Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章zh_TW
dc.contributor.advisorFi-John Changen
dc.contributor.author楊茗婷zh_TW
dc.contributor.authorMing-Ting Yangen
dc.date.accessioned2024-09-16T16:26:11Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2, 1-11.
2. Awodi, N. J., Liu, Y. K., Ayo-Imoru, R. M., & Ayodeji, A. (2023). Fuzzy TOPSIS-based risk assessment model for effective nuclear decommissioning risk management. Progress in Nuclear Energy, 155, 104524.
3. Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 9, 100320.
4. Bi, H., Huang, L., Zhang, H., Xie, S., Zhou, L., & Liu, L. (2024). A deep learning-based model for tropospheric wet delay prediction based on multi-layer 1D convolution neural network. Advances in Space Research.
5. Cai, B., Pan, G. L., & Fu, F. (2020). Prediction of the postfire flexural capacity of RC beam using GA-BPNN machine learning. Journal of Performance of Constructed Facilities, 34(6), 04020105.
6. Cavalli, S., & Amoretti, M. (2021). CNN-based multivariate data analysis for bitcoin trend prediction. Applied Soft Computing, 101, 107065.
7. Chang, F. J., & Chang, Y. T. (2006). Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in water resources, 29(1), 1-10.
8. Chang, F. J., Chang, K. Y., & Chang, L. C. (2008). Counterpropagation fuzzy-neural network for city flood control system. Journal of Hydrology, 358(1-2), 24-34.
9. Chang, F. J., & Lai, H. C. (2014). Adaptive neuro-fuzzy inference system for the prediction of monthly shoreline changes in northeastern Taiwan. Ocean engineering, 84, 145-156.
10. Chang, F. J., Chen, P. A., Lu, Y. R., Huang, E., & Chang, K. Y. (2014). Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 517, 836-846.
11. Chang, L. C., Chang, F. J., & Hsu, H. C. (2010). Real-time reservoir operation for flood control using artificial intelligent techniques. International Journal of Nonlinear Sciences and Numerical Simulation, 11(11), 887-902.
12. Chen, G., Hou, J., Liu, Y., Xue, S., Wu, H., Wang, T., Lv, J., Jing, J. & Yang, S. (2024). Urban inundation rapid prediction method based on multi-machine learning algorithm and rain pattern analysis. Journal of Hydrology, 131059.
13. Chen, N., Xiong, C., Du, W., Wang, C., Lin, X., & Chen, Z. (2019). An improved genetic algorithm coupling a back-propagation neural network model (IGA-BPNN) for water-level predictions. Water, 11(9), 1795.
14. Chen, W., Chen, X., Peng, J., Panahi, M., & Lee, S. (2021). Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geoscience Frontiers, 12(1), 93-107.
15. Choi, J. W., Ryu, S. J., & Kim, J. H. (2019). Short-range radar based real-time hand gesture recognition using LSTM encoder. IEEE Access, 7, 33610-33618.
16. Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization, 8(3), 631-657.
17. Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex systems, 9(2), 115-148.
18. Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and informatics, 26, 30-45.
19. Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4), 577-601.
20. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg.
21. Gao, D., Hu, B., Qin, F., Chang, L., & Lyu, X. (2021). A real-time gravity compensation method for INS based on BPNN. IEEE Sensors Journal, 21(12), 13584-13593.
22. Harif, S., Azizyan, G., Dehghani Darmian, M., & Givehchi, M. (2023). Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran). Environmental Science and Pollution Research, 30(18), 53229-53252.
23. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
24. Hsu, N. S., Huang, C. L., & Wei, C. C. (2013). Intelligent real-time operation of a pumping station for an urban drainage system. Journal of hydrology, 489, 85-97.
25. Hu, J. H., Tsai, W. P., Cheng, S. T., & Chang, F. J. (2020). Explore the relationship between fish community and environmental factors by machine learning techniques. Environmental research, 184, 109262.
26. Huang, P. C., & Lee, K. T. (2023). An alternative for predicting real-time water levels of urban drainage systems. Journal of Environmental Management, 347, 119099.
27. Huang, W., Shuai, B., Sun, Y., Wang, Y., & Antwi, E. (2018). Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case. Transportation Research Part A: Policy and Practice, 111, 292-303.
28. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665.
29. Kao, I. F., Zhou, Y., Chang, L. C., & Chang, F. J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631.
30. Karahalios, H. (2017). The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. Transportation Research Part D: Transport and Environment, 52, 172-184.
31. Kow, P. Y., Liou, J. Y., Sun, W., Chang, L. C., & Chang, F. J. (2024). Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models. Journal of Environmental Management, 351, 119789.
32. Kow, P. Y., Wang, Y. S., Zhou, Y., Kao, I. F., Issermann, M., Chang, L. C., & Chang, F. J. (2020). Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2. 5 forecasting. Journal of Cleaner Production, 261, 121285.
33. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
34. Li, L. (2022). Predicting the investment risk in supply chain management using BPNN and machine learning. Wireless Communications and Mobile Computing, 2022.
35. Li, T., Lu, J., Wu, J., Zhang, Z., & Chen, L. (2022). Predicting Aquaculture Water Quality Using Machine Learning Approaches. Water, 14(18), 2836.
36. Li, Y., Ma, L., Huang, J., Disse, M., Zhan, W., Li, L., Zhang, T., Sun, H., & Tian, Y. (2024). Machine learning parallel system for integrated process-model calibration and accuracy enhancement in sewer-river system. Environmental Science and Ecotechnology, 18, 100320.
37. Lyu, J., Jiang, Y., Xu, C., Liu, Y., Su, Z., Liu, J., & He, J. (2022). Multi-objective winter wheat irrigation strategies optimization based on coupling AquaCrop-OSPy and NSGA-III: A case study in Yangling, China. Science of The Total Environment, 843, 157104.
38. Mardani Najafabadi, M., Mirzaei, A., Azarm, H., & Nikmehr, S. (2022). Managing water supply and demand to achieve economic and environmental objectives: application of mathematical programming and ANFIS models. Water Resources Management, 36(9), 3007-3027.
39. Martínez-Comesaña, M., Eguía-Oller, P., Martínez-Torres, J., Febrero-Garrido, L., & Granada-Álvarez, E. (2022). Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost. Sustainable Cities and Society, 80, 103723.
40. Miao, K. C., Han, T. T., Yao, Y. Q., Lu, H., Chen, P., Wang, B., & Zhang, J. (2020). Application of LSTM for short term fog forecasting based on meteorological elements. Neurocomputing, 408, 285-291.
41. Pusty, K., Dash, K. K., Giri, S., Raj, G. B., Tiwari, A., Shaikh, A. M., & Béla, K. (2024). Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. Ultrasonics Sonochemistry, 102, 106762.
42. Qu, Z., Mao, W., Zhang, K., Zhang, W., & Li, Z. (2019). Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Renewable energy, 133, 919-929.
43. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
44. Şahin, Ü. A., Bayat, C., & Uçan, O. N. (2011). Application of cellular neural network (CNN) to the prediction of missing air pollutant data. Atmospheric Research, 101(1-2), 314-326.
45. Shen, Y., Hu, Y., Cheng, K., Yan, H., Cai, K., Hua, J., Fei X., & Wang, Q. (2024). Utilizing interpretable stacking ensemble learning and NSGA-III for the prediction and optimisation of building photo-thermal environment and energy consumption. In Building Simulation (pp. 1-20). Tsinghua University Press.
46. Song, C. M. (2022). Data construction methodology for convolution neural network based daily runoff prediction and assessment of its applicability. Journal of Hydrology, 605, 127324.
47. Song, Q., Wang, Z., & Wu, T. (2024). Risk analysis and assessment of water resource carrying capacity based on weighted gray model with improved entropy weighting method in the central plains region of China. Ecological Indicators, 160, 111907.
48. Sun, B., Xu, Z. D., & Zhou, H. (2023). A multiple back propagation neural network fusion algorithm for ceiling temperature prediction in tunnel fires. Engineering Structures, 280, 115601.
49. Tang, X., He, Y., Qi, P., Chang, Z., Jiang, M., & Dai, Z. (2021). A new multi-objective optimization model of water resources considering fairness and water shortage risk. Water, 13(19), 2648.
50. Wang, M., Zheng, S., & Sweetapple, C. (2022). A framework for comparing multi-objective optimization approaches for a stormwater drainage pumping system to reduce energy consumption and maintenance costs. Water, 14(8), 1248.
51. Wang, Y., Chen, C., Tao, Y., Wen, Z., Chen, B., & Zhang, H. (2019). A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry. Applied energy, 242, 46-56.
