Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95817
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝尚賢zh_TW
dc.contributor.advisorShang-Hsien HSIEHen
dc.contributor.author陳冠亦zh_TW
dc.contributor.authorKuan-Yi Chenen
dc.date.accessioned2024-09-18T16:11:54Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation[1] 陳俊釗、許峯源、葉秋山、周世俊. 從鋁合金模板施工談本質安全與產業升級. 工業安全衛生, pages 35–57, 11 2023.
[2] 李銘智、陳建同. 鋁合金模板於混凝土工程之應用與環保效益. 營建知訊,pages 39–56, 12 2023.
[3] 李淑贤. 基于 BIM 技术的铝合金模板经济技术分析. 硕士学位论文, 太原理工大学, 2020.
[4] 赵汝强、张恒清、周也. 铝合金模板一次结构免抹灰施工技术. 建筑结构,51(S2):1835–1838, 2021.
[5] Mohan Sai Gaddam and Aravindan Achuthan. A comparative study on newly emerging type of formwork systems with conventional type of formwork systems.Materials Today: Proceedings, 33:736–740, 1 2020.
[6] 寇展華. 鋁合金模板靜力試驗、數值模擬及優化設計研究. 硕士学位论文, 山東建筑大學, 2019.
[7] 马欢. 拉片式铝模板体系力学分析及设计研究. 博士学位论文, 西安工业大学,2023.
[8] Bokyeong Lee, Hyeonggil Choi, Byongwang Min, Jungrim Ryu, and Dong Eun Lee.Development of formwork automation design software for improving construction productivity. Automation in Construction, 126, 6 2021.
[9] Dongmin Lee, Hyunsu Lim, Taehoon Kim, Hunhee Cho, and Kyung-In Kang. Advanced planning model of formwork layout for productivity improvement in highrise building construction. Automation in Construction,85:232–240, 1 2018.
[10] Chijoo Lee and Sungil Ham. Automated system for form layout to increase the proportion of standard forms and improve work efficiency. Automation in Construction,87:273–286, 3 2018.
[11] Zhongya Mei, Maozeng Xu, Peng Wu, Siyu Luo, Jun Wang, and Yi Tan. BIM-based framework for formwork planning considering potential reuse. Journal of Management in Engineering, 38(2):04021090, 2022.
[12] Slawomir Biruk and Piotr Jaskowski. Optimization of vertical formwork layout plans using mixed integer linear programming. International Journal of Civil Engineering,15:125–133, 3 2017.
[13] Peter Gappmaier, Sara Reichenbach, and Benjamin Kromoser. Concrete formwork reuse in a supply chain with dynamic changes using ABMS and discrete events. Journal of Cleaner Production, 332:130038, 2022.
[14] PERI USA. Peri CAD software, 2023. Accessed: 2023-06-10.
[15] Doka. DokaCAD for AutoCAD - software for formwork planning, 2023. Accessed: 2023-06-10.
[16] PKPM. PKPM 铝模板设计软件, 2023. Accessed: 2023-06-10.
[17] 上海神機妙算软件有限公司. 上海神機妙算配模軟體, 2023. Accessed: 2023-06-10.
[18] 王昌辉. 减量化驱动下基于 BIM 的铝模板设计优化. 硕士学位论文, 山东建筑大学, 2021.
[19] 褚晓川. 基于 BIM 技术的铝合金模板深化研究. 硕士学位论文, 太原理工大学, 2022. Accessed: 2022-10-23.
[20] 熊鑫. 基于信息化的鋁合金模板深化設計研究. 硕士学位论文, 太原理工大學, 2022.
[21] 李博. 對拉螺桿式與拉片式加固方法在鋁合金模板施工中的對比. 城市住宅, 04:212–213, 2020. Comparison of Tie Rod and Flat-Tie Reinforcement Methods in Aluminum Alloy Formwork Construction.
[22] 陳利宏、王健、盧遠俊、張誠信、錢超、黎世朗、彭珣. 4.9m 層高拉片體系鋁合金模板施工技術. 施工技術, 14:60–64, 2020. Construction Technology of 4.9m-layer-high Pulling System Aluminum Alloy Formwork.
[23] 黃鋒輝、許彬、胡蒙蒙、栗直、張少斌. 鋁模加固體系最優選型研究. 施工技術 (中英文), 02:108–113, 2023.
[24] 鴻業鋁模. 鴻業鋁模 BIM 軟件 2018(Revit 鋁模插件)鋁模板設計, 2018.Accessed: 2023-06-10.
[25] Autodesk. Overview - Revit API. https://aps.autodesk.com/developer/overview/revit, 2024. Accessed: 2024-06-26.
[26] Rafaela Bortolini, Carlos Torres Formoso, and Daniela D Viana. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Automation in Construction, 98:248–264, 2019.
[27] 申月军. 基于 BIM 的铝模板设计建造一体化技术研究. 硕士学位论文, 山东建筑大学, 济南, 2020.
[28] Salman Azhar. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3):241–252, 2011.
[29] Ziyu Jin and John Gambatese. BIM for temporary structures: Development of a Revit API plug-in for concrete formwork. In Proceedings from the Canadian Society of Civil Engineering, June 2019.
[30] 李雨濛. 建筑鋁模板企業信息管理系統的設計與開發. 碩士學位論文, 湖南大學, 2022.
[31] K. Y. Chen, T. H. Wu, S. H. Hsieh, B. Setiawan, C. C. Tandri, and W. T. Chang. A BIM-based layout planning approach for the aluminum formwork system. In Proceedings of the International Conference on Construction Applications of Virtual Reality, pages 1280–1284, November 2022.
[32] K. Y. Chen, T. H. Wu, S. H. Hsieh, B. Setiawan, C. C. Tandri, and W. T. Chang. A BIM-assisted planning tool for facilitating the application of an aluminum formwork system to beam-column buildings. In Proceedings of the International Conference on Civil and Building Engineering Informatics, pages 1280–1284, July 2023.
[33] Autodesk Community. Boolean operation fail. https://forums.autodesk.com/t5/revit-api-forum/boolean-operation-fail/td-p/7531968, 2018. Accessed: 2024-06-26.
[34] Jeremy Tammik. Revit SDK samples. https://github.com/jeremytammik/RevitSdkSamples, 2024. Accessed: 2024-06-26.
[35] 马广交. 基于 BIM 的铝模板模型一键校核关键技术研究. 硕士学位论文, 山东建筑大学, 2023. Accessed: 2022-10-23.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95817-
dc.description.abstract鋁合金模板系統(AFS)於1962年起源於美國,因其多項優勢而廣受歡迎,包括施工周期短、成本效益高以及裝配方便。目前,AFS還可以緩解勞動力短缺並降低碳排放。儘管具有這些優勢,AFS的精確配模規劃仍需大量人力和時間,因此需要進行自動化。然而,目前的研究和商業軟件解決方案大多是半自動化。只有幾個完全自動化的解決方案,並且未與建築信息建模(BIM)技術整合。由於BIM能夠提供更好的模板施工管理和施工順序模擬,本研究提出了一種基於BIM的自動化鋁合金模板系統(AFS)配模規劃方法,適用於包括梁、柱、牆和帶有正交多邊形的樓板在內的常見鋼筋混凝土建築。該基於BIM的方法包括五個步驟:(1)轉角料初始安裝,(2)平面模板配置,(3)問題檢測,(4)改進,以及(5)轉角料配置,以確保規劃結果合理、完美且實用。該方法通過一個面積為3130平方米的真實案例進行驗證,結果顯示相比人工規劃節省了88%的時間,同時保持了類似的標準模板面積比例。總結來說,本論文提供了一種基於BIM的自動化AFS佈局規劃方法,可以在AFS佈局規劃中節省時間並生成合理的規劃結果。zh_TW
dc.description.abstractAluminum formwork systems (AFS), which originated in the United States in 1962, have gained significant popularity due to their numerous advantages, including short construction cycles, cost-effectiveness, and convenient assembly.
Currently, AFS also can mitigate labor shortages and lower carbon emissions.
Despite these benefits, the precise layout planning of AFS requires substantial manpower and time, so it needs to be automated.
However, current research and commercial software solutions are semi-automatic, and fully automated solutions are limited and not integrated with Building Information Modeling (BIM) technologies.
Because BIM can provide better formwork construction management and sequence simulation, this study proposes a BIM-based approach for automating layout planning of Aluminum Formwork System (AFS) on common reinforced concrete buildings, including beams, columns, walls, and slabs with an orthogonal polygon.
The BIM-based approach comprises five steps: (1) Corner Panel Initial Placement, (2) Flat Panel Generation, (3) Issue Detection, (4) Refinement, and (5) Corner Panel Generation to ensure that the planning results are reasonable, flawless, and practical.
The proposed approach is validated through a real case study with a 3130 m² formwork area, demonstrating an 88% time saving compared to manual planning while maintaining a similar percentage of the standard panel area.
In conclusion, this thesis provides a BIM-based approach that can automatically generate reasonable AFS layout planning, saving time in AFS layout planning.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:11:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:11:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgments ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Literature Review 4
2.1 Challenges of AFS layout planning . . . . . . . . . . . . . . . . . . 4
2.2 Automation of reasonable AFS Layout Planning . . . . . . . . . . . 7
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3 AFS BIM-based Planning Approach 12
3.1 The overview of the proposed approach . . . . . . . . . . . . . . . . 12
3.1.1 The Reason Behind the Workflow Design . . . . . . . . . . . . . . 13
3.1.2 Automation Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Corner Panel Initial Placement . . . . . . . . . . . . . . . . . . . . . 16
3.3 Flat Panel Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Subtract contact face . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Shoring Initial Placement . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Orthogonal Polygon Partition . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Flat Panel Placement on A Rectangle . . . . . . . . . . . . . . . . . 25
3.4 Issue Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Unfinished Face Detection . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Disassembly Detection . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Short Corner Panel Detection . . . . . . . . . . . . . . . . . . . . . 30
3.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Corner Panel Generation . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 4 Case Study 34
4.1 BIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Parametric Formwork Library . . . . . . . . . . . . . . . . . . . . . 36
4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Chapter 5 Discussion 41
5.1 Potential Cause of More Panels . . . . . . . . . . . . . . . . . . . . 41
5.2 Potential Causes of Layout Planning Issues . . . . . . . . . . . . . . 42
Chapter 6 Conclusion 45
6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References 47
Appendix A — Panel Categories and Standard Formwork Table 52
-
dc.language.isoen-
dc.title鋁模板系統的自動化配模規劃方法zh_TW
dc.titleAn Automatic Layout Planning Approach for Aluminum Formwork Systemen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林之謙;張文通zh_TW
dc.contributor.oralexamcommitteeJe-Chian LIN;Wen-Tung Changen
dc.subject.keyword鋁模板,建築資訊模型,設計自動化,zh_TW
dc.subject.keywordAluminum Formwork System,Building Information Modeling,Design Automation,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202403233-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-12-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2025-08-12
4.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved