Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林劭品zh_TW
dc.contributor.advisorShau-Ping Linen
dc.contributor.author龔品睿zh_TW
dc.contributor.authorPin-Jui Kungen
dc.date.accessioned2024-09-16T16:25:54Z-
dc.date.available2024-12-27-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation1. Aalto AP, Pasquinelli AE. Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol. 2012 Jun;24(3):333–40.
2. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013 Sep 12;51(5):594–605.
3. Tolia NH, Joshua-Tor L. Slicer and the argonautes. Nat Chem Biol. 2007 Jan;3(1):36–43.
4. Sheu-Gruttadauria J, MacRae IJ. Structural Foundations of RNA Silencing by Argonaute. J Mol Biol. 2017 Aug 18;429(17):2619–39.
5. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, et al. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. 2014 Sep;21(9):743–53.
6. Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome. Genomics. 2003 Sep;82(3):323–30.
7. Yigit E, Batista PJ, Bei Y, Pang KM, Chen CCG, Tolia NH, et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell. 2006 Nov 17;127(4):747–57.
8. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005 Nov 18;123(4):631–40.
9. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004 Apr 2;117(1):69–81.
10. Tsuboyama K, Tadakuma H, Tomari Y. Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems. Mol Cell. 2018 May 17;70(4):722–9.e4.
11. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008 Mar;9(3):219–30.
12. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007 Apr 6;129(1):69–82.
13. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006 Jul 21;313(5785):320–4.
14. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006 Jul 13;442(7099):199–202.
15. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006 Jul 13;442(7099):203–7.
16. Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol. 2018 Jan;2(1):174–81.
17. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog. 2012 Jan;8(1):e1002470.
18. Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res. 2015 Jul 27;43(13):6545–56.
19. Fagegaltier D, Falciatori I, Czech B, Castel S, Perrimon N, Simcox A, et al. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. Genes Dev. 2016 Jul 15;30(14):1623–35.
20. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007 Mar 23;128(6):1089–103.
21. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science. 2007 Mar 16;315(5818):1587–90.
22. Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006 Jul 1;20(13):1709–14.
23. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007 May 4;316(5825):744–7.
24. Goriaux C, Desset S, Renaud Y, Vaury C, Brasset E. Transcriptional properties and splicing of the flamenco piRNA cluster. EMBO Rep. 2014 Apr;15(4):411–8.
25. Mohn F, Sienski G, Handler D, Brennecke J. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell. 2014 Jun 5;157(6):1364–79.
26. Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature. 2012 Nov 8;491(7423):279–83.
27. Nishimasu H, Ishizu H, Saito K, Fukuhara S, Kamatani MK, Bonnefond L, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature. 2012 Nov 8;491(7423):284–7.
28. Han BW, Wang W, Li C, Weng Z, Zamore PD. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science. 2015 May 15;348(6236):817–21.
29. Mohn F, Handler D, Brennecke J. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science. 2015 May 15;348(6236):812–7.
30. Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA, Malone CD, et al. Minotaur is critical for primary piRNA biogenesis. RNA. 2013 Aug;19(8):1064–77.
31. Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J. Genetic and mechanistic diversity of piRNA 3’-end formation. Nature. 2016 Nov 24;539(7630):588–92.
32. Newkirk SJ, Lee S, Grandi FC, Gaysinskaya V, Rosser JM, Vanden Berg N, et al. Intact piRNA pathway prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5635–44.
33. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopiña J, Chen PY, et al. DNA Demethylation Dynamics in the Human Prenatal Germline. Cell. 2015 Jun 4;161(6):1425–36.
34. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell. 2015 Jun 4;161(6):1437–52.
35. Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, et al. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell. 2015 Jun 4;161(6):1453–67.
36. Reznik B, Cincotta SA, Jaszczak RG, Mateo LJ, Shen J, Cao M, et al. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development [Internet]. 2019 Feb 1;146(12). Available from: http://dx.doi.org/10.1242/dev.171157
37. Li L, Li L, Li Q, Liu X, Ma X, Yong J, et al. Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res. 2021 Apr;31(4):463–77.
38. Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013 Feb 15;27(4):390–9.
39. Dharap A, Nakka VP, Vemuganti R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke. 2011 Apr;42(4):1105–9.
40. Ghosheh Y, Seridi L, Ryu T, Takahashi H, Orlando V, Carninci P, et al. Characterization of piRNAs across postnatal development in mouse brain. Sci Rep. 2016 Apr 26;6:25039.
41. Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, et al. Identification of piRNAs in the central nervous system. RNA. 2011 Jun;17(6):1090–9.
42. Phay M, Kim HH, Yoo S. Analysis of piRNA-Like Small Non-coding RNAs Present in Axons of Adult Sensory Neurons. Mol Neurobiol. 2018 Jan;55(1):483–94.
43. Zhang T, Wong G. Dysregulation of Human Somatic piRNA Expression in Parkinson’s Disease Subtypes and Stages. Int J Mol Sci. 2022 Feb 23;23(5):2469.
44. Jain G, Stuendl A, Rao P, Berulava T, Pena Centeno T, Kaurani L, et al. A combined miRNA–piRNA signature to detect Alzheimer’s disease. Transl Psychiatry. 2019 Oct 7;9(1):1–12.
45. Abdelhamid RF, Ogawa K, Beck G, Ikenaka K, Takeuchi E, Yasumizu Y, et al. piRNA/PIWI Protein Complex as a Potential Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Mol Neurobiol. 2022 Jan 11;59(3):1693–705.
46. Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways. J Biomed Sci. 2021 Nov 18;28(1):78.
47. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012 Apr 27;149(3):693–707.
48. Gasperini C, Tuntevski K, Beatini S, Pelizzoli R, Lo Van A, Mangoni D, et al. Piwil2 (Mili) sustains neurogenesis and prevents cellular senescence in the postnatal hippocampus. EMBO Rep. 2023 Feb 6;24(2):e53801.
49. Mollenhauer B, Trenkwalder C, von Ahsen N, Bibl M, Steinacker P, Brechlin P, et al. Beta-amlyoid 1-42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement Geriatr Cogn Disord. 2006 Aug 7;22(3):200–8.
50. Compta Y, Martí MJ, Ibarretxe-Bilbao N, Junqué C, Valldeoriola F, Muñoz E, et al. Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Mov Disord. 2009 Nov 15;24(15):2203–10.
51. Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012 Nov;69(11):1445–52.
52. Hall S, Surova Y, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015 Jan 6;84(1):57–63.
53. Paolini Paoletti F, Gaetani L, Bellomo G, Chipi E, Salvadori N, Montanucci C, et al. CSF neurochemical profile and cognitive changes in Parkinson’s disease with mild cognitive impairment. NPJ Parkinsons Dis. 2023 Apr 24;9(1):68.
54. Brockmann K, Lerche S, Baiardi S, Rossi M, Wurster I, Quadalti C, et al. CSF α-synuclein seed amplification kinetic profiles are associated with cognitive decline in Parkinson’s disease. NPJ Parkinsons Dis. 2024 Jan 20;10(1):24.
55. Okuzumi A, Hatano T, Matsumoto G, Nojiri S, Ueno SI, Imamichi-Tatano Y, et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat Med. 2023 Jun;29(6):1448–55.
56. Hancks DC, Kazazian HH Jr. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012 Jun;22(3):191–203.
57. Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell. 2002 Jul;14(7):1605–19.
58. Djikeng A, Shi H, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA. 2001 Nov;7(11):1522–30.
59. Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 2006 Aug 15;20(16):2214–22.
60. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998 Dec 1;12(23):3715–27.
61. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009 Jan 22;457(7228):405–12.
62. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol. 2003 Dec;10(12):1026–32.
63. Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature. 2003 Nov 27;426(6965):465–9.
64. Deng W, Lin H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002 Jun;2(6):819–30.
65. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013 Apr 25;14(4):R36.
66. Chang KW, Tseng YT, Chen YC, Yu CY, Liao HF, Chen YC, et al. Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics. 2018 Jun 1;19(1):425.
67. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009 Mar 4;10(3):R25.
68. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019 Jan 8;47(D1):D155–62.
69. An J, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res. 2013 Jan;41(2):727–37.
70. Wang J, Shi Y, Zhou H, Zhang P, Song T, Ying Z, et al. piRBase: integrating piRNA annotation in all aspects. Nucleic Acids Res. 2022 Jan 7;50(D1):D265–72.
71. Rosenkranz D, Zischler H. proTRAC--a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinformatics. 2012 Jan 10;13:5.
72. Jiang Y, Qian F, Bai X, Liu Y, Wang Q, Ai B, et al. SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res. 2019 Jan 8;47(D1):D235–43.
73. Larriba E, Del Mazo J. An integrative piRNA analysis of mouse gametes and zygotes reveals new potential origins and gene regulatory roles. Sci Rep. 2018 Aug 27;8(1):12832.
74. Lestrade L, Weber MJ. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D158–62.
75. Keene JD. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7018–24.
76. Storz G, Altuvia S, Wassarman KM. An abundance of RNA regulators. Annu Rev Biochem. 2005;74:199–217.
77. Labrador M, Corces VG. Setting the boundaries of chromatin domains and nuclear organization. Cell. 2002 Oct 18;111(2):151–4.
78. Donze D, Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 2001 Feb 1;20(3):520–31.
79. Noma KI, Cam HP, Maraia RJ, Grewal SIS. A role for TFIIIC transcription factor complex in genome organization. Cell. 2006 Jun 2;125(5):859–72.
80. Maeda RK, Karch F. The ABC of the BX-C: the bithorax complex explained. Development. 2006 Apr;133(8):1413–22.
81. Engemann S, Strödicke M, Paulsen M, Franck O, Reinhardt R, Lane N, et al. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum Mol Genet. 2000 Nov 1;9(18):2691–706.
82. Szabó PE, Mann JR. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 1995 Aug 1;9(15):1857–68.
83. Thorvaldsen JL, Bartolomei MS. Molecular biology. Mothers setting boundaries. Science. 2000 Jun 23;288(5474):2145–6.
84. Lee JT. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell. 2000 Sep 29;103(1):17–27.
85. Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A, et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet. 2000 May;25(1):19–21.
86. Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5203–8.
87. Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–9.
88. Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet. 2000 Sep 1;9(14):2075–83.
89. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development. 2010 Aug 1;137(15):2493–9.
90. Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, et al. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet. 2012 Jan 1;21(1):10–25.
91. Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol. 2008 Jun;28(11):3713–28.
92. Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, et al. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics. 2013 Oct 5;14:685.
93. Gebert D, Neubert LK, Lloyd C, Gui J, Lehmann R, Teixeira FK. Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol Cell. 2021 Oct 7;81(19):3965–78.e5.
94. Andersen PR, Tirian L, Vunjak M, Brennecke J. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 2017 Sep 7;549(7670):54–9.
95. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012 Sep 6;489(7414):75–82.
96. Qiu W, Guo X, Lin X, Yang Q, Zhang W, Zhang Y, et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol Aging. 2017 Sep;57:170–7.
97. Sun W, Samimi H, Gamez M, Zare H, Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018 Jul 23;21(8):1038–48.
98. Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 2013 Aug;14(8):523–34.
99. Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet. 2013 Feb;14(2):100–12.
100. Fu A, Jacobs DI, Zhu Y. Epigenome-wide analysis of piRNAs in gene-specific DNA methylation. RNA Biol. 2014;11(10):1301–12.
101. Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012 Nov 21;151(5):964–80.
102. Balaratnam S, West N, Basu S. A piRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Nucleic Acids Res. 2018 Nov 16;46(20):10635–48.
103. Santamaría J, Tolosa E, Valles A. Parkinson’s disease with depression: a possible subgroup of idiopathic parkinsonism. Neurology. 1986 Aug;36(8):1130–3.
104. Roy J, Sarkar A, Parida S, Ghosh Z, Mallick B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer’s disease and their probable role in pathogenesis. Mol Biosyst. 2017 Feb 28;13(3):565–76.
105. Kim KW, Tang NH, Andrusiak MG, Wu Z, Chisholm AD, Jin Y. A Neuronal piRNA Pathway Inhibits Axon Regeneration in C. elegans. Neuron. 2018 Feb 7;97(3):511–9.e6.
106. Wakisaka KT, Imai Y. The dawn of pirna research in various neuronal disorders. Front Biosci . 2019 Jun 1;24(8):1440–51.
107. Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci. 2023 May 3;15:1157818.
108. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181–4.
109. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012 Mar;27(3):349–56.
110. Crawford JR, Emre M. Clinical Diagnostic Criteria for Dementia Associated with Parkinson’s Disease. 2007. 19 p.
111. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data [Internet]. [cited 2023 May 15]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
112. Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021 Jan 8;49(D1):D192–200.
113. Applied Research Press. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Createspace Independent Publishing Platform; 2015. 38 p.
114. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012 Jan;40(1):37–52.
115. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019 Jan 8;47(D1):D766–73.
116. Irmady K, Hale CR, Qadri R, Fak J, Simelane S, Carroll T, et al. Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson’s disease. Nat Commun. 2023 Jul 5;14(1):3956.
117. GEO Accession viewer [Internet]. [cited 2024 Apr 20]. Available from: http://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/geo/query/acc.cgi?acc=GSE106608
118. Wang Y, Song C, Zhao J, Zhang Y, Zhao X, Feng C, et al. SEdb 2.0: a comprehensive super-enhancer database of human and mouse. Nucleic Acids Res. 2023 Jan 6;51(D1):D280–90.
119. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 Jul 8;44(W1):W90–7.
120. Califf RM. Biomarker definitions and their applications. Exp Biol Med . 2018 Feb;243(3):213–21.
121. Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, et al. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell. 2019 Apr 4;177(2):446–62.e16.
122. Wong RKY, MacMahon M, Woodside JV, Simpson DA. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 2019 Jun 3;20(1):1–12.
123. Mesquita-Ribeiro R, Fort RS, Rathbone A, Farias J, Lucci C, James V, et al. Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves. RNA Biol. 2021 Nov 12;18(sup2):832–55.
124. Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, et al. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res. 2015 Dec 2;43(21):10474–91.
125. Wake C, Labadorf A, Dumitriu A, Hoss AG, Bregu J, Albrecht KH, et al. Novel microRNA discovery using small RNA sequencing in post-mortem human brain. BMC Genomics. 2016 Oct 4;17(1):776.
126. Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH. microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Front Aging Neurosci. 2016 Mar 1;8:36.
127. Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014 Nov 21;3:e04530.
128. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009 Dec;41(12):1308–12.
129. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet. 2011 Feb 19;377(9766):641–9.
130. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009 Dec;41(12):1303–7.
131. Setó-Salvia N, Clarimón J, Pagonabarraga J, Pascual-Sedano B, Campolongo A, Combarros O, et al. Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Arch Neurol. 2011 Mar;68(3):359–64.
132. Senkevich K, Bandres-Ciga S, Cisterna-García A, Yu E, Bustos BI, Krohn L, et al. Genome-wide association study stratified by haplotypes identifies potential novel loci in Parkinson’s disease. medRxiv [Internet]. 2023 Apr 15; Available from: http://dx.doi.org/10.1101/2023.04.14.23288478
133. Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, et al. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem. 2021 Jan-Jun;296:100182.
134. Roos S, Sofou K, Hedberg-Oldfors C, Kollberg G, Lindgren U, Thomsen C, et al. Mitochondrial complex IV deficiency caused by a novel frameshift variant in MT-CO2 associated with myopathy and perturbed acylcarnitine profile. Eur J Hum Genet. 2019 Feb;27(2):331–5.
135. Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene. Mitochondrion. 2014 Jul 1;17:101–5.
136. Wang W, Sun Y, Lin Y, Xu X, Zhao D, Ji K, et al. A novel nonsense variant in MT-CO3 causes MELAS syndrome. Neuromuscul Disord. 2021 Jun;31(6):558–65.
137. Sharp PA. Splicing of messenger RNA precursors. Science. 1987 Feb 13;235(4790):766–71.
138. Hales CM, Dammer EB, Diner I, Yi H, Seyfried NT, Gearing M, et al. Aggregates of small nuclear ribonucleic acids (snRNAs) in Alzheimer’s disease. Brain Pathol. 2014 Jul;24(4):344–51.
139. Cheng Z, Shang Y, Gao S, Zhang T. Overexpression of U1 snRNA induces decrease of U1 spliceosome function associated with Alzheimer’s disease. J Neurogenet. 2017 Dec;31(4):337–43.
140. Falaleeva M, Pages A, Matuszek Z, Hidmi S, Agranat-Tamir L, Korotkov K, et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1625–34.
141. Koller WC, Busenbark K, Miner K. The relationship of essential tremor to other movement disorders: report on 678 patients. Essential Tremor Study Group. Ann Neurol. 1994 Jun;35(6):717–23.
142. Geraghty JJ, Jankovic J, Zetusky WJ. Association between essential tremor and Parkinson’s disease. Ann Neurol. 1985 Apr;17(4):329–33.
143. Fama R. Cognitive Deficits in Parkinson’s Disease. 1994. 270 p.
144. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, et al. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999 Oct;67(4):492–6.
145. Pedersen KF, Larsen JP, Tysnes OB, Alves G. Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. 2013 May;70(5):580–6.
146. Aarsland D, Brønnick K, Larsen JP, Tysnes OB, Alves G, Norwegian ParkWest Study Group. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology. 2009 Mar 31;72(13):1121–6.
147. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.
148. Pirozzolo FJ, Hansch EC, Mortimer JA, Webster DD, Kuskowski MA. Dementia in Parkinson disease: a neuropsychological analysis. Brain Cogn. 1982 Jan;1(1):71–83.
149. Tombaugh TN, McIntyre NJ. The Mini-Mental State Examination: A Comprehensive Review. J Am Geriatr Soc. 1992 Sep 1;40(9):922–35.
150. O’Connor DW, Pollitt PA, Hyde JB, Fellows JL, Miller ND, Brook CP, et al. The reliability and validity of the Mini-Mental State in a British community survey. J Psychiatr Res. 1989;23(1):87–96.
151. Marras C, Armstrong MJ, Meaney CA, Fox S, Rothberg B, Reginold W, et al. Measuring mild cognitive impairment in patients with Parkinson’s disease. Mov Disord. 2013 May;28(5):626–33.
152. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005 Oct 25;65(8):1239–45.
153. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011 Aug 15;26(10):1814–24.
154. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007 Sep 15;22(12):1689–707; quiz 1837.
155. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175–91.
156. Lin CH, Wu RM. Biomarkers of cognitive decline in Parkinson’s disease. Parkinsonism Relat Disord. 2015 May;21(5):431–43.
157. Parnetti L, Tiraboschi P, Lanari A, Peducci M, Padiglioni C, D’Amore C, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry. 2008 Nov 15;64(10):850–5.
158. Siderowf A, Xie SX, Hurtig H, Weintraub D, Duda J, Chen-Plotkin A, et al. CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010 Sep 21;75(12):1055–61.
159. Ballard C, Jones EL, Londos E, Minthon L, Francis P, Aarsland D. alpha-Synuclein antibodies recognize a protein present at lower levels in the CSF of patients with dementia with Lewy bodies. Int Psychogeriatr. 2010 Mar;22(2):321–7.
160. Kivisäkk P, Magdamo C, Trombetta BA, Noori A, Kuo YKE, Chibnik LB, et al. Plasma biomarkers for prognosis of cognitive decline in patients with mild cognitive impairment. Brain Commun. 2022 Jun 14;4(4):fcac155.
161. Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, et al. Extracellular vesicle biomarkers for cognitive impairment in Parkinson’s disease. Brain. 2023 Jan 5;146(1):195–208.
162. Chen CH, Lee BC, Lin CH. Integrated Plasma and Neuroimaging Biomarkers Associated with Motor and Cognition Severity in Parkinson’s Disease. J Parkinsons Dis. 2020;10(1):77–88.
163. Lin CH, Li CH, Yang KC, Lin FJ, Wu CC, Chieh JJ, et al. Blood NfL: A biomarker for disease severity and progression in Parkinson disease. Neurology. 2019 Sep 10;93(11):e1104–11.
164. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. J Lab Autom. 2016 Aug;21(4):533–47.
165. Wu MF, Wang SG. Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell Biol Int. 2008 Jan;32(1):151–6.
166. Tavares IA, Touma D, Lynham S, Troakes C, Schober M, Causevic M, et al. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. J Biol Chem. 2013 May 24;288(21):15418–29.
167. Liu T, Rohn JL, Picone R, Kunda P, Baum B. Tao-1 is a negative regulator of microtubule plus-end growth. J Cell Sci. 2010 Aug 15;123(Pt 16):2708–16.
168. Dulovic-Mahlow M, Trinh J, Kandaswamy KK, Braathen GJ, Di Donato N, Rahikkala E, et al. De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. Am J Hum Genet. 2019 Jul 3;105(1):213–20.
169. van Woerden GM, Bos M, de Konink C, Distel B, Avagliano Trezza R, Shur NE, et al. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat. 2021 Apr;42(4):445–59.
170. Beeman N, Sapre T, Ong SE, Yadav S. Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Sci Signal. 2023 Jan 3;16(766):eadd3269.
171. Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebö-Lemke Z, Drewes G, Gerke V, et al. The frontotemporal dementia mutation R406W blocks tau’s interaction with the membrane in an annexin A2-dependent manner. J Cell Biol. 2011 Feb 21;192(4):647–61.
172. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014 Sep;46(9):989–93.
173. Arima K, Mizutani T, Alim MA, Tonozuka-Uehara H, Izumiyama Y, Hirai S, et al. NACP/alpha-synuclein and tau constitute two distinctive subsets of filaments in the same neuronal inclusions in brains from a family of parkinsonism and dementia with Lewy bodies: double-immunolabeling fluorescence and electron microscopic studies. Acta Neuropathol. 2000 Aug;100(2):115–21.
174. Arima K, Hirai S, Sunohara N, Aoto K, Izumiyama Y, Uéda K, et al. Cellular co-localization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 1999 Oct 2;843(1-2):53–61.
175. Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiol Aging. 2012 Feb;33(2):431.e27–38.
176. Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci. 2014 Mar;17(3):357–66.
177. Brandt R, Léger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol. 1995 Dec;131(5):1327–40.
178. Giacomini C, Koo CY, Yankova N, Tavares IA, Wray S, Noble W, et al. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun. 2018 May 7;6(1):37.
179. Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 1992 Dec 17;360(6405):674–7.
180. Corces VG, Salas J, Salas ML, Avila J. Binding of microtubule proteins to DNA: specificity of the interaction. Eur J Biochem. 1978 May 16;86(2):473–9.
181. Corces VG, Manso R, De La Torre J, Avila J, Nasr A, Wiche G. Effects of DNA on microtubule assembly. Eur J Biochem. 1980 Mar;105(1):7–16.
182. Greenwood JA, Johnson GV. Localization and in situ phosphorylation state of nuclear tau. Exp Cell Res. 1995 Oct;220(2):332–7.
183. Candia RF, Cohen LS, Morozova V, Corbo C, Alonso AD. Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption of the Nuclear Lamina, TDP-43 Mislocalization and Cell Death. Front Mol Neurosci. 2022 May 3;15:888420.
184. Klein HU, McCabe C, Gjoneska E, Sullivan SE, Kaskow BJ, Tang A, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat Neurosci. 2019 Jan;22(1):37–46.
185. Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021 Oct;598(7880):359–63.
186. Stahlberg H, Riek R. Structural strains of misfolded tau protein define different diseases. Nature. 2021 Oct;598(7880):264–5.
187. Stévant I, Gonen N, Poulat F. Transposable elements acquire time- and sex-specific transcriptional and epigenetic signatures along mouse fetal gonad development. Front Cell Dev Biol. 2023;11:1327410.
188. Garcia-Perez JL, Marchetto MCN, Muotri AR, Coufal NG, Gage FH, O’Shea KS, et al. LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet. 2007 Jul 1;16(13):1569–77.
189. Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, et al. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res. 2017 Aug;27(8):1395–405.
190. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009 Jun 1;23(11):1303–12.
191. Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, et al. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci. 2021 Aug 7;28(1):58.
192. Zhao B, Wu Q, Ye AY, Guo J, Zheng X, Yang X, et al. Somatic LINE-1 retrotransposition in cortical neurons and non-brain tissues of Rett patients and healthy individuals. PLoS Genet. 2019 Apr;15(4):e1008043.
193. Rangwala SH, Zhang L, Kazazian HH Jr. Many LINE1 elements contribute to the transcriptome of human somatic cells. Genome Biol. 2009 Sep 22;10(9):R100.
194. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron. 2014 Jan 22;81(2):306–13.
195. Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11428–33.
196. Mátés L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009 Jun;41(6):753–61.
197. Lohe AR, Hartl DL. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol. 1996 Apr;13(4):549–55.
198. Saha A, Mitchell JA, Nishida Y, Hildreth JE, Arribere JA, Gilbert WV, et al. Erratum for Saha et al., A trans-Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control. J Virol. 2016 May 15;90(10):5210.
199. Liu N, Lee CH, Swigut T, Grow E, Gu B, Bassik MC, et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature. 2018 Jan 11;553(7687):228–32.
200. Berrens RV, Andrews S, Spensberger D, Santos F, Dean W, Gould P, et al. An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells. Cell Stem Cell. 2017 Nov 2;21(5):694–703.e7.
201. Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017 Mar 23;543(7646):550–4.
202. Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009 Feb 6;136(3):461–72.
203. Martínez G, Panda K, Köhler C, Slotkin RK. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants. 2016 Mar 21;2:16030.
204. Miyoshi N, Stel JM, Shioda K, Qu N, Odajima J, Mitsunaga S, et al. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9545–50.
205. Haig D. Transposable elements: Self-seekers of the germline, team-players of the soma. Bioessays. 2016 Nov;38(11):1158–66.
206. Mcclintock B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol. 1956;21:197–216.
207. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006 May 4;441(7089):87–90.
208. Chuong EB, Rumi MAK, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013 Mar;45(3):325–9.
209. Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017 Oct;27(10):1623–33.
210. Jacques PÉ, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 2013 May;9(5):e1003504.
211. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18613–8.
212. Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014 Dec;24(12):1963–76.
213. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, Kutter C, et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell. 2012 Jan 20;148(1-2):335–48.
214. Wang J, Vicente-García C, Seruggia D, Moltó E, Fernandez-Miñán A, Neto A, et al. MIR retrotransposon sequences provide insulators to the human genome. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4428–37.
215. Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 1994 Jun 15;8(12):1463–72.
216. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015 Sep 24;525(7570):533–7.
217. Davidson EH, Britten RJ. Regulation of gene expression: possible role of repetitive sequences. Science. 1979 Jun 8;204(4397):1052–9.
218. Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, et al. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 2015 Jan;11(1):e1004915.
219. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016 Mar 4;351(6277):1083–7.
220. Notwell JH, Chung T, Heavner W, Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun. 2015 Mar 25;6:6644.
221. Lu X, Sachs F, Ramsay L, Jacques PÉ, Göke J, Bourque G, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014 Apr;21(4):423–5.
222. Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011 Sep 25;43(11):1154–9.
223. Sun X, Wang X, Tang Z, Grivainis M, Kahler D, Yun C, et al. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5526–35.
224. Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science. 2016 Feb 12;351(6274):aac7247.
225. Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed? Nat Rev Genet. 2016 Jun;17(6):365–72.
226. Li S, Mason CE. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet. 2014 Jun 2;15:127–50.
227. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014 Feb;24(2):177–89.
228. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014 Jan 2;505(7481):117–20.
229. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012 Apr 29;485(7397):201–6.
230. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012 Jun 22;149(7):1635–46.
231. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005 Feb 11;307(5711):932–5.
232. Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012 Apr;22(4):624–36.
233. Bouchie A. Companies in footrace to deliver RNAi. Nat Biotechnol. 2012 Dec;30(12):1154–7.
234. Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther. 2023 Jan;384(1):133–54.
235. Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol. 2021 Jul;189:114432.
236. Johannes L, Lucchino M. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs. Nucleic Acid Ther. 2018 Jun;28(3):178–93.
237. Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest. 2019 Mar 1;129(3):915–25.
238. Maguregui A, Abe H. Developments in siRNA Modification and Ligand Conjugated Delivery To Enhance RNA Interference Ability. Chembiochem. 2020 Jul 1;21(13):1808–15.
239. Huang L, Jin J, Deighan P, Kiner E, McReynolds L, Lieberman J. Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol. 2013 Apr;31(4):350–6.
240. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005 Jul;17(7):879–87.
241. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13368–73.
242. Michael A, Bajracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010 Jan;16(1):34–8.
243. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008 Dec;7(12):5157–66.
244. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010 Aug;51(8):2105–20.
245. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 Sep 1;39(16):7223–33.
246. Dai L, Zhang X, Hu X, Liu Q, Man Z, Huang H, et al. Silencing of miR-101 Prevents Cartilage Degradation by Regulating Extracellular Matrix-related Genes in a Rat Model of Osteoarthritis. Mol Ther. 2015 Aug;23(8):1331–40.
247. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012 Jul;30(7):1556–64.
248. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells. 2015 Jul;33(7):2158–68.
249. Pivoraitė U, Jarmalavičiūtė A, Tunaitis V, Ramanauskaitė G, Vaitkuvienė A, Kašėta V, et al. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice. Inflammation. 2015 Oct;38(5):1933–41.
250. Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, et al. Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing. Mol Ther. 2016 Oct;24(10):1836–47.
251. Ma Y, Li C, Huang Y, Wang Y, Xia X, Zheng JC. Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun Signal. 2019 Aug 16;17(1):96.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95787-
dc.description.abstract與PIWI蛋白質結合長約24-34nt的小片段RNA(piRNA)主要表現在性腺,代表一群較少被研究的小片段非編碼RNA,其功能主要扮演後轉錄和轉錄基因靜默。它們除了在男性生殖扮演重要角色,近年來越來越多研究描述中樞神經系統中也存在類似piRNAs序列並可能具有功能,如影響突觸可塑性的潛力。本研究採用優化的生物資訊流程分析第二孕期流產人類胎兒睪丸的小片段RNA定序數據,樣本分別搜集於台灣和美國,並經過倫理批准。我們的研究發現,在人類胎兒睪丸中存在豐富piRNAs序列,而這些主要來自snoRNAs與轉譯相關基因。此外,顯著比例的生殖腺piRNAs可朔源或靶向通常在特定器官活躍之增強子序列,可能參與轉錄組調控甚或避免生殖細胞異常表現其他組織相關之基因。在生殖系統範籌之外,我們以自己建立並優化的生物資訊分析流程,重新探勘文獻中巴金森氏症逝者大腦組織的小RNA定序資料,亦解析出具有區分巴金森氏症患者與健康對照組個體的特定piRNA群組。令人振奮的是,在台灣巴金森氏症患者群體的血漿中,也發現了類似的趨勢,顯示此等piRNA在診斷上的應用價值。進一部探討這些巴金森氏症相關piRNAs對基因調控的影響,發現一群可能被piRNA調節的基因。我們在多個公開的轉錄組數據中觀察到高度一致的基因調控模式。對預測被抑制的piRNA標靶基因與神經退化的關聯性與可能機制提供有價值的見解。此外,從台灣巴金森氏症患者中血漿衍生的可能性piRNAs分析顯示出與巴金森氏症患者腦組織數據類似的趨勢,顯示這些與增強子相關的piRNAs可能貢獻於抑制目標調控區域,而這些調控區域多屬於典型增強子和超級增強子。面對區分巴金森氏症患者是否有認知障礙是具有挑戰的,尤其piRNAs於周邊血漿樣本中含量稀少更是目前難跨越的障礙。為了克服這一障礙,我們利用LC-MS/MS進行血漿中細胞外泌體之蛋白質譜定量分析,發現巴金森氏症併發認知障礙患者血漿外泌體有高TAOK1含量。經由ELISA平台驗證了血漿細胞外泌體中TAOK1表現可作為生物標誌物檢測巴金森氏症與阿茲海默症患者認知功能障礙的潛力。在神經細胞模型中,與tau病理相關的TAOK1不僅減少了細胞突出長度和細胞存活率,還降低了細胞中ATP產量,突顯了其病理學意義。我們的研究結果強調了piRNA和細胞外泌體蛋白生物標誌物在細胞命運調控、生存能力和平衡,突顯了它們在臨床診斷和治療中的潛力,並為發育和疾病的分子動態提供新見解。zh_TW
dc.description.abstractPIWI-interacting RNAs (piRNAs), which are primarily expressed in gonads, represent a less explored class of small noncoding RNAs that are primarily expressed in gonads and play crucial roles in post-transcriptional and transcriptional gene silencing. Despite their known importance in male fertility, emerging evidence suggests a possible role for piRNAs in the central nervous system, potentially influencing synaptic plasticity. This study employed an optimized bioinformatic pipeline to analyze small RNA sequencing data from human fetal testes of second-trimester abortuses, with samples collected in Taiwan and the United States under ethical approval. Our investigation revealed a significant presence of putative piRNAs in human fetal testes, predominantly derived from snoRNAs and translation-related genes. Furthermore, these piRNAs appear to participate in transcriptome regulation and cell fate modulation through enhancer-associated interactions. Expanding beyond the germline scope, we reanalyzed putative piRNA sequences in postmortem brain tissues from Parkinson’s disease (PD) patients and identified specific putative piRNA populations that differentiate between PD patients and healthy controls. Similar trends were identified in plasma-derived putative piRNAs from Taiwanese PD patient cohorts, hinting at their diagnostic utility. Further exploration of gene regulation by these putative piRNAs revealed a significant frequency of genes being targeted. We observed a highly consistent pattern of gene regulation across multiple transcriptome datasets available in the public domain. The identification of piRNA-targeted genes predicted to be downregulated provided valuable insights into the cellular mechanisms underlying neurodegeneration. Moreover, analysis of plasma-derived putative piRNAs from a Taiwanese cohort of PD patients revealed trends analogous to those of PD brain datasets, suggesting that these enhancer-associated piRNAs likely contribute to the repression of target regulatory regions, such as those of typical enhancers and super enhancers. Addressing the challenges of differentiating impaired cognition in PD, the limited quantities of piRNAs pose a barrier to detection in peripheral samples. To overcome this obstacle, we conducted protein profiling of plasma extracellular vesicles (EVs), which revealed elevated levels of TAOK1 in PD patients with cognitive impairments. Validation through ELISA-based platforms confirmed the potential of plasma EV TAOK1 as a biomarker for detecting cognitive impairments in PD patients and Alzheimer’s disease (AD) patients. In neuronal cell line models, tauopathy-associated TAOK1 not only reduced neurite length and cell viability but also decreased ATP production when TAOK1 was overexpressed, highlighting its pathological significance. Collectively, our findings emphasize the role of piRNAs and EV protein biomarkers in cell fate modulation, viability, and homeostasis, highlighting their potential in clinical diagnostics and therapeutic treatments and providing new insights into the molecular dynamics of development and disease.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:25:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:25:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement…………………………………………………………………... i
Abstract………………………………………………………………………….….. ii
中文摘要……………………………………………………………………………. iv
Table of Contents………………………………………………………………..…... v
List of Tables…………………………………………………………………..……. ix
List of Figures…………………………………………………………………..…… xi
Abbreviation…………………………………………………………………..…….. xiii
Chapter One – Literature Review……………………...……………………..……... 1
1.1 The discovery and biogenesis of PIWI-interacting RNAs……………………..... 2
1.2 piRNA and human fetal gonads…………………………………………..……... 7
1.3 piRNA and neurodevelopmental and neurodegenerative disease………..……… 9
1.4 Development of biomarkers for cognitive impairment in PD patients…...…..…. 11
1.5 Schematic overview of this study.………...…………………..……………..…... 12
Chapter Two – PIWI-Interacting RNA Analysis in Human Fetal Gonads: Discoverying piRNA-Enhancer Associations in Cell Fate Control…………………. 14
2.1 Introduction…………………………………………………………………..….. 15
2.2 Materials and Methods……………….……………………………………..…… 17
2.2.1 Bioinformatic analysis of small RNA sequencing…………..……….…..…... 17
2.2.2 piRNA cluster prediction………………………………………………..…… 18
2.2.3 piRNA targets prediction……………………………………………..……… 18
2.3 Results……………………………………………………………………..…….. 18
2.3.1 Deciphering the dynamics of piRNA expression across human fetal development stages………………..……….………………..……….…..………….. 18
2.3.2 A significant portion of piRNAs in human fetal gonad originate from non-coding RNAs, suggesting a role in translational regulation during gonadal development………………..……….………………..……….……….………...….. 20
2.3.3 piRNA clusters target imprinted genes, such as KCNQ1OT1, and non-fetal related enhancers to regulate fetal gonad development…………………..……..…... 21
2.4 Discussion……………………………………………………………..……..….. 23
2.5 Conclusion…………………………………………………………….……..….. 28
2.6 Perspective…………………………………………………………….……..….. 29
2.6.1 Establishing 3’ end with 2’ O methylation enriched piRNA sequences.….… 29
2.6.2 Exploring the phenomenon observed in the human fetal gonad and its relevance across other species…………………………………………..…………. 29
2.6.3 Functional assays of putative piRNA target of interest……………………..... 30
2.7 Tables and Figures……………………………………………………………..... 32
2.7.1 Tables…………………………………………………………………….…... 32
2.7.2 Figures………………………………………………………………….……. 36
Chapter Three – Unveiling Distinctive piRNA Expression Profiles in Postmortem Brains and Plasma: Implications for Parkinson's Disease Diagnosis and Pathophysiology……..………..…..………..………………………...………..…… 40
3.1 Introduction………………………………………………………………….….. 41
3.2 Materials and Methods…………………………….……………………….….... 42
3.2.1 Sample preparation and library construction………………………………... 42
3.2.2 Bioinformatic analysis of small RNA sequencing…..…………………..…... 43
3.2.3 Prediction of piRNA-targeted genes and regulatory regions…………….….. 44
3.2.4 Statistical analysis……………………………………………………….…... 45
3.3 Results…………………………………………………………………….…….. 45
3.3.1 Identification and characterization of putative piRNAs from publicly available small RNA sequencing of PD brain datasets and plasma……...….……. 45
3.3.2 The discovery of brain-derived piRNA units in plasma offers potential diagnostic biomarkers for PD……...…………………………………………...…. 47
3.3.3 Exploring piRNA targets unveiled potential therapeutic targets in PD pathogenesis…………………..…………………….………………………….….. 48
3.3.4. Parallel characteristics of PD-associated putative piRNAs in peripheral circulation and the brain…………………………………………...…………..…... 50
3.4 Discussion…………………………………………………………………..…… 51
3.5 Conclusion……...…………………………………………………………..…… 57
3.6 Perspective………………...………………………………………………..…… 58
3.6.1 Validating biomarkers and strengthening confidence in piRNAs……….....… 58
3.6.2 Enhancing small RNA sequencing data volumn and establishing chromatin accessibility profiles in PD samples……………………………………………..… 59
3.6.3 Functional study on potential piRNA target candidates…………………..…. 61
3.6.4 Exploring the association between piRNA profiles and polymorphisms in PD patients…………………………………………………………………...……...… 62
3.7 Tables and Figures………………………………………………………..……... 64
3.7.1 Tables…………………………………………………………………..…….. 64
3.7.2 Figures……………………………………………………………….………. 68
Chapter Four – Elevated Plasma Levels of Extracellular Vesicle-associated TAOK1: A Diagnostic Marker for Cognitive Decline in Parkinson’s Disease Dementia and Alzheimer’s Disease..……………………………………………………………….. 75
4.1 Introduction…………………………………………………….……………..…. 76
4.2 Materials and Methods…………………………….………………………..…… 77
4.2.1 Sample collection………………………………………………………..…... 77
4.2.2 Isolating plasma-derived EV……………………………………………..….. 78
4.2.3 Mass spectrometric profiling…………………………………………..…….. 78
4.2.4 TAOK1 ELISA assay.……………………………………………….………. 79
4.2.5 Cell culture and treatment………………………………...……………..…… 80
4.2.6 Transfection…………………………………………………………..……… 80
4.2.7 Western blot…………………………………………………………..……… 81
4.2.8 Immunofluorescence staining……………………….………………..……… 82
4.2.9 Cell viability assay………………………………….………………...……… 82
4.2.10 ATP production assay……………………………...…………………..…… 82
4.2.11 Statistical analysis………………………………….…………………..…… 83
4.3 Results……………………………………………………………………..…….. 84
4.3.1 The significance of TAOK1 in LC-MS/MS and robust links to clinical cognitive assessment……………………...…………………………..……….…... 84
4.3.2 Successful ELISA validation of TAOK1 as a biomarker for monitoring cognitive impairment in PDD and AD…..….…………………………………..…. 86
4.3.3 The biological impact of TAOK1 on neurite shortening and ATP depletion in SH-SY5Y cells leading to neuronal cell death……………………………...…. 87
4.4 Discussion……………………………………………………………………… 89
4.5 Conclusion……………………………………..…………….………………… 95
4.6 Perspective……………………………………..………………………………. 95
4.6.1 Enhancing detection sensitivity of TAOK1 protein levels……………..…… 96
4.6.2 Investigating the functions of TAOK1……………………………..……….. 97
4.7 Tables and Figures…………………………………………………………….... 100
4.7.1 Tables……………………………………………………………………….. 100
4.7.2 Figures………………………………………………………………………. 102
Chapter Five – Extended Discussion, Perspective, and Conclusion Summary….….. 110
5.1 The importance of LINE-1 transposition in mammals…..……………..…..…... 111
5.2 Diagnostic and therapeutic potential of the piRNA…..……………………........ 113
5.3 Therapeutic potential of EVs in regenerative medicine…..……………………. 115
5.4 Perspective: Exploring the role of LINE-1 in genome dynamics and human health…….................................................................................................................. 117
5.5 Perspective: Advancing precision medicine in PD through piRNA targets…... 118
5.6 Perspective: The potential of TAOK1 in predicting cognitive decline and in serving as a drug target …………………………………………………………..... 119
5.7 Conclusion summary……...……………………………………………….…… 121
References…………………………………………………………………...……... 123
Appendix………………………………………………………………..………….. 142
Curriculum Vitae………………………………………………………..………….. 143
-
dc.language.isoen-
dc.subject人類胎兒性腺zh_TW
dc.subject生物標記zh_TW
dc.subject外泌體zh_TW
dc.subject認知功能障礙zh_TW
dc.subject巴金森病zh_TW
dc.subjectpiRNAzh_TW
dc.subjectextracellular vesicleen
dc.subjectcognitive impairmenten
dc.subjectParkinson’s diseaseen
dc.subjecthuman fetal gonaden
dc.subjectPIWI-interacting RNAen
dc.subjectbiomarkeren
dc.title巴金森病與認知功能障礙患者之體內與循環分子生物標記: 從piRNA到細胞外泌體蛋白zh_TW
dc.titleMolecular Biomarkers in Situ and in Circulation in Patients with Parkinson’s Disease and Cognitive Impairment: from PIWI-interacting RNA to Extracellular Vesicle Proteinen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor吳瑞美zh_TW
dc.contributor.coadvisorRuey-Meei Wuen
dc.contributor.oralexamcommittee朱雪萍;程吉安;王致恬;吳佳慶;何弘能;鄭珮琳zh_TW
dc.contributor.oralexamcommitteeHsueh-Ping Chu;Chi-An Cheng;Chih-Tien Wang;Chia-Ching Wu;Hong-Nerng Ho;Pei-Lin Chengen
dc.subject.keywordpiRNA,人類胎兒性腺,巴金森病,認知功能障礙,外泌體,生物標記,zh_TW
dc.subject.keywordPIWI-interacting RNA,human fetal gonad,Parkinson’s disease,cognitive impairment,extracellular vesicle,biomarker,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202402784-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
20.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved