Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘zh_TW
dc.contributor.advisorDer-Ming Yehen
dc.contributor.author巫宜庭zh_TW
dc.contributor.authorYi-Ting Wuen
dc.date.accessioned2024-09-18T16:13:22Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation甘培玟、葉德銘. 2021. 大岩桐之花粉發芽、花型分類與遺傳. 臺灣園藝. 67:26-41.
林庭安. 2016. 倒地蜈蚣屬植物之花粉發芽與種間雜交. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
洪丞瑩、葉德銘. 2021. 繁星花之花冠裂片顏色及眼圈性狀之遺傳與雜交後裔之選育. 臺灣園藝. 67:188-201.
梁智超. 2014. 夏蓳種間雜交倍體數選拔及誘變育種. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
郭孟樺. 2012. 夏蓳與毛葉蝴蝶草種間雜交胚之拯救與多倍體化. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
陳世哲、張元聰、魏子耀、王仕賢、葉德銘. 2021. 洋桔梗之花型與花色遺傳. 臺灣園藝. 67:99-114.
廖于鈞. 2020. 天使花的多倍體育種與花色遺傳. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
蔡有堂、葉德銘. 2021. 日日春之雄不稔性、眼圈顏色遺傳與盆花選育. 臺灣園藝. 67:13-25.
魏子耀. 2010. 夏蓳之花朵性狀遺傳與遠緣雜交障礙. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
Abtahi, M., A. Mirlohi, E. Ataii, M.R. Sabzalian, and P. Jafari. 2023. Flax seed and flower color inheritance is more complicated than once thought. Crop Sci. 63:2713-2726.
Ahmad, S., Z. Nisa, M.Z. Munir, M. Imran, S. Nosheen, and K. Zhao. 2023. The molecular regulators, pathways, and environmental impacts of white flowers. Turk. J. Agr. For. 47:273-287.
Aida, R. 2008. Torenia fournieri (torenia) as a model plant for transgenic studies. Plant Biotechnol. 25:541-545.
Aida, R., S. Kishimoto, Y. Tanaka, and M. Shibata. 2000. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153:33-42.
Ampomah‐Dwamena, C., A.H. Thrimawithana, S. Dejnoprat, D. Lewis, R.V. Espley, and A.C. Allan. 2019. A kiwifruit (Actinidia deliciosa) R2R3‐MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytol. 221:309-325.
Ando, T., M. Takahashi, T. Nakajima, Y. Toya, H. Watanabe, H. Kokubun, and F. Tatsuzawa. 2004. Delphinidin accumulation is associated with abnormal flower development in petunias. Phytochem. 65:2219-2227.
Ban, Y., C. Honda, Y. Hatsuyama, M. Igarashi, H. Bessho, and T. Moriguchi. 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48:958-970.
Barb, J.G., D.J. Werner, and R.J. Griesbach. 2008. Genetics and biochemistry of flower color in stokes aster. J. Amer. Soc. Hort. Sci. 133:569-578.
Berman, J., Y. Sheng, L. Gómez Gómez, T. Veiga, X. Ni, G. Farré, T. Capell, J. Guitián, P. Guitian, and G. Sandmann. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). Plos One. 11:e0162410.
Cai, D., X. Li, J. Chen, X. Jiang, X. Ma, J. Sun, L. Tian, S.K. Vidyarthi, J. Xu, and Z. Pan. 2022. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 366:130611.
Chen, S.M., C.H. Li, X.R. Zhu, Y.M. Deng, W. Sun, L.S. Wang, F.D. Chen, and Z. Zhang. 2012. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol. Plant. 56:458-464.
Courtney-Gutterson, N., C. Napoli, C. Lemieux, A. Morgan, E. Firoozabady, and K.E. Robinson. 1994. Modification of flower color in florist's chrysanthemum: production of a white–flowering variety through molecular genetics. Biotechnol. 12:268-271.
Dudek, B., A. Warskulat, and B. Schneider. 2016. The occurrence of flavonoids and related compounds in flower sections of Papaver nudicaule. Plants 5:28.
Durbin, M.L., K.E. Lundy, P.L. Morrell, C.L. Torres-Martinez, and M.T. Clegg. 2003. Genes that determine flower color: The role of regulatory changes in the evolution of phenotypic adaptations. Mol. Phylogenetics Evolution. 29:507-518.
Endo, T. 1962. Inheritance of anthocyanin concentrations in flowers of Torenia fournieri. Jpn. J. Genet. 37:284-290.
Fischer, E., B. Schäferhoff, and K. Müller. 2013. The phylogeny of Linderniaceae—The new genus Linderniella, and new combinations within Bonnaya, Craterostigma, Lindernia, Micranthemum, Torenia and Vandellia. Willdenowia 43:209-238.
Forkmann, G. 1991. Flavonoids as flower pigments; the formation of the natural spectrum and its extension by genetic engineering. Plant Breeding. 106:1-26.
Forkmann, G. and B. Dangelmayr. 1980. Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem. Genet. 18:519-527.
Freyre, R., C. Uzdevenes, L. Gu, and K.H. Quesenberry. 2015. Genetics and anthocyanin analysis of flower color in mexican petunia. J. Amer. Soc. Hort. Sci. 140:45-49.
Fu, M., X. Yang, J. Zheng, L. Wang, X. Yang, Y. Tu, J. Ye, W. Zhang, Y. Liao, and S. Cheng. 2021. Unraveling the regulatory mechanism of color diversity in Camellia japonica petals by integrative transcriptome and metabolome analysis. Frontiers Plant Sci. 12:685136.
Fu, Z., L. Wang, H. Shang, X. Dong, H. Jiang, J. Zhang, H. Wang, Y. Li, X. Yuan, and S. Meng. 2019. An R3-MYB gene of Phalaenopsis, MYBx1, represses anthocyanin accumulation. Plant Growth Regulat. 88:129-138.
Fukusaki, E.i., K. Kawasaki, S.i. Kajiyama, C.I. An, K. Suzuki, Y. Tanaka, and A. Kobayashi. 2004. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotechnol. 111:229-240.
Gettys, L.A. 2012. Genetic control of white flower color in scarlet rosemallow (Hibiscus coccineus Walter). J. Hered. 103:594-597.
Grlesbach, R. 1996. The inheritance of flower color in Petunia hybrida Vilm. J. Hered. 87:241-245.
Guan, S., Q. Song, J. Zhou, H. Yan, Y. Li, Z. Zhang, D. Tao, S. Luo, and Y. Pan. 2021. Genetic analysis and population structure of wild and cultivated wishbone flower (Torenia fournieri Lind.) lines related to specific floral color. PeerJ. 9:11702.
Hartl, D.L. and E.W. Jones. 2005. Genetics: analysis of genes and genomes. 6th ed. Jones and Bartlett Pub., Sudbury, MA, USA. p.122-123.
Hellens, R.P., C. Moreau, K. Lin-Wang, K.E. Schwinn, S.J. Thomson, M.W. Fiers, T.J. Frew, S.R. Murray, J.M. Hofer, and J.M. Jacobs. 2010. Identification of Mendel's white flower character. Plos One. 5:e13230.
Hess, D. 1971. Chemogenetical investigations on the synthesis of flower colour substances in Torenia species (Scrophulariaceae). Biochem. Physiol. Pflanzen. 162:386-389.
Holton, T.A., F. Brugliera, D.R. Lester, Y. Tanaka, C.D. Hyland, J.G. Menting, C.Y. Lu, E. Farcy, T.W. Stevenson, and E.C. Cornish. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276-279.
Hoshino, A., K.I. Park, and S. Iida. 2009. Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). J. Plant Res. 122:215-222.
Hosokawa, K., Y. Fukunaga, E. Fukushi, and J. Kawabata. 1995. Five acylated pelargonidin glucosides in the red flowers of Hyacinthus orientalis. Phytochem. 40:567-571.
Hsieh, T.H. and K.C. Yang. 2002. Revision of Torenia L. (Scophulariaceae) in Taiwan. Taiwania 47:281-289.
Hsu, H.C. and Y.F. Kuo. 2021. Nectar guide patterns on developmentally homologous regions of the subtribe Ligeriinae (Gesneriaceae). Frontiers Plant Sci. 12:650836.
Hu, Y., H. Cheng, Y. Zhang, J. Zhang, S. Niu, X. Wang, W. Li, J. Zhang, and Y. Yao. 2021. The MdMYB16/MdMYB1‐miR7125‐MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytol. 231:1105-1122.
Iwashina, T., M.E. Oyoo, N.A. Khan, H. Matsumura, and R. Takahashi. 2008. Analysis of flavonoids in flower petals of soybean flower color variants. Crop Sci. 48:1918-1924.
Jackson, D., K. Roberts, and C. Martin. 1992. Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. Plant J. 2:425-434.
Jorgensen, E.C. and T. Geissman. 1955. The chemistry of flower pigmentation in Antirrhinum majus color genotypes. III. Relative anthocyanin and aurone concentrations. Arch. Biochem. Biophys. 55:389-402.
Kaltenbach, M., G. Schröder, E. Schmelzer, V. Lutz, and J. Schröder. 1999. Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell‐type specific expression in plants. Plant J. 19:183-193.
Kobayashi, H., Y. Oikawa, H. Koiwa, and S. Yamamura. 1998. Flower-specific gene expression directed by the promoter of a chalcone synthase gene from Gentiana triflora in Petunia hybrida. Plant Sci. 131:173-180.
Kondo, M., N. Tanikawa, and T. Nishijima. 2020. Mutation of CYCLOIDEA expands variation of dorsal–ventral flower asymmetry expressed as a pigmentation pattern in Torenia fournieri cultivars. Hort. J. 89:481-487.
LaFountain, A.M., H.A. Frank, and Y.W. Yuan. 2015. Carotenoid composition of the flowers of Mimulus lewisii and related species: implications regarding the prevalence and origin of two unique, allenic pigments. Arch. Biochem. Biophys. 573:32-39.
Lai, B., L.N. Du, B. Hu, D. Wang, X.M. Huang, J.T. Zhao, H.C. Wang, and G.b. Hu. 2019. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification. BMC Plant Biol. 19:1-13.
Lang, X., N. Li, L. Li, and S. Zhang. 2019. Integrated metabolome and transcriptome analysis uncovers the role of anthocyanin metabolism in Michelia maudiae. Intl. J. Genomics. 2019.
Laojunta, T., T. Narumi-Kawasaki, and S. Fukai. 2017. Characteristics of commercial Torenia cultivars. Acta Hort. 1167: 205-211.
Laojunta, T., T. Narumi-Kawasaki, T. Takamura, and S. Fukai. 2019. Anthocyanins determining flowers color of Torenia fournieri L. Acta Hort. 71:15-19.
Li, C., J. Qiu, G. Yang, S. Huang, and J. Yin. 2016. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.). Plant Cell Rpt. 35:2151-2165.
Li, C., W. Yu, J. Xu. and Y. Liu. 2022a. Anthocyanin biosynthesis induced by MYB transcription factors in plants. Intl. J. Mol. Sci. 23:11701.
Li, J., J. Chen, Q. Zhang, P. Yu, Y. Zhou, and G. Jia. 2022b. The composition of anthocyanins and carotenoids influenced the flower color heredity in Asiatic hybrid lilies. Hort. 8:1206.
Lim, S.H., J.H. Song, D.H. Kim, J.K. Kim, J.Y. Lee, Y.M. Kim, and S.H. Ha. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Rpt. 35:641-653.
Lu, T.S., N. Saito, M. Yokoi, A. Shigihara, and T. Honda. 1992. Acylated pelargonidin glycosides in the red-purple flowers of Pharbitis nil. Phytochem. 31:289-295.
Luo, P., G. Ning, Z. Wang, Y. Shen, H. Jin, P. Li, S. Huang, J. Zhao, and M. Bao. 2016. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants. Frontiers Plant Sci 6:1257.
Martin, C., A. Prescott, S. Mackay, J. Bartlett, and E. Vrijlandt. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1:37-49.
Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, Y. Yoshimoto, H. Ikeda, H. Yoshida, and M. Shibata. 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Scientia. Hort. 84:333-347.
Matsubara, K., S. Chen, J. Lee, H. Kodama, H. Kokubun, H. Watanabe, and T. Ando. 2006. PCR-based markers for the genotype identification of flavonoid-3′, 5′-hydroxylase genes governing floral anthocyanin biosynthesis in commercial petunias. Breeding Sci. 56:389-397.
Mehlquist, G.A. and T. Geissman. 1947. Inheritance in the carnation (Dianthus caryophyllus). III. Inheritance of flower color. Annu. Missouri Bot. Garden. 34:39-74.
Mol, J., A. Schram, P. De Vlaming, A. Gerats, F. Kreuzaler, K. Hahlbrock, H. Reif, and E. Veltkamp. 1983. Regulation of flavonoid gene expression in Petunia hybrida: Description and partial characterization of a conditional mutant in chalcone synthase gene expression. Mol. Gen. Genet. MGG. 192:424-429.
Morita, Y., M. Saitoh, A. Hoshino, E. Nitasaka, and S. Iida. 2006. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol. 47:457-470.
Nakamura, N., M. Fukuchi-Mizutani, Y. Fukui, K. Ishiguro, K. Suzuki, H. Suzuki, K. Okazaki, D. Shibata, and Y. Tanaka. 2010. Generation of pink flower varieties from blue Torenia hybrida by redirecting the flavonoid biosynthetic pathway from delphinidin to pelargonidin. Plant Biotechnol. 27:375-383.
Nakamura, N., T. Suzuki, Y. Shinbo, S. Chandler, and Y. Tanaka. 2020. Development of violet transgenic carnations and analysis of inserted transgenes. p.135-145. In: T. Onosaki, and M. Yagi (eds.), Springer, Singapore.
Nakatsuka, T., Y. Abe, Y. Kakizaki, S. Yamamura, and M. Nishihara. 2007. Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rpt. 26:1951-1959.
Nakayama M., M. Miyasaka, T. Maoka, M. Yagi, and N. Fukuta. 2006. A carotenoid-derived yellow Eustoma screened under blue and ultraviolet lights. J. Jpn. Soc. Hort. Sci. 75:161-165.
Neal, P.R., A. Dafni, and M. Giurfa. 1998. Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu. Rev. Ecol. Systematics. 29:345-373.
Nishihara, M., T. Shimoda, T. Nakatsuka, and G.i. Arimura. 2013. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering. Plant Method. 9:1-9.
Nishihara, M., E. Yamada, M. Saito, K. Fujita, H. Takahashi, and T. Nakatsuka. 2014. Molecular characterization of mutations in white-flowered torenia plants. BMC Plant Biol. 14:86.
Nishijima, T., Y. Morita, K. Sasaki, M. Nakayama, H. Yamaguchi, N. Ohtsubo, T. Niki, and T. Niki. 2013. A torenia (Torenia fournieri Lind. ex Fourn.) novel mutant ‘flecked’produces variegated flowers by insertion of a DNA transposon into an R2R3-MYB gene. J. Jpn. Soc. Hort. Sci. 82:39-50.
Nishijima, T., N. Tanikawa, N. Noda, and M. Nakayama. 2022. A torenia mutant bearing shrunken reddish-purple flower and its potential for breeding. Hort. J. 91:104-111.
Owen, H.R. 1999. Epistasis. Encycl. Genet. 39:179-183.
Pahlavani, M., A. Mirlohi, and G. Saeidi. 2004. Inheritance of flower color and spininess in safflower (Carthamus tinctorius L.). J. Hered. 95:265-267.
Park, C.H., S.C. Chae, S.Y. Park, J.K. Kim, Y.J. Kim, S.O. Chung, M.V. Arasu, N.A. Al-Dhabi, and S.U. Park. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Mol. 20:11090-11102.
Quintana, A., R. Freyre, T.M. Davis, and R.J. Griesbach. 2008. Genetic studies of flower color in Anagallis monelli L. HortScience. 43:1680-1685.
Sagawa, J.M., L.E. Stanley, A.M. LaFountain, H.A. Frank, C. Liu, and Y.W. Yuan. 2016. An R2R3‐MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol. 209:1049-1057.
Seitz, C., M. Vitten, P. Steinbach, S. Hartl, J. Hirsche, W. Rathje, D. Treutter, and G. Forkmann. 2007. Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochem. 68:824-833.
Shao, D., Q. Liang, X. Wang, Q.H. Zhu, F. Liu, Y. Li, X. Zhang, Y. Yang, J. Sun, and F. Xue. 2022. Comparative metabolome and transcriptome analysis of anthocyanin biosynthesis in white and pink petals of cotton (Gossypium hirsutum L.). Intl. J. Mol. Sci. 23:10137.
Shimizu, K., N. Ohnishi, N. Morikawa, A. Ishigami, S. Otake, I.O. Rabah, Y. Sakata, and F. Hashimoto. 2011. A 94-bp deletion of anthocyanidin synthase gene in acyanic flower lines of lisianthus [Eustoma grandiflorum (Raf.) Shinn.]. J. Jpn. Soc. Hort. Sci. 80:434-442.
Simmonds, N. 1960. Flower colour in Lochnera rosea. Hered. 14:253-261.
Song, J. and P. Yang. 2023. Multi-omics data and analysis reveal the formation of key pathways of different colors in Torenia fournieri flowers. BioRxiv:2023.06. 19.545640.
Su, S., W. Xiao, W. Guo, X. Yao, J. Xiao, Z. Ye, N. Wang, K. Jiao, M. Lei, and Q. Peng. 2017. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol. 215:1582-1593.
Suzuki, K.I., H.M. Xue, Y. Tanaka, Y. Fukui, M. Fukuchi-Mizutani, Y. Murakami, Y. Katsumoto, S. Tsuda, and T. Kusumi. 2000. Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol. Breeding. 6:239-246.
Takatori, Y., K. Shimizu, D. Yauwapaksopon, Y. Nakamura, H. Oshima, and F. Hashimoto. 2022. Flavonoid 3', 5'-Hydroxylase (F3'5'H) Gene polymorphisms co-segregate with variation in anthocyanin composition in the flower petals of Lisianthus [Eustoma grandiflorum (Raf.) Shinn.]. Hort. J. 91:229-239.
Tammes, T. 1922. Genetic analysis, schemes of co-operation and multiple allelomorphs of Linum usitatissimum. J. Genet. 12:19-46.
Tanaka, Y., F. Brugliera, G. Kalc, M. Senior, B. Dyson, N. Nakamura, Y. Katsumoto, and S. Chandler. 2010. Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci. Biotechnol. Biochem. 74:1760-1769.
Thuy, N.M., V.Q. Minh, T.C. Ben, M.T. Thi Nguyen, H.T.N. Ha, and N.V. Tai. 2021. Identification of anthocyanin compounds in butterfly pea flowers (Clitoria ternatea L.) by ultra performance liquid chromatography/ultraviolet coupled to mass spectrometry. Mol. 26:4539.
Toguri, T., M. Azuma, and T. Ohtani. 1993. The cloning and characterization of a cDNA encoding a cytochrome P450 from the flowers of Petunia hybrida. Plant Sci. 94:119-126.
Tornielli, G., R. Koes, and F. Quattrocchio. 2008. Petunia: evolutionary, developmental and physiological genetics. p. 276. In: T. Gerats and J. Strommer (eds.). The genetics of flower color. Springer Science & Business Media, New York.
Van der Krol, A.R., L.A. Mur, P. de Lange, A.G. Gerats, J.N. Mol, and A.R. Stuitje. 1990. Antisense chalcone synthase genes in petunia: Visualization of variable transgene expression. Mol. Gen. Genet. 220:204-212.
Xiang, L., X. Liu, H. Li, X. Yin, D. Grierson, F. Li, and K. Chen. 2019. CmMYB# 7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. J. Expt. Bot. 70:3111-3123.
Yang, X., Y. Wang, T.X. Liu, Q. Liu, J. Liu, T.F. Lü, R.X. Yang, F.X. Guo, and Y.Z. Wang. 2023. CYCLOIDEA-like genes control floral symmetry, floral orientation, and nectar guide patterning. Plant Cell. 35:2799-2820.
Yin, X., Y. Zhang, L. Zhang, B. Wang, Y. Zhao, M. Irfan, L. Chen, and Y. Feng. 2021. Regulation of MYB transcription factors of anthocyanin synthesis in lily flowers. Frontiers Plant Sci. 12:761668.
Yoshida, K., M. Mori, and T. Kondo. 2009. Blue flower color development by anthocyanins: from chemical structure to cell physiology. Natural. Product Rpt. 26:884-915.
You, Q., H. Li, J. Wu, T. Li, Y. Wang, G. Sun, Z. Li, and B. Sun. 2023. Mapping and validation of the epistatic D and P genes controlling anthocyanin biosynthesis in the peel of eggplant (Solanum melongena L.) fruit. Hort. Res. 10:uhac268.
Zhang, X., Z. Xu, X. Yu, L. Zhao, M. Zhao, X. Han, and S. Qi. 2019. Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa. Intl. J. Mol. Sci 20:1055.
Zhao, D. and J. Tao. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Frontiers Plant Sci. 6:125534.
Zhu, C., C. Bai, G. Sanahuja, D. Yuan, G. Farré, S. Naqvi, L. Shi, T. Capell, and P. Christou. 2010. The regulation of carotenoid pigmentation in flowers. Arch. Biochem. Biophys. 504:132-141.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95822-
dc.description.abstract夏菫(Torenia fournieri)具耐熱耐濕的特性,為熱帶與亞熱帶國家之重要夏季花壇植物,了解花色之花青素組成及遺傳可提升育種效率。以液相層析串聯質譜儀分析商業品種藍紫花‘Clown Violet’、‘Summery Love Violet’、酒紅花‘Clown Burgundy’、桃紅花‘Clown Rose’、黃花‘Summery Love Deep Yellow’與不同花色純系之花冠裂片及花冠筒花青素組成分。結果顯示白花純系P-41、P-52與黃色花冠裂片‘Summery Love Deep Yellow’花瓣中不含花青素,淡粉色及桃紅色以天竺葵素為主要花青素,且淡粉色之色素濃度較低,酒紅色主要花青素為芍藥素,藍紫色內含的錦葵素濃度最高,顏色較深的遠端部位之色素濃度高於較淺的基部部位。
兩白花自交純系P-41及P-52與不同花色純系試交及與商業品種雜交。結果顯示具花青素的花冠(W_)相對無花青素的白色花冠(ww)為顯性;花瓣遠端依花青素呈現的顏色,顯隱性關係為藍紫色>酒紅色>桃紅色>淡粉色。當Hf1基因為顯性時,形成含有飛燕草素的藍紫色花冠(W_ Hf1_ _ _ _ _ );Hf1呈隱性且Ht1基因為顯性時,形成由矢車菊素及其衍生物組成的酒紅色花冠(W_hf1hf1Ht1_ _ _);Hf1及Ht1為隱性時,與控制色素濃度多寡的P基因共同生成由天竺葵素組成的桃紅色花冠(W_hf1hf1ht1ht1P_)及淡粉色花冠(W_hf1hf1ht1ht1pp)。黃色因類胡蘿蔔素累積呈現,由C基因控制,基因型擬定為wwC_,可和花青素合成的顏色共同存在,然花青素形成的顏色較深使得黃色色塊無法表現。
白花純系P-41與桃紅及淡粉花冠雜交生成桃紅遠端花色,而另一白色純系P-52與桃紅花冠雜交後代之花冠為酒紅色,顯示P-52具有顯性之Ht1基因,但因W基因與花青素合成之相關基因Ht1具有上位性,W基因呈隱性時,Ht1雖有表達但無法合成花青素。P-52 (wwhf1hf1Ht1Ht1_ _)與桃紅花冠(W_hf1hf1ht1ht1_ _)雜交後,基因互補使得最終表型為相對顯性的酒紅花冠。而P-41的w及Ht1基因皆為隱性(wwhf1hf1ht1ht1pp),與桃紅花冠雜交後代仍為桃紅花冠。
花冠筒白色與有色純系試交及與商業品種雜交,結果顯示有色花冠筒(D_)可能相對白色花冠筒(dd)為顯性,然白色花冠筒之純系P-52與白色花冠筒且花冠為桃紅色之雜交後代為有色的酒紅色花冠筒,顯示花冠筒亦由Ht1基因共同控制。上瓣雙色與單色純系試交及與商業品種雜交,結果顯示上瓣雙色(U_)相對於單色(uu)為顯性。唇瓣具黃斑與無黃斑純系試交及與商業品種雜交,結果顯示(Yd_)相對無黃斑為顯性(ydyd)。本試驗證明夏菫之花色遺傳可套用矮牽牛的花色基因模型,透過夏菫的花色與基因及花青素的關係可幫助育種者選拔出理想之花色。
zh_TW
dc.description.abstractTorenia (Torenia fournieri) exhibits heat and humidity tolerance, making it an important summer bedding plant in tropical and subtropical areas. Understanding the inheritance of flower colors can enhance breeding efficiency. Corolla lobes and tube anthocyanin compositions were analyzed for violet-colored commercial cultivars, namely ‘Clown Violet’, ‘Summery Love Violet’, burgundy-colored ‘Clown Burgundy’, rose-colored ‘Clown Rose’, yellow-colored ‘Summery Love Deep Yellow’ and differ-ent flower color from various pure lines. Results showed that both white flower pure lines P-41 and P-52, as well as yellow culitvar ‘Summery Love Deep Yellow’ flower lobe did not contain anthocyanins. Pink-flowered and rose-flowered primarily con-tained pelargonidin as main anthocyanin, while the concentration of pink-flowered was lower than rose-flowered. Burgundy-flowered mainly contained peonidin, Both violet-flowered had the highest concentration of malvidin, the darker distal parts had higher pigment concentration than the lighter basal part.
Two white-flowered pure lines P-41 and P-52 were crossed with different flower colors from pure lines and commercial cultivars. Results show that cyanic corolla (W_) was dominant to acyanic corolla (ww). The dominance of distal color on the co-rolla lobe which produced by anthocyanin was violet > burgundy > rose > pink. When Hf1 gene was dominant (W_ Hf1_ _ _ _ _), phenotype was proposed as violet-flowered which mainly composed of delphinidin and its derivatives; when Hf1 was recessive and the Ht1 gene was dominant (W_ hf1hf1Ht1 _ _ _), burgundy-flowered was mainly formed by cyanidin and its derivatives; when both Hf1 and Ht1 were recessive, along with the P gene that controls the concentration of pigments, rose-flowered (W_hf1hf1ht1ht1P_) and pink-flowered (W_hf1hf1ht1ht1pp) was formed by pelargonidin. The yellow coloration was due to carotenoid, controlled by C gene, genotype was des-ignated as wwC_, and can coexist with anthocyanin, but the deeper color formed by anthocyanin covered the yellow part in the phenotype.
White-flowered pure line P-41 crossed with rose and pink corollas produced rose corollas, while another white-flowered pure line P-52 crossed with rose corollas re-sulted in burgundy corolla, indicating P-52 had Ht1 gene which was dominant. None-theless, due to the complementary epistasis between W gene and Ht1 gene related to anthocyanin synthesis, when W gene was recessive, Ht1 expression did not result in anthocyanidin accumulation. The white pure line P-52 (wwhf1hf1Ht1Ht1_ _) crossed with rose corolla (W_hf1hf1ht1ht1_ _), results in a complementary gene interaction, producing burgundy corolla. In contrast, Pure line P-41 (wwhf1hf1ht1ht1pp) crossed with rose corolla, resulted in progeny with rose corollas.
Crossed with acyanic and cyanic corolla tube from pure lines and commercial cultivars. Results showed that cyanic corolla tubes (D_) might be dominant to acyanic corolla tubes (dd). However, progeny from corsses between white corolla tube P-52 and white corolla tube with rose corollas resulted in burgundy corolla tube. This indi-cated that the corolla tube color was also controlled by the Ht1 gene. Crossed with double color and single color on the upper corolla lobe from pure lines and commer-cial cultivars. Results showed that double color of upper corolla lobe (U_) was domi-nant to single color (uu). Crossed with yellow spot and without yellow spot on the lower corolla lobe from pure lines and commercial cultivars, results showed that the presence of yellow spot on the lower corolla lobe (Yd_) was dominant to the absence of yellow spot (ydyd). The genetic inheritance of flower color in Torenia fournieri could fit the petunia color gene model. Understanding the relationship between the flower color, genes, and anthocyanins can help breeders select the ideal flower color.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:13:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:13:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
目次 v
表次 viii
圖次 x
前言(Introduction) 1
前人研究(Literature Review) 3
一、夏菫分類與重要種原 3
二、夏菫種子系與扦插系介紹 3
三、花青素生合成路徑 4
四、影響花色呈色及穩定性之因子 5
五、控制花青素合成酵素基因表達之轉錄因子 5
六、類胡蘿蔔素之生合成路徑及對花色之影響 6
七、夏菫之花青素組成與呈色 6
八、花色之遺傳 7
九、基因表現量影響花青素生成 8
十、白花生成原因 9
材料與方法(Materials and Methods) 10
試驗一、花冠及花冠筒之色素分析 10
一、花冠及花冠筒之花青素萃取與液相層析串聯質譜儀分析 10
二、白花純系之類黃酮化合物分析 13
三、藍光下黃色花冠之色素判定 14
試驗二、純系雜交後代之花色遺傳 14
試驗三、白花純系與具有花青素的商業品種雜交後代之花色遺傳 15
試驗四、夏菫花色之上位性遺傳 16
結果(Results) 17
試驗一、花冠及花冠筒之色素分析 17
一、花冠及花冠筒之花青素萃取與液相層析串聯質譜儀分析 17
二、白花純系之類黃酮化合物分析 21
三、藍光下黃色花冠之色素判定 21
試驗二、純系雜交後代之花色遺傳 21
一、不具花青素的白色花冠與具花青素之花冠雜交後代之花色遺傳 21
二、遠端花冠之花色遺傳 22
三、上瓣單雙色雜交後代之遺傳 23
四、唇瓣黃斑有無雜交後代之遺傳 24
五、具花青素及白色花冠筒雜交後代之花色遺傳 24
試驗三、白花純系與具有花青素的商業品種雜交後代之花色遺傳 24
一、不具花青素的白色花冠與具花青素之花冠雜交後代之花色遺傳 24
二、遠端花冠之花色遺傳 24
三、上瓣單雙色雜交後代之遺傳 26
四、唇瓣黃斑有無雜交後代之遺傳 27
五、具花青素及白色花冠筒雜交後代之花色遺傳 27
試驗四、夏菫花色之上位性遺傳 28
一、白花純系與白花商業品種雜交後代之花色遺傳 28
二、具有Ht1基因之白色或黃色花冠雜交後代之花色遺傳 29
討論(Discussion) 93
一、 花冠及花冠筒之色素分析 93
二、不具花青素的白色花冠與具花青素之花冠雜交後代之花色遺傳 95
三、遠端花冠之花色遺傳 96
(一)桃紅及淡粉遠端花冠之花色遺傳 96
(二)酒紅遠端花冠之花色遺傳 96
(三)藍紫遠端花冠之花色遺傳 97
(四)黃色遠端花冠之花色遺傳 98
四、上瓣單雙色雜交後代之遺傳 99
五、唇瓣黃斑有無雜交後代之遺傳 100
六、具花青素及白色花冠筒雜交後代之花色遺傳 100
七、白花純系與白花商業品種雜交後代之花色遺傳 101
八、具有Ht1基因之白色或黃色花冠雜交後代之花色遺傳 102
結論 (Conclusion) 104
參考文獻 105
-
dc.language.isozh_TW-
dc.title夏菫之花青素與花色遺傳zh_TW
dc.titleAnthocyanin and Inheritance of Floral Color in Torenia fournierien
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許富鈞;周繼中;許揚昕zh_TW
dc.contributor.oralexamcommitteeFu-Chiun Hsu;Chi-Chung Chou;Yang-Hsin Hsuen
dc.subject.keyword花青素,花冠,花冠筒,唇瓣黃斑,zh_TW
dc.subject.keywordanthocyanin,corolla lobe,corolla tube,yellow spot on lower corolla lobe,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202403122-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2029-08-06-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved