請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95780完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李金美 | zh_TW |
| dc.contributor.advisor | Chin-Mei Lee | en |
| dc.contributor.author | 卓冠霖 | zh_TW |
| dc.contributor.author | Guan-Lin Chuo | en |
| dc.date.accessioned | 2024-09-16T16:23:52Z | - |
| dc.date.available | 2024-09-17 | - |
| dc.date.copyright | 2024-09-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | Abdellatif, I.M.Y., Yuan, S., Na, R., Yoshihara, S., Hamada, H., Suzaki, T., Ezura, H., and Miura, K. (2022). Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress. Int J Mol Sci 23.
Andrasi, N., Pettko-Szandtner, A., and Szabados, L. (2021). Diversity of plant heat shock factors: regulation, interactions, and functions. J. Exp. Bot. 72, 1558-1575. Arico, D., Legris, M., Castro, L., Garcia, C.F., Laino, A., Casal, J.J., and Mazzella, M.A. (2019). Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ 42, 2554-2566. Büche, C., Poppe, C., Schäfer, E., and Kretsch, T. (2000). eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. The Plant cell 12, 547–558. Bernick, E.P., Zhang, P.J., and Du, S. (2010). Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol. 11, 70. Buszewicz, D., Archacki, R., Palusinski, A., Kotlinski, M., Fogtman, A., Iwanicka-Nowicka, R., Sosnowska, K., Kucinski, J., Pupel, P., Oledzki, J., Dadlez, M., Misicka, A., Jerzmanowski, A., and Koblowska, M.K. (2016). HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ 39, 2108-2122. Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., and Ko, S.S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol. 140, 1297-1305. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262. Chen, D., Lyu, M., Kou, X., Li, J., Yang, Z., Gao, L., Li, Y., Fan, L.M., Shi, H., and Zhong, S. (2022). Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol. Cell 82, 3015-3029 e3016. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. Dieterle, M., Zhou, Y.C., Schafer, E., Funk, M., and Kretsch, T. (2001). EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15, 939-944. Doroodian, P., and Hua, Z. (2021). The Ubiquitin Switch in Plant Stress Response. Plants (Basel) 10. Ferguson, D.L., Guikema, J.A., and Paulsen, G.M. (1990). Ubiquitin Pool Modulation and Protein Degradation in Wheat Roots during High Temperature Stress. Plant physiology, 92, 740–746. Fernandez-Bautista, N., Fernandez-Calvino, L., Munoz, A., Toribio, R., Mock, H.P., and Castellano, M.M. (2018). HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis. Plant Cell Environ 41, 1852-1869. Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lamke, J., Gorka, M., Kappel, C., Sokolowska, E., Skirycz, A., Graf, A., and Baurle, I. (2021). Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 12, 3426. Fu, S., Rogowsky, P., Nover, L., and Scanlon, M.J. (2006). The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Planta 224, 42-52. Gil, K.E., Kim, W.Y., Lee, H.J., Faisal, M., Saquib, Q., Alatar, A.A., and Park, C.M. (2017). ZEITLUPE Contributes to a Thermoresponsive Protein Quality Control System in Arabidopsis. Plant Cell 29, 2882-2894. Gu, L., Jiang, T., Zhang, C., Li, X., Wang, C., Zhang, Y., Li, T., Dirk, L.M.A., Downie, A.B., and Zhao, T. (2019). Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. Plant J. 100, 128-142. Guo, M., Liu, J.H., Ma, X., Luo, D.X., Gong, Z.H., and Lu, M.H. (2016). The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. Front Plant Sci 7, 114. Hammoudi, V., Beerens, B., Jonker, M.J., Helderman, T.A., Vlachakis, G., Giesbers, M., Kwaaitaal, M., and van den Burg, H.A. (2021). The protein modifier SUMO is critical for integrity of the Arabidopsis shoot apex at warm ambient temperatures. J. Exp. Bot. Han, D., Yu, Z., Lai, J., and Yang, C. (2022). Post-translational modification: a strategic response to high temperature in plants. aBIOTECH 3, 49-64. Han, D., Chen, C., Xia, S., Liu, J., Shu, J., Nguyen, V., Lai, J., Cui, Y., and Yang, C. (2021). Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses. Plant Commun 2, 100091. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14, 9643-9684. Hsu, S.F., Lai, H.C., and Jinn, T.L. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol. 153, 773-784. Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Mei, H., Liu, J., Wang, W., and Liu, Q. (2022). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (2020) 3, e161. Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243-1254. IPCC (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 1-34 Jung, J.H., Barbosa, A.D., Hutin, S., Kumita, J.R., Gao, M., Derwort, D., Silva, C.S., Lai, X., Pierre, E., Geng, F., Kim, S.B., Baek, S., Zubieta, C., Jaeger, K.E., and Wigge, P.A. (2020). A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256-260. Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., Kumar, M., Grant, A., Locke, J.C., Schäfer, E., Jaeger, K.E., and Wigge, P.A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889. Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22, 159-180. Kim, C., Kwon, Y., Jeong, J., Kang, M., Lee, G.S., Moon, J.H., Lee, H.J., Park, Y.I., and Choi, G. (2023). Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun 14, 1708. Kim, J., Park, J., Kim, H., Son, N., Kim, E.J., Kim, J., Byun, D., Lee, Y., Park, Y.M., Nageswaran, D.C., Kuo, P., Rose, T., Dang, T.V.T., Hwang, I., Lambing, C., Henderson, I.R., and Choi, K. (2022). Arabidopsis HEAT SHOCK FACTOR BINDING PROTEIN is required to limit meiotic crossovers and HEI10 transcription. EMBO J. 41, e109958. Kim, J.H., Lim, S.D., and Jang, C.S. (2019). Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress. Plant Mol. Biol. 99, 545-559. Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schafer, E., and Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541-1555. Koops, P., Pelser, S., Ignatz, M., Klose, C., Marrocco-Selden, K., and Kretsch, T. (2011). EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J. Exp. Bot. 62, 5547-5560. Lim, S.D., Cho, H.Y., Park, Y.C., Ham, D.J., Lee, J.K., and Jang, C.S. (2013). The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J. Exp. Bot. 64, 2899-2914. Liu, H.C., Liao, H.T., and Charng, Y.Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34, 738-751. Liu, H.T., Li, G.L., Chang, H., Sun, D.Y., Zhou, R.G., and Li, B. (2007). Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30, 156-164. Liu, H.T., Gao, F., Li, G.L., Han, J.L., Liu, D.L., Sun, D.Y., and Zhou, R.G. (2008). The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J. 55, 760-773. Liu, J., Zhang, C., Wei, C., Liu, X., Wang, M., Yu, F., Xie, Q., and Tu, J. (2016). The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice. Plant Physiol. 170, 429-443. Luhua, S., Hegie, A., Suzuki, N., Shulaev, E., Luo, X., Cenariu, D., Ma, V., Kao, S., Lim, J., Gunay, M.B., Oosumi, T., Lee, S.C., Harper, J., Cushman, J., Gollery, M., Girke, T., Bailey-Serres, J., Stevenson, R.A., Zhu, J.K., and Mittler, R. (2013). Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol. Plant. 148, 322-333. Magori, S., and Citovsky, V. (2011). Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. Front Plant Sci 2, 87. Marko, D., El-Shershaby, A., Carriero, F., Summerer, S., Petrozza, A., Iannacone, R., Schleiff, E., and Fragkostefanakis, S. (2019). Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes (Basel) 10. Marrocco, K., Zhou, Y., Bury, E., Dieterle, M., Funk, M., Genschik, P., Krenz, M., Stolpe, T., and Kretsch, T. (2006). Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J. 45, 423-438. Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem Sci 37, 118-125. Mizoi, J., Kanazawa, N., Kidokoro, S., Takahashi, F., Qin, F., Morimoto, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2019). Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J. Biol. Chem. 294, 902-917. Moran Luengo, T., Mayer, M.P., and Rudiger, S.G.D. (2019). The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol. 29, 164-177. Morimoto, K., Ohama, N., Kidokoro, S., Mizoi, J., Takahashi, F., Todaka, D., Mogami, J., Sato, H., Qin, F., Kim, J.S., Fukao, Y., Fujiwara, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc Natl Acad Sci U S A 114, E8528-E8536. Muller, N.A., Zhang, L., Koornneef, M., and Jimenez-Gomez, J.M. (2018). Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci U S A 115, 7135-7140. Muller, N.A., Wijnen, C.L., Srinivasan, A., Ryngajllo, M., Ofner, I., Lin, T., Ranjan, A., West, D., Maloof, J.N., Sinha, N.R., Huang, S., Zamir, D., and Jimenez-Gomez, J.M. (2016). Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat. Genet. 48, 89-93. Muthusamy, M., Son, S., Park, S.R., and Lee, S.I. (2023). Heat shock factor binding protein BrHSBP1 regulates seed and pod development in Brassica rapa. Front Plant Sci 14, 1232736. Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant Sci. 22, 53-65. Peng, L., Wan, X., Huang, K., Pei, L., Xiong, J., Li, X., and Wang, J. (2019). AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis. Biochem. Biophys. Res. Commun. 509, 281-286. Pickart, C.M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616. Qin, C., Li, H., Zhang, S., Lin, X., Jia, Z., Zhao, F., Wei, X., Jiao, Y., Li, Z., Niu, Z., Zhou, Y., Li, X., Li, H., Zhao, T., Liu, J., Li, H., Lu, Y., Kong, F., and Liu, B. (2023). GmEID1 modulates light signaling through the Evening Complex to control flowering time and yield in soybean. Proc Natl Acad Sci U S A 120, e2212468120. Rana, R.M., Dong, S., Tang, H., Ahmad, F., and Zhang, H. (2012). Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). J. Exp. Bot. 63, 6003-6016. Reindl, A., Schöffl, F., Schell, J., Koncz, C., and Bakó, L. (1997). hosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant physiology, 115, 93–100. Saeki, Y. (2017). Ubiquitin recognition by the proteasome. J. Biochem. 161, 113-124. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A. 103, 18822-18827. Satyal, S.H., Chen, D., Fox, S.G., Kramer, J.M., and Morimoto, R.I. (1998). Negative regulation of the heat shock transcriptional response by HSBP1. Genes & development 12, 1962–1974. Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., and von Koskull-Doring, P. (2006). The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 60, 759-772. Sharma, S., Prasad, A., Sharma, N., and Prasad, M. (2021). Role of ubiquitination enzymes in abiotic environmental interactions with plants. Int. J. Biol. Macromol. 181, 494-507. Tai, L.J., McFall, S.M., Huang, K., Demeler, B., Fox, S.G., Brubaker, K., Radhakrishnan, I., and Morimoto, R.I. (2002). Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain. J. Biol. Chem. 277, 735-745. Tiwari, L.D., Kumar, R., Sharma, V., Sahu, A.K., Sahu, B., Naithani, S.C., and Grover, A. (2021). Stress and development phenotyping of Hsp101 and diverse other Hsp mutants of Arabidopsis thaliana. J. Plant Biochem. Biotechnol. 30, 889-905. Wang, P., Zhou, Z., Hu, A., Ponte de Albuquerque, C., Zhou, Y., Hong, L., Sierecki, E., Ajiro, M., Kruhlak, M., Harris, C., Guan, K.L., Zheng, Z.M., Newton, A.C., Sun, P., Zhou, H., and Fu, X.D. (2014). Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. Mol. Cell 54, 378-391. Wang, Y., and Yang, M. (2014). Loss-of-function mutants and overexpression lines of the Arabidopsis cyclin CYCA1;2/Tardy Asynchronous Meiosis exhibit different defects in prophase-i meiocytes but produce the same meiotic products. PLoS One 9, e113348. Weng, M., Yang, Y., Feng, H., Pan, Z., Shen, W.H., Zhu, Y., and Dong, A. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37, 2128-2138. Xia, R., Jia, H., Fan, J., Liu, Y., and Jia, J. (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol. 10, e1001238. Xiang, Y., Sapir, T., Rouillard, P., Ferrand, M., and Jimenez-Gomez, J.M. (2022). Interaction between photoperiod and variation in circadian rhythms in tomato. BMC Plant Biol. 22, 187. Xie, J., Jin, Y., and Wang, G. (2019). The role of SCF ubiquitin-ligase complex at the beginning of life. Reprod Biol Endocrinol 17, 101. Yeh, C.H., Kaplinsky, N.J., Hu, C., and Charng, Y.Y. (2012). Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 195, 10-23. Yoo, C.Y., Miura, K., Jin, J.B., Lee, J., Park, H.C., Salt, D.E., Yun, D.J., Bressan, R.A., and Hasegawa, P.M. (2006). SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol. 142, 1548-1558. Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J.M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schoffl, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286, 321-332. Zhang, H., Zhou, J.F., Kan, Y., Shan, J.X., Ye, W.W., Dong, N.Q., Guo, T., Xiang, Y.H., Yang, Y.B., Li, Y.C., Zhao, H.Y., Yu, H.X., Lu, Z.Q., Guo, S.Q., Lei, J.J., Liao, B., Mu, X.R., Cao, Y.J., Yu, J.J., Lin, Y., and Lin, H.X. (2022). A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376, 1293-1300. Zhang, Y., Lai, X., Yang, S., Ren, H., Yuan, J., Jin, H., Shi, C., Lai, Z., and Xia, G. (2021). Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance. Sci Rep 11, 1713. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.L., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Muller, C., Peng, S., Penuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114, 9326-9331. Zhou, Y.C., Dieterle, M., Buche, C., and Kretsch, T. (2002). The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol. 128, 1098-1108. Zhuang, L., Cao, W., Wang, J., Yu, J., Yang, Z., and Huang, B. (2018). Characterization and Functional Analysis of FaHsfC1b from Festuca arundinacea Conferring Heat Tolerance in Arabidopsis. Int J Mol Sci 19. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95780 | - |
| dc.description.abstract | 隨著全球暖化日益嚴重,了解植物耐熱性與其在高溫下的調控機制也越發重要。在過往的研究中顯示,植物主要會倚賴由大量轉錄因子所組成的熱休克反應來應對高溫逆境,同時其中的各個重要蛋白的轉譯後修飾作用在熱逆境調控中也扮演了重要的角色,如泛素化、類小泛素化修飾、磷酸化、組蛋白修飾。前人研究中發現SCF E3 ligase的組成蛋白之一,F-box 蛋白EID1的突變株有著較高的植物耐熱性,但詳細的機制仍尚未闡明。在本篇論文中,我發現eid1突變株有著較弱的短期後天耐熱性,且發現EID1能和HSBP及HSA32相互作用,同時HSBP位於EID1的下游。更進一步研究發現,EID1能夠透過穩定HSBP蛋白、影響HSBP的次細胞定位、並影響最終下游Hsp70和Hsp101的基因轉錄量。此外,初步研究結果發現雖然EID1可以增強HSBP的泛素化程度,但並不會導致HSBP透過26S proteasome降解,因此泛素化如何調控HSBP的功能,仍需更多證據才能證明。最後,我們的研究結果證實了EID1能夠透過正向調控HSBP,負向調控短期後天耐熱性下的Hsp70和Hsp101的轉錄量。 | zh_TW |
| dc.description.abstract | As global warming intensifies, understanding plant heat tolerance and their regulatory mechanisms under high temperatures becomes increasingly important. Previous research has shown that plants primarily rely on a heat shock response (HSR) involving numerous transcription factors to cope with heat stress. However, post-translational modifications (PTMs) of key proteins, such as ubiquitination, SUMOylation, phosphorylation, and histone modifications, also play crucial roles in heat stress regulation. Previous studies found that mutations in EID1, an F-box protein component of the SCF E3 ligase complex, result in enhanced plant heat tolerance with unknown mechanisms. In this study, I discovered that eid1 mutants exhibit reduced short-term acquired thermotolerance (SAT). Additionally, I found that EID1 interacts with HSBP and HSA32, with HSBP acting downstream of EID1. Further investigations revealed that EID1 positively regulates HSBP by stabilizing its protein levels and influencing its subcellular localization. These actions ultimately affect the transcription levels of downstream genes Hsp70 and Hsp101. Although EID1 increased HSBP ubiquitination in my preliminary analysis, it did not cause HSBP degradation via the 26S proteasome-mediated pathway. Further information is required to determine whether HSBP function is connected to its ubiquitination levels. Finally, our findings confirm that EID1 positively regulates HSBP, thereby lowering the transcription levels of Hsp70 and Hsp101 during short-term acquired thermotolerance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:23:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-16T16:23:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Abbreviations vi Contents ix Contents of Table and Figures xii Contents of Appendix and Supplemental Figures xiii Chapter 1. Introduction 1 1-1. Heat stress and heat shock 1 1-2. Heat shock response 3 1-3. Heat shock factor binding protein (HSBP) 6 1-4. Post-translational modification in plant thermotolerance 7 1-5. Ubiquitination and its role in heat stress 9 1-6. Recent research of EID1 or EID1-like proteins in plants 11 1-7. Research objectives 13 Chapter 2. Materials and Methods 15 2-1. Plant materials and growth conditions 15 2-2. Construction of plasmids 15 2-3. Generation of transgenic lines 16 2-4. Thermotolerance assay 17 2-5. Yeast two-hybrid assay 18 2-6. Plant fluorescence microscopy 19 2-7. Bimolecular fluorescence complementation assay 20 2-8. Immunoblotting 20 2-9. Co-immunoprecipitation 22 2-10. Ubiquitination assay 23 2-11. Cell-free degradation assay 24 2-12. Fractionation assay 24 2-13. RNA extraction, cDNA synthesis, and real-time quantitative polymerase (RT-qPCR) 26 Chapter 3. Results 28 3-1. Characterization of the EID1 T-DNA insertion lines 28 3-2. Mutation of EID1 reduces short-term acquired thermotolerance of seedlings 28 3-3. EID1 transcripts are induced by prolonged heat stress 30 3-4. EID1 interacts with HSBP and HSA32 31 3-5. HSBP is epistatic to EID1 in SAT 32 3-6. EID1 can stabilize HSBP protein in vivo 33 3-7. EID1 might ubiquitylate HSBP through K48-linkage ubiquitination in plants 34 3-8. EID1 affects the subcellular localizations of HSBP and the HSBP-regulated binding activity of HsfA2 35 3-9. The transcript and protein levels of Hsps are regulated by EID1 37 Chapter 4. Discussion 39 4-1. The difference between hypocotyl and root elongation under heat stress 40 4-2. Overexpression of EID1 was not able to complement the defect in eid1 41 4-3. The possible function of EID1 in stabilizing target proteins 42 4-4. The conflict between the SAT phenotype and molecular evidence of eid1 mutant 43 4-5. The possible role of EID1 in light and temperature response 44 Table 46 Figures 48 References 85 | - |
| dc.language.iso | en | - |
| dc.title | 阿拉伯芥F-box蛋白EID1透過調控熱休克因子結合蛋白影響後天耐熱性 | zh_TW |
| dc.title | Arabidopsis F-box protein EID1 regulates acquired thermotolerance through modifying HEAT SHOCK FACTOR BINDING PROTEIN | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 靳宗洛;常怡雍;葉靖輝 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Luo Jinn;Yee-Yung Charng;Ching-Hui Yeh | en |
| dc.subject.keyword | E3 泛素化連接酶,熱逆境,熱休克反應,短期後天耐熱性, | zh_TW |
| dc.subject.keyword | E3 ubiquitin ligase,heat stress,heat shock response,short-term acquired thermotolerance, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202402554 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-29 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