52. Yan, P., Zhang, Z., Lei, X., Hou, Q., & Wang, H. (2022). A multi-objective optimal control model of cascade pumping stations considering both cost and safety. Journal of Cleaner Production, 345, 131171.
53. Yang, S. N., Chang, L. C., & Chang, F. J. (2019). AI-based design of urban stormwater detention facilities accounting for carryover storage. Journal of Hydrology, 575, 1111-1122.
54. Yang, Y., Zhang, Y., Cheng, Y., Lei, Z., Gao, X., Huang, Y., & Ma, Y. (2023). Using one-dimensional convolutional neural networks and data augmentation to predict thermal production in geothermal fields. Journal of Cleaner Production, 387, 135879.
55. Yonar, A., & Yonar, H. (2023). Modeling air pollution by integrating ANFIS and metaheuristic algorithms. Modeling Earth Systems and Environment, 9(2), 1621-1631.
56. Yuan, X., Tian, H., Yuan, Y., Huang, Y., & Ikram, R. M. (2015). An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management, 96, 568-578.
57. Zang, H., Cheng, L., Ding, T., Cheung, K. W., Liang, Z., Wei, Z., & Sun, G. (2018). Hybrid method for short‐term photovoltaic power forecasting based on deep convolutional neural network. IET Generation, Transmission & Distribution, 12(20), 4557-4567.
58. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33, 101096.
59. Zhang, H., Wu, Z., Chen, Y., Feng, K., Yan, H., Song, H., Luo, C., & Hu, Z. (2024). Real-time monitoring of the corrosion behaviour of the 304SS in HCl solution using BPNN with joint image recognition and electrochemical noise. Corrosion Science, 228, 111779.
60. Zhang, X., Zou, Z., Wang, K., Hao, Q., Wang, Y., Shen, Y., & Hu, H. (2018). A new rail crack detection method using LSTM network for actual application based on AE technology. Applied Acoustics, 142, 78-86.
61. Zhang, Y. G., Tang, J., Liao, R. P., Zhang, M. F., Zhang, Y., Wang, X. M., & Su, Z. Y. (2021). Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stochastic Environmental Research and Risk Assessment, 35, 1273-1291.
62. Zhou, Y., Guo, S., & Chang, F. J. (2019). Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. Journal of hydrology, 570, 343-355.
63. 劉佳儀,2021,結合機器學習及主成分分析建置都市區域淹水多時刻預測模式-以臺北市為案例,國立臺灣大學生物環境系統工程學系學位論文。
64. 林敬祐,2021,應用長短期記憶模型建置雨水下水道系統水位預報模式,淡江大學水資源及環境工程學系碩士班學位論文。
65. 呂英睿,2014,智慧型抽水站排水系統水位預報及操作策略整合模式,國立臺灣大學生物環境系統工程學系碩士論文。
66. 張斐章、張麗秋,2014,類神經網路導論: 原理與應用,滄海圖書資訊。
67. 張凱堯,2009,人工智慧於都市防洪排水系統控制之研究,國立臺灣大學生物環境系統工程學系博士論文。
68. 蔡壹仰,2021,智慧型抽水站操作策略,國立臺灣大學土木工程學系碩士論文。
69. 楊舜年,2015,建立颱洪時期抽水站智慧型最佳化操作規則,國立臺灣大學生物環境系統工程學系碩士論文。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95788-
dc.description.abstract近年來受氣候變遷影響,極端降雨事件明顯增加,提高都市排水系統負荷及淹水風險,因此如何有效管理都市下水道排水系統、降低淹水風險,並提高災害應變能力,已成為亟需重視問題。本研究選定臺北市中山抽水站集水區為研究區域,蒐集中山抽水站集水區之雨量、下水道水位、抽水站前池水位、外水水位及歷史操作紀錄資料,透過隨機搜尋(Random search)調整模式參數以建置10分鐘單位之水位預測模式,結合最佳化操作策略,整合為抽水機組操作策略模式。本研究分為水位預測及操作策略兩大部分,水位預測方面,建置卷積類神經網路混合倒傳遞類神經網路(CNN-BP)與長短期記憶類神經網路(LSTM),預測未來10至40分鐘(T+1~T+4)之下水道水位,從兩種模式結果顯示CNN-BP為較佳之模式,故將CNN-BP模式預測未來一小時(T+1~T+6)之抽水站前池水位,同時亦使用CNN-BP模式預測未來一小時(T+1~T+6)之外水水位;於操作策略方面,建置非支配排序遺傳演算法Ⅲ(NSGA-Ⅲ)模式進行抽水站操作規則最佳化,以Entropy-TOPSIS選擇最佳之操作規則,並進行最佳化操作模擬;最後整合水位預測與NSGA-Ⅲ優選之操作規則模擬歷程作為調適性網路模糊推論系統(ANFIS)訓練樣本,以建立抽水機組操作策略模式,預測抽水機操作數量。結果顯示,CNN-BP模式預測全區域下水道水位監測站水位結果皆優於LSTM模式;透過相關性分析可降低CNN-BP模式預測前池水位之輸入項,於高水位事件預測中,T+1至T+3大致可良好掌握水位趨勢,足以作為抽水站操作參考依據;於預測外水水位方面,因水位振幅高度變動小,CNN-BP模式對於掌握外水水位變動性具有極高能力;透過NSGA-Ⅲ模式搜尋最小化風險值(Obj1)、最小化前後水位差總和(Obj2)、最小化抽水機開關次數(Obj3)三種目標函數,並進行最佳化操作模擬,結果顯示三種目標函數皆優於抽水站現有規則模擬,改善率分別為3.07%、47.15%及55.14%,最佳化操作模擬結果可大幅提升抽水站在風險、水位平穩性及抽水機操作次數三大面向結果;最後建置ANFIS模式依現實情況預測最佳化操作模擬之抽水機數量,透過相關性分析篩選ANFIS模式之輸入項,由預測結果得知ANFIS模式可大致掌握抽水機組操作趨勢。
本研究藉由結合水位預測模式及抽水站最佳化操作,透過ANFIS建置抽水機組操作策略模式,此模式具備即時性與可變動性,於颱風或豪雨期間,可迅速掌握雨量及整體防洪排水系統水位情況,即早提供抽水站管理單位有效之抽水機組操作參考,以增加災害預警與應變能力,實現智慧防洪管理。
zh_TW
dc.description.abstractIn recent years, the impact of climate change has led to an increase in extreme rainfall events, significantly raising the load on urban drainage systems and the risk of flooding. Consequently, effectively managing urban sewer systems, reducing flood risks, and enhancing disaster response capabilities have become urgent issues. This study selects the Zhongshan Pumping Station catchment area in Taipei City as the research area, collecting data on rainfall, sewer water levels, internal and external water levels of the pumping station, and historical operation records of the Zhongshan Pumping Station. Multiple water level prediction models with a 10-minute interval are established by adjusting model parameters using Random Search. Combined with an optimized operation strategy, these models are integrated into a pumping unit operation strategy model.
This study is divided into two main parts: water level prediction and operation strategy. For water level prediction, Convolutional Neural Networks combined with Back Propagation Neural Networks (CNN-BP) and Long Short-Term Memory Neural Networks (LSTM) are established to predict sewer water level for the next 10 to 40 minutes (T+1 to T+4). Results from both models show that CNN-BP is the superior model. Therefore, the CNN-BP model is used to predict the internal water level for the next hour (T+1 to T+6) and the external water level for the next hour (T+1 to T+6). For operation strategies, the Non-dominated Sorting Genetic Algorithm Ⅲ (NSGA-Ⅲ) is constructed to optimize the pumping station operation rules. The best operation rules are selected using Entropy-TOPSIS, and the optimized operation is simulated. Finally, the water level prediction and NSGA-Ⅲ optimized operation rules simulation process are integrated as training samples for the Adaptive Network-Based Fuzzy Inference System (ANFIS) to establish a pumping unit operation strategy model, predicting the number of pump operations.
Results indicate that the CNN-BP model's prediction of sewer water level across all monitoring stations outperforms the LSTM model. Correlation analysis can reduce the input items of the CNN-BP model for predicting internal water levels. T+1 to T+3 can generally grasp the water level trends well enough to serve as a reference for pumping station operations in predicting high water level events. Due to the small amplitude of water level changes in predicting external water levels, the CNN-BP model can accurately capture external water level variability. Through NSGA-Ⅲ, three objective functions are optimized: minimizing risk value (Obj1), minimizing the total difference in front and back water level (Obj2), and minimizing the number of pump switches (Obj3). The optimized operation simulation results show that all three objective functions perform better than the existing pumping station rules simulation, with improvement rates of 3.07%, 47.15%, and 55.14%, respectively. The optimized operation simulation results significantly enhance the pumping station's performance in terms of risk reduction, water level stability, and pump operation frequency. Finally, the ANFIS model predicts the number of optimized pump operations based on real conditions, with input items selected through correlation analysis. The prediction results show that the ANFIS model can generally grasp the trend of pumping unit operations.
