請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95785完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李家岩 | zh_TW |
| dc.contributor.advisor | Chia-Yen Lee | en |
| dc.contributor.author | 康崴 | zh_TW |
| dc.contributor.author | Wei Kang | en |
| dc.date.accessioned | 2024-09-16T16:25:19Z | - |
| dc.date.available | 2024-09-17 | - |
| dc.date.copyright | 2024-09-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | Afriat, S. N. (1972). Efficiency estimation of production functions. International Economic Review, 13(3):568–598. 41
Azadi, M. and Farzipoor Saen, R. (2012). Developing a new chance-constrained DEA model for suppliers selection in the presence of undesirable outputs. Int. J. of Operational Research, 13:44–66. 16 Bagheri, S. F., Amirteimoori, A., Kordrostami, S., and Soufi, M. (2022). Performance analysis in production systems with uncertain data: A stochastic data envelopment analysis approach. Complexity, 2022(1):9198737. 16 Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. 2, 8, 18, 19 Banker, R. D., Charnes, A., and Cooper, W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9):1078–1092. 8 Bertsimas, D., Brown, D. B., and Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3):464–501. 36 Chambers, R. G., Chung, Y., and Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70(2):407–419. 29 Charnes, A., Cooper, W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6):429–444. 7 Chassein, A. and Goerigk, M. (2016). Performance Analysis in Robust Optimization, pages 145–170. Springer International Publishing, Cham. 55 Dakpo, K. H., Jeanneaux, P., and Latruffe, L. (2016). Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250(2):347–359. 9 de Ruiter, F. (2018). Primal and dual approaches to adjustable robust optimization. 36 Dehghani, E., Jabalameli, M. S., and Jabbarzadeh, A. (2018). Robust design and optimization of solar photovoltaic supply chain in an uncertain environment. Energy, 142:139–156. 14 Ehrgott, M., Holder, A., and Nohadani, O. (2018). Uncertain data envelopment analysis. European Journal of Operational Research, 268(1):231–242. 11, 16 Eken, M. H. and Kale, S. (2011). Measuring bank branch performance using data envelopment analysis (DEA): The case of Turkish bank branches. African Journal of Business Management, 5(3):889–901. 10 Ewertowska, A., Pozo, C., Gavaldà, J., Jiménez, L., and Guillén-Gosálbez, G. (2017). Combined use of life cycle assessment, data envelopment analysis and Monte Carlo simulation for quantifying environmental efficiencies under uncertainty. Journal of Cleaner Production, 166:771–783. 11, 16 Färe, R. and Grosskopf, S. (2003). Nonparametric productivity analysis with undesirable outputs: Comment. American Journal of Agricultural Economics, 85(4):1070–1074. 9 Färe, R. and Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European Journal of Operational Research, 157(1):242–245. Smooth and Nonsmooth Optimization. 9 Färe, R., Grosskopf, S., and Pasurka, C. A. (2007). Environmental production functions and environmental directional distance functions. Energy, 32(7):1055–1066. 9 Gharaei, A., Karimi, M., and Shekarabi, S. A. H. (2020). Joint economic lot-sizing in multi-product multi-level integrated supply chains: Generalized Benders decomposition. International Journal of Systems Science: Operations & Logistics, 7(4):309–325. 2 Gilani, H. and Sahebi, H. (2022). A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain. Omega, 110:102637. 13 Gorissen, B. L., İhsan Yanıkoğlu, and den Hertog, D. (2015). A practical guide to robust optimization. Omega, 53:124–137. 36 Hailu, A. and Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3):605–616. 9 Halkos, G. and Petrou, K. N. (2019). Treating undesirable outputs in DEA: A critical review. Economic Analysis and Policy, 62:97–104. 8 Kim, S. and Uzsoy, R. (2009). Heuristics for capacity planning problems with congestion. Computers & Operations Research, 36(6):1924–1934. 10 Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87(4):1077–1082. 9 Kuosmanen, T. and Johnson, A. L. (2010). Data envelopment analysis as nonparametric least-squares regression. Operations Research, 58(1):149–160. 41, 43 Kuosmanen, T. and Podinovski, V. (2009a). Weak disposability in nonparametric production analysis: Reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2):539–545. 4 Kuosmanen, T. and Podinovski, V. (2009b). Weak disposability in nonparametric production analysis: Reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2):539–545. 9 Lee, C. and Chien, C. (2014). Stochastic programming for vendor portfolio selection and order allocation under delivery uncertainty. OR Spectrum, 36(3):761–797. Funding Information: This research was supported by the National Science Council, Taiwan (NSC99-2221-E-007-047-MY3; NSC 102-2622-E-007-013), the Ministry of Education, Taiwan (101N2073E1), and Hsinchu Science Park, Taiwan (101A53). 10 Lee, C.-Y. (2016). Most productive scale size versus demand fulfillment: A solution to the capacity dilemma. European Journal of Operational Research, 248(3):954–962. 3, 8, 11, 16, 17, 41 Lee, C.-Y. and Chen, Y.-W. (2024). Reinforcement learning with data envelopment analysis and conditional value-at-risk for the capacity expansion problem. IEEE Transactions on Engineering Management, 71:6469–6480. 11, 16 Lee, C.-Y., Huang, Y.-T., and Chen, P.-J. (2024). Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling. Computers & Chemical Engineering, 187:108745. 12 Lee, C.-Y., Johnson, A. L., Moreno-Centeno, E., and Kuosmanen, T. (2013). A more efficient algorithm for convex nonparametric least squares. European Journal of Operational Research, 227(2):391–400. 41 Matsumoto, K., Makridou, G., and Doumpos, M. (2020). Evaluating environmental performance using data envelopment analysis: The case of European countries. Journal of Cleaner Production, 272:122637. 1 Moretti, L., Martelli, E., and Manzolini, G. (2020). An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids. Applied Energy, 261:113859. 13 Nataraja, N. R. and Johnson, A. L. (2011). Guidelines for using variable selection techniques in data envelopment analysis. European Journal of Operational Research, 215(3):662–669. 51 Nishizaki, I., Hayashida, T., Sekizaki, S., and Okabe, J. (2022). Data envelopment analysis approaches for two-level production and distribution planning problems. European Journal of Operational Research, 300(1):255–268. 10 Omrani, H., Shamsi, M., Emrouznejad, A., and Teplova, T. (2023). A robust DEA model under discrete scenarios for assessing bank branches. Expert Systems with Applications, 219:119694. 14 Peykani, P., Mohammadi, E., Emrouznejad, A., Pishvaee, M. S., and Rostamy-Malkhalifeh, M. (2019). Fuzzy data envelopment analysis: An adjustable approach. Expert Systems with Applications, 136:439–452. 16 Peykani, P., Mohammadi, E., Jabbarzadeh, A., Rostamy-Malkhalifeh, M., and Pishvaee, M. S. (2020a). A novel two-phase robust portfolio selection and optimization approach under uncertainty: A case study of Tehran stock exchange. PLOS ONE, 15(10):1–43. 14 Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J., and Rostamy-Malkhalifeh, M. (2020b). Data envelopment analysis and robust optimization: A review. Expert Systems, 37(4). 13 Podinovski, V. V. and Kuosmanen, T. (2011). Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions. European Journal of Operational Research, 211(3):577–585. 9 Ramanathan, R., Ramanathan, U., and Zhang, Y. (2016). Linking operations, marketing and environmental capabilities and diversification to hotel performance: A data envelopment analysis approach. International Journal of Production Economics, 176:111–122. 10 SHEPHARD, R. W. (1970). Theory of Cost and Production Functions. Princeton University Press. 9 Subramanyam, A., Repoussis, P. P., and Gounaris, C. E. (2020). Robust optimization of a broad class of heterogeneous vehicle routing problems under demand uncertainty. INFORMS Journal on Computing, 32(3):661–681. 13 Szaniawski, K. (1967). The value of perfect information. Synthese, 17(4):408–424. 55 Ton Nu Hai, A. and Speelman, S. (2020). Economic-environmental trade-offs in marine aquaculture: The case of lobster farming in Vietnam. Aquaculture, 516:734593. 8 Torres-Ruiz, A. and Ravindran, A. R. (2019). Use of interval data envelopment analysis, goal programming and dynamic eco-efficiency assessment for sustainable supplier management. Computers & Industrial Engineering, 131:211–226. 16 Wang, H.-J. and Schmidt, P. (2002). One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. Journal of Productivity Analysis, 18:129–144. 51 Wen, M.-L., Guo, L.-H., Kang, R., and Yang, Y. (2014). Data envelopment analysis with uncertain inputs and outputs. Journal of Applied Mathematics, 2014:392–398–244. 11 Yang, H. and Pollitt, M. (2010). The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants. Energy Policy, 38(8):4440–4444. 1 Zhou, P., Ang, B., and Poh, K. (2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30(1):1–14. 9 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95785 | - |
| dc.description.abstract | 隨著全球環保意識的提升,對於製造廠商而言,在進行產能規劃決策時考慮非意欲產出(Undesirable Output)的有害影響變得更加重要。同時,確保這些廠房以最佳生產規模運作並滿足市場需求亦做為產能規劃問題中的重點之一。然而,對於製造廠而言,處理生產力、永續性和滿足需求之間的權衡關係則相當困難。此外,市場需求可能會隨著時間出現波動,使得精準地縮小供需差距變得更有挑戰性。本研究利用資料包絡分析法(Data Envelopment Analysis)建立數學模型,試圖提供一個同時考慮生產力、永續性以及滿足市場需求的目標,讓市場中的廠商能夠參考並改善其資源分配。本研究進一步應用了穩健最佳化方法(Robust Optimization)來處理市場需求的不確定性。最後,本研究透過資料模擬驗證所提出框架之有效性,並呈現該框架在資料中存在大幅度地的變異時,相較於未使用穩健最佳化方法的框架可降低約 22% 的完全資訊期望值(Expected Value of Perfect Information),顯示該框架擁有良好處理不確定性的能力。本研究結果可做為企業在面臨產能規劃問題時的參考依據,使其能夠建立一個全面的目標並根據該目標改善資源分配。 | zh_TW |
| dc.description.abstract | With the increasing global environmental awareness, considering the harmful effects of byproducts when making capacity planning decisions has become more crucial for manufacturing plants. At the same time, operating with optimal efficiency and meet the market demands is of significant importance for these plants. However, the trade-off relationship between productivity, sustainability, and demand fulfillment can be complicated for plants to manage simultaneously. Moreover, market demands may fluctuate over time, making it even more challenging to reduce the gap between supply and demands. This study thus proposes a mathematical model that incorporates data envelopment analysis constraints to formulate an efficient target representing the trade-off between the most productive scale size, most sustainable scale size, and demand fulfillment. This study also applies a robust optimization approach to address demand uncertainty. The results demonstrate how manufacturing plants should allocate resources based on a given set of inputs, outputs, and undesirable outputs. The computational study chapter validates the effectiveness of the proposed framework and shows that it can reduce the expected value of perfect information by 22% comparing to a naïve approach framework. The findings provide detailed guidance on how firms can operate under capacity planning problems from a comprehensive perspective. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:25:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-16T16:25:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract i
List of Figures v List of Tables vii 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Literature Review 7 2.1 Data Envelopment Analysis . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Capacity Planning Problems with Data Envelopment Analysis . . . . . . 10 2.3 Data Envelopment Analysis with Uncertainty . . . . . . . . . . . . . . 11 2.4 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Data Envelopment Analysis with Robust Optimization . . . . . . . . . . 13 2.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Methodology 17 3.1 Methodological Framework . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Formulations of the MPSS points and the MSSS points . . . . . . . . . . 19 3.3 Compromise Targets under Deterministic Demands . . . . . . . . . . . . 20 3.3.1 Case 1: D1 ≤ yMS . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Case 2: yMS < D2 ≤ yMP . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 Case 3: yMP < D3 ≤ yP . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.4 Case 4: yP < D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Compromise Target under Uncertain Demands . . . . . . . . . . . . . . . 34 3.4.1 Case 1: ˜D ∈ [0, yMS] . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Case 2: ˜D ∈ (yMS, yMP ] . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.3 Case 3: ˜D ∈ (yMP , yP ] . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.4 Case 4: ˜D ∈ (yP ,∞) . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.5 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.6 Naïve Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Computational Study 51 4.1 Data Generating Process . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Conclusion and Future Research 63 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reference 65 | - |
| dc.language.iso | en | - |
| dc.title | 考慮最佳生產規模與環境效益之隨機產能規劃 | zh_TW |
| dc.title | Stochastic Capacity Planning with Most Productive Scale Size and Eco-Efficiency | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孔令傑;游明敏;鄭辰仰 | zh_TW |
| dc.contributor.oralexamcommittee | Ling-Chieh Kung;Ming-Miin Yu;Chen-Yang Cheng | en |
| dc.subject.keyword | 產能規劃,資料包絡分析法,最佳生產規模,最永續生產規模,穩健最佳化, | zh_TW |
| dc.subject.keyword | capacity planning,data envelopment analysis,most productive scale size,most sustainable scale size,robust optimization, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202404105 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
