN 210089110.1002/solr.202100891. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95831 | - |
| dc.description.abstract | 石墨烯納米片(GNS)具有不透水性、疏水性和高長寬比,因此添加石墨烯納米片(GNS)強化高分子材料有助於實現極低的水氣滲透率,進而成為具有潛力的電子元件封裝材料。然而,GNS於大部分高分子基材中無法均勻分散,故相關發展仍受到限制。本研究透過系統性篩查多元醇前驅物(包括乙氧基雙酚A (BAE),丙氧基雙酚A (BAP),聚乙二醇(PEG) 和聚丙二醇 (PPG)),作為石墨烯奈米片的分散介質,並研發出一種無溶劑原位合成法,以此獲得具有高濕氣屏障且均勻分散的GNS強化聚氨酯(PU)封裝材料。分散性測試結果顯示,GNS在所有測試條件下,於 BAP以及BAE展現出最佳的分散性,這可歸因於BAP和BAE的苯基結構與GNS的高親和性,使高濃度的GNS能均勻分散在其中。在添加多芳香官能基之異氰酸酯硬化劑(MR-200)後,可於低溫下固化成封裝膜,並同時保持GNS的分散性。於BAE/MR-200 PU的基材中加入0.75 wt%的GNS,測得最低之水氣滲透率(WVTR)為0.418 g/m2 day。使用0.75wt% GNS/BAE/MR-200奈米複合材料作為太陽能電池封裝膠,並將封裝後的元件置於65 ºC/65% RH的濕熱測試條件下,發現相比於商用封裝膠,元件壽命提升82.9%。此外,GNS填料不僅降低了WVTR,還改善了納米複合材料的機械性能並提高了其玻璃轉變溫度(Tg),增加封裝應用的可能性。 | zh_TW |
| dc.description.abstract | Graphene nanosheets (GNS)-reinforced polymers are promising encapsulant materials for electronic devices owing to the impermeability, hydrophobicity and high aspect ratio of GNS, which can help achieve exceptionally low moisture permeability in encapsulants, but their development has been hindered by GNS low tendency to disperse in most polymer matrices. This study develops a solvent-less in-situ polymerization approach to obtain uniformly dispersed GNS-reinforced polyurethane (PU) encapsulants with high moisture-barrier performance through systematic screening of several polyol precursors for PU as dispersion media for GNS, including bisphenol A ethoxylate (BAE), bisphenol A propoxylate (BAP), polyethylene glycol (PEG), and polypropylene glycol (PPG). Dispersibility test results revealed that BAP and BAE exhibited the highest GNS dispersibility among the tested conditions, thanks to their phenyl structure providing high affinity with GNS. Both BAP and BAE allowed high concentrations of GNS to be dispersed within, which upon the addition of an aromatic multifunctional isocyanate hardener (MR-200) could be cured into encapsulant films at low curing temperatures while maintaining the uniform GNS dispersion. With 0.75 wt% of GNS added in the BAE/MR-200 PU matrix, a minimum water vapor transmission rate (WVTR) of 0.418 g/m2 day was obtained, and when applied as encapsulant for a perovskite solar cell device, the device achieved an 82.9% longer lifetime than a commercial encapsulant in a 65ºC/65% R.H. damp heat testing condition. In addition to lowering WVTR, the GNS fillers also improved the mechanical properties and increased the Tg’s of the nanocomposites, broadening their potential encapsulant applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:16:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-18T16:16:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
Acknowledgements ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Overview of polymer-based encapsulation 1 1.1.1 Polymer-based encapsulation 1 1.1.2 Clay-derived fillers for polymer encapsulants 5 1.1.3 Graphene-derived fillers for polymer encapsulants 7 1.2 Mechanical properties of 2D-fillers-reinforced polymer composites 13 1.3. Preparation methods for polymer/graphene composites. 18 1.4 Research approach 20 1.4.1 Selection of encapsulation system: Polyurethane 20 1.4.2 Selection of monomers and oligomers 22 1.5 Motivation and objective statement 25 Chapter 2 Experimental methods 27 2.1 Materials 27 2.2 Dispersibility test 29 2.3 Preparation of GNS/polyurethane composites 31 2.4 Preparation of encapsulated devices for accelerated aging test 34 2.5 WVTR prediction with Cussler’s model 36 2.6 Characterization 37 2.6.1 Water Vapor Transmission Rate measurement 37 2.6.2 Dynamic Light Scattering (DLS) 37 2.6.3 Secondary Electron Microscope (SEM) 38 2.6.4 Measurement of mechanical properties 38 2.6.5 Differential Scanning Calorimetry (DSC) 38 2.6.6 Other Characterizations 39 Chapter 3 Results and Discussion 40 3.1 Dispersibility of GNS in polyols 40 3.2 Determination of curing conditions 47 3.3 Dispersibility of GNS in PU/GNS composite 48 3.4 Moisture barrier properties of PU/GNS composite 50 3.5 Mechanical propertied of PU/GNS composite 52 3.6 Glass transition temperature of PU/GNS composite 54 3.7 Performance of encapsulation in solar cells 56 Conclusion 58 Reference 59 Appendix 67 | - |
| dc.language.iso | en | - |
| dc.title | 聚氨酯/石墨烯複合封裝材料之分散性,原位聚合特性與阻氣性質研究 | zh_TW |
| dc.title | Research on dispersion, in-situ polymerization characteristics and gas barrier properties of polyurethane/graphene nanosheets composite encapsulant | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 趙基揚;黃裕清 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Yang Chao;Yu-Ching Huang | en |
| dc.subject.keyword | 石墨烯奈米片,高分子複材,原位聚合,水氣滲透速率,阻氣,機械性質,封裝, | zh_TW |
| dc.subject.keyword | Graphene nanosheets,polymer composite,in-situ polymerization,water vapor transmission rate,barrier,mechanical properties,encapsulation, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202403706 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 15.53 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