This study combines water level prediction models and optimized pumping station operations to establish a pumping unit operation strategy model through ANFIS. This real-time and adaptive model enables quick monitoring of rainfall and overall flood drainage system water level during typhoons or heavy rain. It provides effective pump operation references to the pumping station management unit, enhancing disaster warning and response capabilities, and realizing smart flood management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:26:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:26:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 IV
Abstract VI
目次 IX
圖次 XII
表次 XV
第一章、前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文章節架構 3
第二章、文獻回顧 4
2.1 類神經網路 4
2.1.1 倒傳遞類神經網路之應用 4
2.1.2 卷積類神經網路之應用 5
2.1.3 長短期記憶類神經網路之應用 6
2.1.4 調適性網路模糊推論系統之應用 6
2.2 非支配排序遺傳演算法Ⅲ之應用 7
2.3 理想解相似度順序偏好法之應用 9
2.4 防洪排水系統水位預測及最佳化操作相關研究 9
第三章、理論概述 11
3.1 類神經網路 11
3.1.1 倒傳遞類神經網路 11
3.1.2 卷積類神經網路 13
3.1.3 長短期記憶類神經網路 16
3.1.4 調適性網路模糊推論系統 18
3.2 遺傳演算法 20
3.2.1 基本設定 20
3.2.2 運算機制 22
3.2.3 非支配排序遺傳演算法Ⅲ 26
3.3 理想解相似度順序偏好法 31
3.4 隨機搜尋 34
第四章、研究案例 35
4.1 研究區域 35
4.2 資料蒐集 38
4.2.1 資料基本處理 38
4.2.2 蒐集事件 45
4.3 模式參數 50
4.3.1 類神經網路參數 50
4.3.2 非支配排序遺傳演算法Ⅲ 51
4.4 評估指標 60
4.5 研究架構 62
第五章、結果與討論 64
5.1 下水道水位預測 64
5.1.1 模式設定 67
5.1.2 模式結果 73
5.1.3 模式比較 81
5.2 前池水位預測 85
5.2.1 模式設定 86
5.2.2 模式結果 90
5.2.3 高水位事件分析 93
5.3 外水水位預測 99
5.3.1 模式設定 100
5.3.2 模式結果 103
5.4 最佳化操作策略 105
5.4.1 模式目標函數設定 106
5.4.2 模式結果 107
5.4.3 綜合比較 113
5.5 整合水位預報及操作策略之結果 124
5.5.1 模式設定 125
5.5.2 模式結果 127
第六章、結論與建議 132
6.1 結論 132
6.1.1 水位預測 132
6.1.2 最佳化操作策略 133
6.1.3 整合水位預報及操作策略 134
6.2 建議 135
參考文獻 136
附錄 A CNN-BP下水道水位預測T+2~T+3結果 145
附錄 B LSTM下水道水位預測T+2~T+3結果 147
附錄 C ANFIS各輸入因子隸屬度結果 149
-
dc.language.isozh_TW-
dc.title整合智慧都市防洪系統水位預報及操作策略-以臺北市為案例zh_TW
dc.titleIntegrating Water Level Forecasting and Operational Strategies of Intelligent Urban Flood Control Systems - A Case Study of Taipei Cityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張麗秋;黃文政;張凱堯;游晟暐zh_TW
dc.contributor.oralexamcommitteeLi-Chiu Chang;Wen-Cheng Huang;Kai-Yao Chang;Cheng-Wei Yuen
dc.subject.keyword防洪管理,水位預測,卷積類神經網路混合倒傳遞類神經網路(CNN-BP),長短期記憶類神經網路(LSTM),抽水站操作策略,非支配排序遺傳演算法Ⅲ(NSGA-Ⅲ),zh_TW
dc.subject.keywordFlood Management,Water Level Prediction,Convolutional Neural Networks combined with Back Propagation Neural Networks (CNN-BP),Long Short-Term Memory Neural Networks (LSTM),Pumping Station Operation Strategy,Non-dominated Sorting Genetic Algorithm Ⅲ (NSGA-Ⅲ),en
dc.relation.page149-
dc.identifier.doi10.6342/NTU202402632-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2029-07-29-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
11.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved