Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝佳倩zh_TW
dc.contributor.advisorChia-Chien Hsiehen
dc.contributor.author張琬笙zh_TW
dc.contributor.authorWan-Sheng Changen
dc.date.accessioned2024-09-16T16:22:00Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation黃沛縈 (2023)。探討Lunasin在肥胖微環境下對RAW264.7細胞與EL-4 T細胞免疫反應之影響 (為出版碩士論文)。國立臺灣師範大學,台北市。
黃靖雅 (2021)。Lunasin對C2C12肌小管細胞期發炎反應與葡萄糖利用之探討 (為出版碩士論文)。國立臺灣師範大學,台北市。

Adegunsoye, A., & Balachandran, J. (2015). Inflammatory response mechanisms exacerbating hypoxemia in coexistent pulmonary fibrosis and sleep apnea. Mediators of inflammation, 2015(1), 510105.
Adler, K. B., Fischer, B. M., Wright, D. T., Cohn, L. A., & Becker, S. (1994). Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Annals of the New York Academy of Sciences, 725(1), 128-145.
Akhurst, R. J. (2017). Targeting TGF-β signaling for therapeutic gain. Cold Spring Harbor perspectives in biology, 9(10), a022301.
Alaswad, A. A., & Krishnan, H. B. (2016). Immunological investigation for the presence of lunasin, a chemopreventive soybean peptide, in the seeds of diverse plants. Journal of agricultural and food chemistry, 64(14), 2901-2909.
Al Heialy, S., Gaudet, M., Ramakrishnan, R. K., Mogas, A., Salameh, L., Mahboub, B., & Hamid, Q. (2020). Contribution of IL-17 in steroid hyporesponsiveness in obese asthmatics through dysregulation of glucocorticoid receptors α and β. Frontiers in immunology, 11, 1724.
Alisson-Silva, F., Freire-de-Lima, L., Donadio, J. L., Lucena, M. C., Penha, L., Sa-Diniz, J. N., Dias, W. B., & Todeschini, A. R. (2013). Increase of O-glycosylated oncofetal fibronectin in high glucose-induced epithelial-mesenchymal transition of cultured human epithelial cells. PLoS One, 8(4), e60471.
Alves de Souza, S. M., B. Hernandez-Ledesma and T. L. F. de Souza (2022). Lunasin as a Promising Plant-Derived Peptide for Cancer Therapy. Int J Mol Sci 23(17).
Antoniades, C., Antonopoulos, A. S., Tousoulis, D., & Stefanadis, C. (2009). Adiponectin: from obesity to cardiovascular disease. Obesity reviews, 10(3), 269-279.
Antonioli, L., V. Caputi, M. Fornai, C. Pellegrini, D. Gentile, M. C. Giron, G. Orso, N. Bernardini, C. Segnani and C. Ippolito (2019). "Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity. International Journal of Obesity 43(2): 331-343.
Antonopoulos, A. S., & Tousoulis, D. (2017). The molecular mechanisms of obesity paradox. Cardiovascular research, 113(9), 1074-1086.
Armstrong, L., Medford, A. R., Uppington, K. M., Robertson, J., Witherden, I. R., Tetley, T. D., & Millar, A. B. (2004). Expression of functional toll-like receptor-2 and-4 on alveolar epithelial cells. American journal of respiratory cell and molecular biology, 31(2), 241-245.
Atochina, E. N., Beers, M. F., Tomer, Y., Scanlon, S. T., Russo, S. J., Panettieri, R. A., & Haczku, A. (2003). Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respiratory research, 4, 1-12.
Baylis, D., Bartlett, D. B., Patel, H. P., & Roberts, H. C. (2013). Understanding how we age: insights into inflammaging. Longevity & healthspan, 2, 1-8.
Beutler, B., & Rietschel, E. T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nature reviews immunology, 3(2), 169-176.
Bhatt, S. P., Guleria, R., & Kabra, S. K. (2021). Metabolic alterations and systemic inflammation in overweight/obese children with obstructive sleep apnea. PLoS One, 16(6), e0252353.
Bissonnette, E. Y., J. F. Lauzon-Joset, J. S. Debley and S. F. Ziegler (2020). Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Frontiers in Immunology, 11: 583042.
Blanco, O., & Pérez-Gil, J. (2007). Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. European journal of pharmacology, 568(1-3), 1-15.
Bleau, C., Karelis, A. D., St‐Pierre, D. H., & Lamontagne, L. (2015). Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low‐grade inflammation and the development of obesity and diabetes. Diabetes/metabolism research and reviews, 31(6), 545-561.
Bojková, B., Winklewski, P. J., & Wszedybyl-Winklewska, M. (2020). Dietary fat and cancer—which is good, which is bad, and the body of evidence. International journal of molecular sciences, 21(11), 4114.
Botella-Carretero, J. I., Alvarez-Blasco, F., Villafruela, J. J., Balsa, J. A., Vázquez, C., & Escobar-Morreale, H. F. (2007). Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clinical Nutrition, 26(5), 573-580.
Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol, 2014 Jan 10;4:173.
Cantelli, G., Crosas-Molist, E., Georgouli, M., & Sanz-Moreno, V. (2017, February). TGFΒ-induced transcription in cancer. Seminars in cancer biology, (Vol. 42, pp. 60-69). Academic Press.
Castranova, V., Rabovsky, J., Tucker, J. H., & Miles, P. R. (1988). The alveolar type II epithelial cell: a multifunctional pneumocyte. Toxicology and applied pharmacology, 93(3), 472-483.
Cavalera, M., Wang, J., & Frangogiannis, N. G. (2014). Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Translational Research, 164(4), 323-335.
Chatterjee, C., Gleddie, S., & Xiao, C. W. (2018). Soybean bioactive peptides and their functional properties. Nutrients, 10(9), 1211.
Chavez, J. A., & Summers, S. A. (2003). Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Archives of biochemistry and biophysics, 419(2), 101-109.
Cheng, P., S. Li and H. Chen (2021). Macrophages in Lung Injury, Repair, and Fibrosis. Cells 10(2)
Cignarelli, A., Genchi, V. A., Perrini, S., Natalicchio, A., Laviola, L., & Giorgino, F. (2019). Insulin and insulin receptors in adipose tissue development. International journal of molecular sciences, 20(3), 759.
Cimini, F. A., Barchetta, I., Carotti, S., Bertoccini, L., Baroni, M. G., Vespasiani-Gentilucci, U., Cavallo, M.-G., & Morini, S. (2017). Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World journal of gastroenterology, 23(19), 3407.
Coker, R. K., & Laurent, G. J. (1997). Anticytokine approaches in pulmonary fibrosis: bringing factors into focus. Thorax, 52(3), 294-296.
Cooper, J. R., M. B. Abdullatif, E. C. Burnett, K. E. Kempsell, F. Conforti, H. Tolley, J. E. Collins and D. E. Davies (2016). Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype. PLoS One, 11(10): e0164438.
Cosio, M. G., Saetta, M., & Agusti, A. (2009). Immunologic aspects of chronic obstructive pulmonary disease. New England Journal of Medicine, 360(23), 2445-2454.
Dalleywater, W., Powell, H. A., Hubbard, R. B., & Navaratnam, V. (2015). Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis. Chest, 147(1), 150-156.
Dan, N., Samanta, K., & Almoazen, H. (2020). An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children, 7(12), 307.
de Candia, P., Prattichizzo, F., Garavelli, S., Alviggi, C., La Cava, A., & Matarese, G. (2021). The pleiotropic roles of leptin in metabolism, immunity, and cancer. Journal of Experimental Medicine, 218(5), e20191593.
Dheda, K., Chang, J. S., Lala, S., Huggett, J. F., Zumla, A., & Rook, G. A. W. (2008). Gene expression of IL17 and IL23 in the lungs of patients with active tuberculosis. Thorax, 63(6), 566-568.
Dia, V. P., & de Mejia, E. G. (2011). Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Molecular nutrition & food research, 55(4), 623-634.
Dia, V. P., & de Mejia, E. G. (2011). Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κB signaling. Cancer letters, 313(2), 167-180.
Dia, V. P., Wang, W., Oh, V. L., Lumen, B. O. d., & de Mejia, E. G. (2009). Isolation, purification and characterisation of lunasin from defatted soybean flour and in vitro evaluation of its anti-inflammatory activity. Food Chemistry, 114(1), 108-115.
Dimasuay, K. G., Berg, B., Schaunaman, N., Holguin, F., Winnica, D., & Chu, H. W. (2023). High-fat diet and palmitic acid amplify airway type 2 inflammation. Frontiers in Allergy, 4, 1193480.
Divo, M., Cote, C., de Torres, J. P., Casanova, C., Marin, J. M., Pinto-Plata, V., Zulueta, J., Cabrera, C., Zagaceta, J., & Hunninghake, G. (2012). Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 186(2), 155-161.
Dixon, A. E. and U. Peters (2018). The effect of obesity on lung function. Expert Review of Respiratory Medicine, 12(9): 755-767.
Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Frontiers in Immunology, 9, 2649.
Ellulu, M. S., I. Patimah, H. Khaza'ai, A. Rahmat and Y. Abed (2017). Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science, 13(4): 851-863.
Erickson, K. L., Medina, E. A., & Hubbard, N. E. (2000). Micronutrients and innate immunity. The Journal of infectious diseases, 182(Supplement_1), S5-S10.
Fabricius, P., & Lange, P. (2003). Diet and lung cancer. Monaldi Archives for Chest Disease= Archivio Monaldi per le Malattie del Torace, 59(3), 207-211.
Fernández-Tomé, S., Ramos, S., Cordero-Herrera, I., Recio, I., Goya, L., & Hernández-Ledesma, B. (2014). In vitro chemo-protective effect of bioactive peptide lunasin against oxidative stress in human HepG2 cells. Food Research International, 62, 793-800.
Fernandez-Tome, S., Xu, F., Han, Y., Hernandez-Ledesma, B., & Xiao, H. (2020). Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation. International Journal of Molecular Sciences, 21(2).
Fisher, J., Kolb, M., Algamdi, M., Morisset, J., Johannson, K., Shapera, S., Wilcox, P., To, T., Sadatsafavi, M., & Manganas, H. (2019). Baseline characteristics and comorbidities in the CAnadian REgistry for Pulmonary Fibrosis. BMC pulmonary medicine, 19, 1-9.
French, C. A., Cibas, E. S., & Ducatman, B. S. (2009). Respiratory tract. Cytology: diagnostic principles and clinical correlates, 3, 65-103.
Galvez, A. F., & De Lumen, B. O. (1999). A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nature Biotechnology, 17(5), 495-500.
García-Nebot, M. J., Recio, I., & Hernández-Ledesma, B. (2014). Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food and Chemical Toxicology, 65, 155-161.
Gardai, S. J., Xiao, Y. Q., Dickinson, M., Nick, J. A., Voelker, D. R., Greene, K. E., & Henson, P. M. (2003). By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell, 115(1), 13-23.
Gehr, P. (1984). Respiratory tract structure and function. Toxicol Environ Health, 13(2-3): 235-249.
Ghildyal, R., Hartley, C., Varrasso, A., Meanger, J., Voelker, D. R., Anders, E. M., & Mills, J. (1999). Surfactant protein A binds to the fusion glycoprotein of respiratory syncytial virus and neutralizes virion infectivity. Journal of Infectious Diseases, 180(6), 2009-2013.
Gong, M. N., Bajwa, E. K., Thompson, B. T., & Christiani, D. C. (2010). Body mass index is associated with the development of acute respiratory distress syndrome. Thorax, 65(1), 44-50.
Gu, L., Ye, P., Li, H., Wang, Y., Xu, Y., Tian, Q., Lei, G., Zhao, C., Gao, Z., Zhao, W., & Tan, S. (2019). Lunasin attenuates oxidant-induced endothelial injury and inhibits atherosclerotic plaque progression in ApoE (-/-) mice by up-regulating heme oxygenase-1 via PI3K/Akt/Nrf2/ARE pathway. FASEB Journal, 33(4), 4836-4850.
Gui, X., Chen, H., Cai, H., Sun, L., & Gu, L. (2018). Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochemical and Biophysical Research Communications, 498(3), 660-666.
Han, H., S. I. Chung, H. J. Park, E. Y. Oh, S. R. Kim, K. H. Park, J. H. Lee and J. W. Park (2021). Obesity-induced Vitamin D Deficiency Contributes to Lung Fibrosis and Airway Hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 64(3): 357-367.
Han, M. W., Kim, S. H., Oh, I., Kim, Y. H., & Lee, J. (2021). Obesity can contribute to severe persistent allergic rhinitis in children through leptin and interleukin-1β. International Archives of Allergy and Immunology, 182(6), 546-552.
Hartshorn, K. L., White, M. R., Voelker, D. R., Coburn, J., Zaner, K., & Crouch, E. C. (2000). Mechanism of binding of surfactant protein D to influenza A viruses: importance of binding to haemagglutinin to antiviral activity. Biochemical Journal, 351(2), 449-458.
Hasan, M., N. C. Paul, S. K. Paul, A. S. M. Saikat, H. Akter, M. Mandal and S. S. Lee (2022). Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules, 27(5).
Hawco, M. W., Coolbear, K. P., Davis, P. J., & Keough, K. M. (1981). Exclusion of fluid lipid during compression of monolayers of mixtures of dipalmitoylphosphatidylcholine with some other phosphatidylcholines. Biochimica et Biophysica Acta (BBA)-Biomembranes, 646(1), 185-187.
He, W., J. Sun, Q. Zhang, Y. Li, Y. Fu, Y. Zheng and X. Jiang (2020). Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-kappaB axis. The Journal of Leukocyte Biology ,108(6): 1747-1764.
Hiemstra, P. S., McCray, P. B., Jr., & Bals, R. (2015). The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal, 45(4), 1150-1162.
Herbein, J. F., & Wright, J. R. (2001). Enhanced clearance of surfactant protein D during LPS-induced acute inflammation in rat lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 281(1), L268-L277.
Hernández-Ledesma, B., Hsieh, C. C., & de Lumen, B. O. (2009). Lunasin, a novel seed peptide for cancer prevention. Peptides, 30(2), 426-430.
Hiemstra, P. S., P. B. McCray, Jr. and R. Bals (2015). The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal, 45(4): 1150-1162.
Hornung, F., Rogal, J., Loskill, P., Löffler, B., & Deinhardt-Emmer, S. (2021). The inflammatory profile of obesity and the role on pulmonary bacterial and viral infections. International Journal of Molecular Sciences, 22(7), 3456.
Hsieh, C. C., Martinez-Villaluenga, C., de Lumen, B. O., & Hernandez-Ledesma, B. (2018). Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. Journal of the Science of Food and Agriculture, 98(6), 2070-2079.
Hsieh, C. C., Wang, C. H., & Huang, Y. S. (2016). Lunasin Attenuates Obesity-Associated Metastasis of 4T1 Breast Cancer Cell through Anti-Inflammatory Property. International Journal of Molecular Sciences, 17(12).
Hsieh, C. C., Wang, Y. F., Lin, P. Y., Peng, S. H., & Chou, M. J. (2021). Seed peptide lunasin ameliorates obesity-induced inflammation and regulates immune responses in C57BL/6J mice fed high-fat diet. Food and Chemical Toxicology, 147, 111908.
Hsieh, C. C., Wu, C. H., Peng, S. H., & Chang, C. H. (2023). Seed-derived peptide lunasin suppressed breast cancer cell growth by regulating inflammatory mediators, aromatase, and estrogen receptors. Food & Nutrition Research, 67.
Hsieh, L. S., Lu, M. S., & Chiang, W. D. (2022). Identification and characterization of immunomodulatory peptides from pepsin–soy protein hydrolysates. Bioresources and Bioprocessing, 9(1), 39.
Hsu, H. S., Liu, C. C., Lin, J. H., Hsu, T. W., Hsu, J. W., Su, K., & Hung, S. C. (2017). Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Scientific Reports, 7(1), 14272.
Huang, P. Y., Chiang, C. C., Huang, C. Y., Lin, P. Y., Kuo, H. C., Kuo, C. H., & Hsieh, C. C. (2023). Lunasin ameliorates glucose utilization in C2C12 myotubes and metabolites profile in diet-induced obese mice benefiting metabolic disorders. Life Sciences, 333, 122180.
Huang, P.-Y., & Hsieh, C.-C. (2023). Immunomodulatory effects of seed peptide lunasin in RAW264.7 macrophages in obese microenvironments. Journal of Functional Foods, 108.
Ihara, H., Y. Mitsuishi, M. Kato, F. Takahashi, K. Tajima, T. Hayashi, M. Hidayat, W. Winardi, A. Wirawan, D. Hayakawa, K. Kanamori, N. Matsumoto, T. Yae, T. Sato, S. Sasaki, K. Takamochi, Y. Suehara, D. Ogura, S. I. Niwa, K. Suzuki and K. Takahashi (2020). Nintedanib inhibits epithelial-mesenchymal transition in A549 alveolar epithelial cells through regulation of the TGF-beta/Smad pathway. Respiratory Investigation, 58(4): 275-284.
Invernizzi, R., C. M. Lloyd and P. L. Molyneaux (2020). Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology, 160(2): 171-182.
Inzucchi, S. E. (2012). Diagnosis of diabetes. New England Journal of Medicine, 367(6), 542-550.
Jäkel, A., Clark, H., Reid, K. B., & Sim, R. B. (2010). Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D. Protein & cell, 1, 563-572.
Janssen, W. J., McPhillips, K. A., Dickinson, M. G., Linderman, D. J., Morimoto, K., Xiao, Y. Q., Oldham, K. M., Vandivier, R. W., Henson, P. M., & Gardai, S. J. (2008). Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRPα. American Journal of Respiratory and Critical Care Medicine, 178(2), 158-167.
Jawed, S., Atta, K., Zia, S., & Altaf, B. (2021). Relationship of surfactant protein-D with random blood glucose and extra pulmonary infections in type-2 diabetes mellitus. Journal of the Pakistan Medical Association, 71(1(B)), 195-200.
Jenkins, R. G., Su, X., Su, G., Scotton, C. J., Camerer, E., Laurent, G. J., Davis, G. E., Chambers, R. C., Matthay, M. A., & Sheppard, D. (2006). Ligation of protease-activated receptor 1 enhances α v β 6 integrin–dependent TGF-β activation and promotes acute lung injury. The Journal of Clinical Investigation, 116(6), 1606-1614.
Jia, S., Zhang, S., Yuan, H., & Chen, N. (2015). Lunasin inhibits cell proliferation via apoptosis and reduces the production of proinflammatory cytokines in cultured rheumatoid arthritis synovial fibroblasts. BioMed Research International, 2015, 346839.
Jiang, F., Yang, Y., Xue, L., Li, B., & Zhang, Z. (2017). 1α, 25-dihydroxyvitamin D3 attenuates TGF-β-induced pro-fibrotic effects in human lung epithelial cells through inhibition of epithelial–mesenchymal transition. Nutrients, 9(9), 980.
John, A. E., C. Joseph, G. Jenkins and A. L. Tatler (2021). COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 302(1): 228-240.
Johnston, R. A., Theman, T. A., & Shore, S. A. (2006). Augmented responses to ozone in obese carboxypeptidase E-deficient mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(1), R126-R133.
Kaufman-Szymczyk, A., Kaczmarek, W., Fabianowska-Majewska, K., & Lubecka-Gajewska, K. (2023). Lunasin and Its Epigenetic Impact in Cancer Chemoprevention. International Journal of Molecular Sciences, 24(11).
Kalluri, R., & Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of clinical investigation, 112(12), 1776-1784.
Katsumiti, A., P. Ruenraroengsak, M. P. Cajaraville, A. J. Thorley and T. D. Tetley (2020). Immortalisation of primary human alveolar epithelial lung cells using a non-viral vector to study respiratory bioreactivity in vitro. Scientific Reports, 10(1): 20486.
Kaur, M., K. B. Gupta, S. Thakur, S. Kaur and M. Dhiman (2020). Parthenium hysterophorus mediated inflammation and hyper-responsiveness via NF-kappaB pathway in human A549 lung cancer cell line. Environ Toxicol, 35(11): 1241-1250.
Kelly, T., W. Yang, C. S. Chen, K. Reynolds and J. He (2008). Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity, 32(9): 1431-1437.
Kennedy, A., Martinez, K., Chuang, C. C., LaPoint, K., & McIntosh, M. (2009). Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. The Journal of Nutrition, 139(1), 1-4.
Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G., & Meshkani, R. (2016). Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Translational Research, 167(1), 228-256.
Kishore, U., Greenhough, T. J., Waters, P., Shrive, A. K., Ghai, R., Kamran, M. F., Bernal, A. L., Reid, K. B., Madan, T., & Chakraborty, T. (2006). Surfactant proteins SP-A and SP-D: structure, function and receptors. Molecular Immunology, 43(9), 1293-1315.
Kishore, U., Wang, J. Y., Hoppe, H. J., & Reid, K. B. (1996). The α-helical neck region of human lung surfactant protein D is essential for the binding of the carbohydrate recognition domains to lipopolysaccharides and phospholipids. Biochemical Journal, 318(2), 505-511.
Kim, K. A., Gu, W., Lee, I. A., Joh, E. H., & Kim, D. H. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE, 7:e47713.
Kim, J. Y., Park, J. Y., Kim, O. Y., Ham, B. M., Kim, H.-J., Kwon, D. Y., Jang, Y., & Lee, J. H. (2010). Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-TOF MS). Journal of Proteome Research, 9(9), 4368-4375.
Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., Sheppard, D., & Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences, 103(35), 13180-13185.
King, T. E., Pardo, A., & Selman, M. (2011). Idiopathic pulmonary fibrosis. The Lancet, 378(9807), 1949-1961.
Kolomaznik, M., Nova, Z., & Calkovska, A. (2017). Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiological Research, 66.
Konrad, D., & Wueest, S. (2014). The gut-adipose-liver axis in the metabolic syndrome. Physiology, 29(5), 304-313.
Korbecki, J. and K. Bajdak-Rusinek (2019). The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflammation Research, 68(11): 915-932.
Krishnan, H. B., & Wang, T. T. (2015). An effective and simple procedure to isolate abundant quantities of biologically active chemopreventive Lunasin Protease Inhibitor Concentrate (LPIC) from soybean. Food Chemistry, 177, 120-126.
Krug, N., Roepcke, S., Lauer, G., Elmlinger, M., & Hohlfeld, J. M. (2011). Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respiratory Research, 12, 1-11
Kusumah, J., & de Mejia, E. G. (2022). Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Research International, 162, 111928.
Kuvat, N., Tanriverdi, H., & Armutcu, F. (2020). The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. The Clinical Respiratory Journal, 14(7), 595-604.
Laflamme, C., Mailhot, G. B., & Pouliot, M. (2017). Age-related decline of the acute local inflammation response: a mitigating role for the adenosine A2A receptor. Aging (Albany NY), 9(10), 2083
Lam, Y., Galvez, A., & de Lumen, B. O. (2003). Lunasin™ suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutrition and Cancer, 47(1), 88-94.
Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial–mesenchymal transition. Nature reviews Molecular Cell Biology, 15(3), 178-196.
Lee, B. C., & Lee, J. (2014). Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(3), 446-462.
Leiva-Juarez, M. M., Kolls, J. K., & Evans, S. E. (2017). Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunology, 11: 21–34.
Li, W., Zhao, R., Wang, X., Liu, F., Zhao, J., Yao, Q., Zhi, W., He, Z., & Niu, X. (2018). Nobiletin-ameliorated lipopolysaccharide-induced inflammation in acute lung injury by suppression of NF-κB pathway in vivo and vitro. Inflammation, 41, 996-1007.
Lieber, M., Todaro, G., Smith, B., Szakal, A., & Nelson‐Rees, W. (1976). A continuous tumor‐cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. International Journal of Cancer, 17(1), 62-70.
Lin, X. and H. Li (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne), 12: 706978.
Liu, Y. L., Chen, B. Y., Nie, J., Zhao, G. H., Zhuo, J. Y., Yuan, J., Li, Y. C., Wang, L. L., & Chen, Z. W. (2020). Polydatin prevents bleomycin-induced pulmonary fibrosis by inhibiting the TGF-beta/Smad/ERK signaling pathway. Experimental and Therapeutic Medicine, 20(5), 62.
Lopez-Cano, C., Lecube, A., Garcia-Ramirez, M., Munoz, X., Sanchez, E., Seminario, A., Hernandez, M., Ciudin, A., Gutierrez, L., Hernandez, C., & Simo, R. (2017). Serum Surfactant Protein D as a Biomarker for Measuring Lung Involvement in Obese Patients With Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 102(11), 4109-4116.
Lv, J., Wang, Y., & Wei, S. (2023). Regulatory roles of ACSL5 in the anti-tumor function of palmitic acid (C16: 0) via the ERK signaling pathway. European Journal of Histochemistry: EJH, 67(4).
Lv, Y. Q., Dhlamini, Q., Chen, C., Li, X., Bellusci, S., & Zhang, J. S. (2021). FGF10 and lipofibroblasts in lung homeostasis and disease: insights gained from the adipocytes. Frontiers in Cell and Developmental Biology, 9, 645400.
Mafort, T. T., Rufino, R., Costa, C. H., & Lopes, A. J. (2016). Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidisciplinary Respiratory Medicine, 11, 1-11.
Mancuso, P. (2010). Obesity and lung inflammation. Journal of Applied Physiology, 108(3), 722-728.
Matarese, G. (2023). The link between obesity and autoimmunity. Science, 379(6639), 1298-1300.
Mason, R. J. (2006). Biology of alveolar type II cells. Respirology, 11, S12-S15.
McConnell EJ, Devapatla B, Yaddanapudi K, Davis KR. (2015). The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget. Mar 10;6(7):4649-62.
Milad, N. and M. C. Morissette (2021). Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. European Respiratory Review, 30(162).
Mingarro, I., Lukovic, D., Vilar, M., & Perez-Gil, J. (2008). Synthetic pulmonary surfactant preparations: new developments and future trends. Current Medicinal Chemistry, 15(4), 393-403.
Moldoveanu, B., P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, M. Saad and J. Yu (2008). Inflammatory mechanisms in the lung. Journal of Inflammation Research, 1-11.
Moré, J. M., Voelker, D. R., Silveira, L. J., Edwards, M. G., Chan, E. D., & Bowler, R. P. (2010). Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulmonary Medicine, 10, 1-8.
Moustakas, A., & Heldin, P. (2014). TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(8), 2621-2634.
Murphy, E. A., Velazquez, K. T., & Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Current Opinion in Clinical Nutrition & Metabolic Care, 18(5), 515-520.
Nieberler, M., Reuning, U., Reichart, F., Notni, J., Wester, H.-J., Schwaiger, M., Weinmüller, M., Räder, A., Steiger, K., & Kessler, H. (2017). Exploring the role of RGD-recognizing integrins in cancer. Cancers, 9(9), 116.
Nieto-Veloza, A., Hong, S., Reeder, M., Sula, M. J., D'Souza, D. H., Zhong, Q., & Dia, V. P. (2023). Lunasin reduces the susceptibility of IL-10 deficient mice to inflammatory bowel disease and modulates the activation of the NLRP3 inflammasome. Journal of Nutritional Biochemistry 119, 109383.
Nikolich-Zugich, J. (2018). The twilight of immunity: emerging concepts in aging of the immune system. Nature Immunology, 19(1), 10-19.
Nova, Z., H. Skovierova and A. Calkovska (2019). Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. International Journal of Molecular Sciences, 20(4).
Nova, Z., H. Skovierova, J. Strnadel, E. Halasova and A. Calkovska (2020). Short-Term versus Long-Term Culture of A549 Cells for Evaluating the Effects of Lipopolysaccharide on Oxidative Stress, Surfactant Proteins and Cathelicidin LL-37. International Journal of Molecular Sciences, 21(3).
Odani, S., Koide, T., & Ono, T. (1987). Amino acid sequence of a soybean (Glycine max) seed polypeptide having a poly (L-aspartic acid) structure. Journal of Biological Chemistry, 262(22), 10502-10505.
Ortega, F. J., Pueyo, N., Moreno-Navarrete, J. M., Sabater, M., Rodriguez-Hermosa, J. I., Ricart, W., Tinahones, F. J., & Fernandez-Real, J. M. (2013). The lung innate immune gene surfactant protein-D is expressed in adipose tissue and linked to obesity status. International Journal of Obesity, 37(12), 1532-1538.
Palma, G., G. P. Sorice, V. A. Genchi, F. Giordano, C. Caccioppoli, R. D'Oria, N. Marrano, G. Biondi, F. Giorgino and S. Perrini (2022). Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. International Journal of Molecular Sciences, 23(13).
Paterson, S., Fernández-Tomé, S., Galvez, A., & Hernández-Ledesma, B. (2023). Evaluation of the multifunctionality of soybean proteins and peptides in immune cell models. Nutrients, 15(5), 1220.
Park, I. H., Kang, J. H., Shin, J. M., & Lee, H. M. (2016). Trichostatin A inhibits epithelial mesenchymal transition induced by TGF-β1 in airway epithelium. PloS one, 11(8), e0162058.
Park, J. E., Pichiah, P. T., & Cha, Y. S. (2018). Vitamin D and metabolic diseases: growing roles of vitamin D. Journal of Obesity & Metabolic Syndrome, 27(4), 223.
Park, J. H., Jeong, H. J., & Lumen, B. O. D. (2007). In vitro digestibility of the cancer-preventive soy peptides lunasin and BBI. Journal of Agricultural and Food Chemistry, 55(26), 10703-10706.
Park, Y. H., Oh, E. Y., Han, H., Yang, M., Park, H. J., Park, K. H., Lee, J.-H., & Park, J.-W. (2019). Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Experimental & Molecular Medicine, 51(5), 1-12.
Pastva, A. M., J. R. Wright and K. L. Williams (2007). Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proceedings of the American Thoracic Society, 4(3): 252-257.
Pasrija, R. and M. Naime (2021). The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. International Immunopharmacology, 90: 107225.
Perez-Gil, J. (2008). Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochimica et Biophysica Acta, 1778(7-8), 1676-1695.
Perret, J., McDonald, C., & Apostolopoulos, V. (2017). Elevated serum interleukin-5 levels in severe chronic obstructive pulmonary disease. Acta Biochimica et Biophysica Sinica, 49(6), 560-563.
Peters, U., B. T. Suratt, J. H. T. Bates and A. E. Dixon (2018). Beyond BMI: Obesity and Lung Disease. Chest, 153(3): 702-709.
Puttur, F., Gregory, L. G., & Lloyd, C. M. (2019). Airway macrophages as the guardians of tissue repair in the lung. Immunology and Cell Biology, 97(3), 246-257.
Quintero, O. A., & Wright, J. R. (2002). Clearance of surfactant lipids by neutrophils and macrophages isolated from the acutely inflamed lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282(2), L330-L339.
Raghu, G., Collard, H. R., Egan, J. J., Martinez, F. J., Behr, J., Brown, K. K., Colby, T. V., Cordier, J.-F., Flaherty, K. R., & Lasky, J. A. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine, 183(6), 788-824.
Rautureau, G., Morio, B., Guibert, S., Lefevre, C., Perrier, J., Alves, A., Chauvin, M., Pinteur, C., Monet, M., & Godet, M. Dietary obesity in mice is associated with lipid deposition and metabolic shifts in the lungs sharing features with the liver., 2021, 11. DOI: 10.1038/s41598-021-88097-8.
Richeldi, L., Collard, H. R., & Jones, M. G. (2017). Idiopathic pulmonary fibrosis. The Lancet, 389(10082), 1941-1952.
Rodriguez-Carrio, J., Alperi-Lopez, M., Lopez, P., Ballina-García, F. J., & Suarez, A. (2016). Non-esterified fatty acids profiling in rheumatoid arthritis: associations with clinical features and Th1 response. PLoS One, 11(8), e0159573.
Romieu, I. (2005). Nutrition and lung health [State of the Art]. The International Journal of Tuberculosis and Lung Disease, 9(4), 362-374.
Roth, C. L., Kratz, M., Ralston, M. M., & Reinehr, T. (2011). Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism, 60(4), 445-452.
Ryan, S., Arnaud, C., Fitzpatrick, S. F., Gaucher, J., Tamisier, R., & Pépin, J. L. (2019). Adipose tissue as a key player in obstructive sleep apnoea. European Respiratory Review, 28(152).
Sangani, R. G., A. J. Ghio, H. Mujahid, Z. Patel, K. Catherman, S. Wen and J. E. Parker (2021). Outcomes of Idiopathic Pulmonary Fibrosis Improve with Obesity: A Rural Appalachian Experience. Southern Medical Journal, 114(7): 424-431.
Savin, I. A., M. A. Zenkova and A. V. Sen'kova (2022). Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. International Journal of Molecular Sciences, 23(23).
Seber, L. E., Barnett, B. W., McConnell, E. J., Hume, S. D., Cai, J., Boles, K., & Davis, K. R. (2012). Scalable purification and characterization of the anticancer lunasin peptide from soybean. PloS one, 7(4), e35409.
Setrerrahmane, S., Zhang, Y., Dai, G., Lv, J., & Tan, S. (2014). Efficient production of native lunasin with correct N-terminal processing by using the pH-induced self-cleavable Ssp DnaB mini-intein system in Escherichia coli. Applied Biochemistry and Biotechnology, 174, 612-622.
Shen, B., Zhao, C., Chen, C., Li, Z., Li, Y., Tian, Y., & Feng, H. (2017). Picroside II Protects Rat Lung and A549 Cell Against LPS-Induced Inflammation by the NF-kappaB Pathway. Inflammation, 40(3), 752-761.
Shepherd, V. L. (2002). Distinct roles for lung collectins in pulmonary host defense. American Journal of Respiratory Cell and Molecular Biology, 26(3), 257-260.
Shi, Y., Liu, T., Yao, L. I., Xing, Y., Zhao, X., Fu, J., & Xue, X. (2017). Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system. Scientific Reports, 7(1), 3312.
Sideleva, O., Suratt, B. T., Black, K. E., Tharp, W. G., Pratley, R. E., Forgione, P., Dienz, O., Irvin, C. G., & Dixon, A. E. (2012). Obesity and asthma: an inflammatory disease of adipose tissue not the airway. American Journal of Respiratory and Critical Care Medicine, 186(7), 598-605.
Siqueira, J. S., Palacio, T. L. N., Vieira, T. A., Nakandakare-Maia, E. T., Grandini, N. A., Ferron, A. J. T., Francisqueti-Ferron, F. V., & Correa, C. R. (2023). An overview of the complex interaction between obesity and target organ dysfunction: focus on redox-inflammatory state. Nutrient, 48(1).
Sorensen, G. L. (2018). Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med-lausanne, 5, 18.
Stahlman, M. T., Gray, M. E., Hull, W. M., & Whitsett, J. A. (2002). Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult tissues. Journal of Histochemistry & Cytochemistry, 50(5), 651-660.
Suarez, C. J., S. M. Dintzis and C. W. Frevert (2012). Respiratory. Comparative Anatomy and Histology: 121-134.
Sun, K., Tordjman, J., Clément, K., & Scherer, P. E. (2013). Fibrosis and adipose tissue dysfunction. Cell Metabolism, 18(4), 470-477.
Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L., & Gortmaker, S. L. (2011). The global obesity pandemic: shaped by global drivers and local environments. The Lancet, 378(9793), 804-814.
Tabak, C., ARTS, I. C., Smit, H. A., Heederik, D., & Kromhout, D. (2001). Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. American Journal of Respiratory and Critical Care Medicine, 164(1), 61-64.
Tang, Y. T., Y. Y. Huang, J. H. Li, S. H. Qin, Y. Xu, T. X. An, C. C. Liu, Q. Wang and L. Zheng (2018). Alterations in exosomal miRNA profile upon epithelial-mesenchymal transition in human lung cancer cell lines. BMC Genomics 19(1): 802.
Tezuka, H., & Imai, S. (2024). Fine-tuning of mononuclear phagocytes for improved inflammatory responses: role of soybean-derived immunomodulatory compounds. Frontiers in Nutrition, 11, 1399687.
Tchernof, A., & Després, J. P. (2013). Pathophysiology of human visceral obesity: an update. Physiological Reviews. 93:359–404.
Todoric, K., Zhou, H., Zhang, H., Mills, K., Peden, D., & Hernandez, M. (2015). BMI correlates with pollutant-induced interleukin-1 beta in sputum and blood. Annals of Allergy, Asthma & Immunology: official publication of the American College of Allergy, Asthma, & Immunology, 114(3), 251.
Travers, R. L., Motta, A. C., Betts, J. A., Bouloumié, A., & Thompson, D. (2015). The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. International Journal of Obesity, 39(5), 762-769.
Tsalamandris, S., A. S. Antonopoulos, E. Oikonomou, G. A. Papamikroulis, G. Vogiatzi, S. Papaioannou, S. Deftereos and D. Tousoulis (2019). The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Society of Cardiology, 14(1): 50-59.
Tsikis, S., Fligor, S., Hirsch, T., Pan, A., Yu, L., Kishikawa, H., Joiner, M., Mitchell, P., & Puder, M. (2022). Lipopolysaccharide-induced murine lung injury results in long-term pulmonary changes and downregulation of angiogenic pathways. Scientific Reports, 12(1), 10245.
Tsukumo, D. M., Carvalho, B. M., Carvalho-Filho, M. A., & Saad, M. J. (2009). [RETRACTION] Translational research into gut microbiota: new horizons in obesity treatment. Arquivos Brasileiros de Endocrinologia & Metabologia, 53, 139-144.
Tung, C. Y., Lewis, D. E., Han, L., Jaja, M., Yao, S., Li, F., Robertson, M. J., Zhou, B., Sun, J., & Chang, H. C. (2014). Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant. Vaccine, 32(42), 5411-5419.
Vandivier, R. W., Ogden, C. A., Fadok, V. A., Hoffmann, P. R., Brown, K. K., Botto, M., Walport, M. J., Fisher, J. H., Henson, P. M., & Greene, K. E. (2002). Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. The Journal of Immunology, 169(7), 3978-3986.
van Huisstede, A., Rudolphus, A., Cabezas, M. C., Biter, L. U., van de Geijn, G.-J., Taube, C., Hiemstra, P. S., & Braunstahl, G.-J. (2015). Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax, 70(7), 659-667.
Van Iwaarden, J., Pikaar, J., Storm, J., Brouwer, E., Verhoef, J., Oosting, R., Van Golde, L., & Van Strijp, J. (1994). Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochemical Journal, 303(2), 407-411.
Vandivier, R. W., Ogden, C. A., Fadok, V. A., Hoffmann, P. R., Brown, K. K., Botto, M., Walport, M. J., Fisher, J. H., Henson, P. M., & Greene, K. E. (2002). Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. The Journal of Immunology, 169(7), 3978-3986.
Veldhuizen, R., Nag, K., Orgeig, S., & Possmayer, F. (1998). The role of lipids in pulmonary surfactant. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1408(2-3), 90-108.
Vimaleswaran, K. S., Berry, D. J., Lu, C., Tikkanen, E., Pilz, S., Hiraki, L. T., Cooper, J. D., Dastani, Z., Li, R., & Houston, D. K. (2013). Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS medicine, 10(2), e1001383.
von Schéele, I., Larsson, K., & Palmberg, L. (2014). Interactions between alveolar epithelial cells and neutrophils under pro-inflammatory conditions. European Clinical Respiratory Journal, 1(1), 24545.
Wang, F., Li, Y., Shen, Y., Wang, A., Wang, S., & Xie, T. (2013). The functions and applications of RGD in tumor therapy and tissue engineering. International Journal of Molecular Sciences, 14(7), 13447-13462.
Wang, N., Li, C., Gao, X., Huo, Y., Li, Y., Cheng, F., Jiang, F., & Zhang, Z. (2024). Co-exposure to lead and high-fat diet aggravates systemic inflammation in mice by altering gut microbiota and the LPS/TLR4 pathway. Metallomics, 16(5), mfae022.
Watson, A., J. Madsen and H. W. Clark (2020). SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Frontiers in Immunology, 11: 622598.
Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796-1808.
Whitsett, J. A. and T. Alenghat (2015). Respiratory epithelial cells orchestrate pulmonary innate immunity. Nature Immunology, 16(1): 27-35.
Whitsett, J. A., S. E. Wert and T. E. Weaver (2010). Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annual Review of Medicine, 61: 105-119.
Winkler, C., Atochina-Vasserman, E. N., Holz, O., Beers, M. F., Erpenbeck, V. J., Krug, N., Roepcke, S., Lauer, G., Elmlinger, M., & Hohlfeld, J. M. (2011). Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respiratory Research, 12, 1-11.
Woo, Y. D., D. Jeong and D. H. Chung (2021). Development and Functions of Alveolar Macrophages. Molecules and Cells, 44(5): 292-300.
World Health Organization. (2024, March 1). Obesity and overweight. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Wright, J. R. (2005). Immunoregulatory functions of surfactant proteins. Nature Reviews Immunology, 5(1), 58-68.
Yang, H. W., Lee, S. A., Shin, J. M., Park, I. H., & Lee, H. M. (2017). Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Scientific Reports, 7(1), 3486.
Yang X, Zhu J, Tung CY, Gardiner G, Wang Q, Chang HC, Zhou B. (2015). Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs. PLoS One. Feb 3;10(2):e0115330.
Yi, G., Li, H., Liu, M., Ying, Z., Zhang, J., & Liu, X. (2020). Soybean protein‐derived peptides inhibit inflammation in LPS‐induced RAW264. 7 macrophages via the suppression of TLR4‐mediated MAPK‐JNK and NF‐kappa B activation. Journal of Food Biochemistry, 44(8), e13289.
Yu, J., Ni, L., Zhang, X., Zhang, J., Abdel-Razek, O., & Wang, G. (2019). Surfactant Protein D Dampens Lung Injury by Suppressing NLRP3 Inflammasome Activation and NF-kappaB Signaling in Acute Pancreatitis. Shock, 51(5), 557-568.
Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., Chandraker, A., Yuan, X., Pu, W. T., & Roberts, A. B. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952-961.
Zhang, Y. E. (2009). Non-Smad pathways in TGF-β signaling. Cell Research, 19(1), 128-139.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95774-
dc.description.abstract肥胖是過多能量累積造成脂肪組織增加並伴隨發炎反應,長期控制不佳者可能導致肺部纖維化。本研究欲探討在肥胖微環境下,lunasin是否能降低肺泡上皮細胞的發炎反應和纖維化的作用。本研究包含A549細胞以外加葡萄糖與棕櫚酸palmitic acid (PA)做為體外肥胖模式,與動物實驗以高油高果糖飲食誘導小鼠肥胖模式。首先在建立實驗模型的結果中,最終以7 mM正常葡萄糖與35 mM高葡萄糖 、PA 500 μM、lipopolysaccharide (LPS) 10 μg/mL和TGFβ 5 ng/mL外加入培養基中作為肥胖微環境。結果顯示,在發炎模式中,lunasin可抑制由PA或LPS誘發的低糖培養細胞之IL-6和MCP-1分泌;而低劑量的lunasin可抑制由LPS誘發高糖培養細胞之MCP-1和TGFβ分泌。在Surfactant protein (SP)的結果顯示, LPS刺激會減少正常糖培養及增加高糖培養細胞中SPD蛋白表現量,而lunasin則能夠調節其含量。分析可能作用路徑,lunasin可抑制由LPS刺激的NFκB p65的表現。在TGFβ 誘發纖維化模式中,再以刮傷癒合測定細胞遷移能力,並測量epithelial-mesenchymal transition (EMT) marker的表現,結果顯示TGFβ誘導可增加vimentin並降低E-cadherin的表現,而lunasin則無法影響TGFβ刺激後的細胞遷移與EMT表現。在肥胖小鼠實驗中,自小鼠六週大開始餵食實驗飲食,實驗分組包含正常飲食、高油高果糖飲食、腹腔注射lunasin,以及飲食添加lunasin,分析鼠肺臟組織均質液中發炎性細胞激素含量。在22週齡結果顯示,高油高果糖飲食添加lunasin可降低肺臟TNFα和TGFβ的生成。而在33週齡結果中,高油高果糖飲食的肺臟IL-6、IL-1β和IL-17a顯著降低,在腹腔注射lunasin則能提升此細胞激素生成,但飲食補充lunasin則是降低IL-6、IL-1β和TGFβ的生成。綜合上述,lunasin能夠抑制肥胖微環境下發炎肺泡中的促發炎性細胞激素IL-6、MCP-1和TGFβ分泌,且可能是透過抑制NFκB路徑的作用,但對於纖維化的影響則不顯著。未來將進一步分析,發炎與免疫防護相關的表面蛋白與其可能影響的訊息路徑。zh_TW
dc.description.abstractObesity is an increase in adipose tissue caused by excessive energy accumulation and is accompanied by an inflammatory reaction. Subsequently, uncontrol and long-term inflammation extends pulmonary fibrosis development. Aim of our study is to investigate whether lunasin reduces inflammation and fibrosis in A549 pulmonary epithelial cells under obese conditions. The palmitic acid (PA) and glucose were used to mimic obese conditions in vitro. The mice fed with high-fat and fructose diet were used as obese animal model. In the results of establishing the experimental model, 7 mM normal glucose and 35 mM high glucose, PA 500 μM, lipopolysaccharide (LPS) 10 μg/mL, and TGFβ 5 ng/mL were added to the culture medium as an obesity microenvironment. In inflammation, lunasin inhibited IL-6 and MCP-1 secretions induced by PA or LPS in normal glucose medium; while the low dose of lunasin inhibited MCP-1 and TGFβ secretions induced by LPS in the high glucose medium. Surfactant protein D (SP-D) executes immune response and defense. Lunasin treatment modulated SP-D levels stimulated by LPS, especially the effect was difference between normal glucose and high glucose medium. In fibrosis, the migration was determined by wound healing assay and epithelial-mesenchymal transition (EMT) marker that was stimulated by TGFβ. However, lunasin did not effect cell migration and EMT expression. In vivo, mice were divided as normal diet (ND), high-fat high-fructose diet (HF), intraperitoneal injection of lunasin (HF-IL), and dietary supplementation with lunasin (HF-DL). 33-week-old mice lung homogenate of IL-6, IL-1β, and IL-17a expression were significantly reduced in HF group, and HF-IL increased the production of these cytokines, but HF-DL group were reduced. In conclusion, lunasin inhibited cytokines IL-6, MCP-1 and TGFβ through NFκB pathway in inflamed alveoli, but this effect was not showed in fibrosis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:22:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:22:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
誌謝 iii
第一章 文獻探討 1
第一節 呼吸系統 1
一、 肺部中呼吸系統結構1
二、 肺泡組成 2
三、 肺表面活性劑3
四、 肺部的病理變化6
第二節 肥胖8
一、 肥胖流行病學8
二、 肥胖與免疫失調9
三、 肥胖相關的肺部疾病13
第三節 飲食因子與肺部相關研究13
一、 飲食因子對肺部環境之影響13
二、 天然物對肺部疾病之研究14
第四節 Lunasin15
一、 Lunasin簡介15
二、 Lunasin生理功效16
第五節 研究工具及模式19
一、 A549人類肺泡上皮細胞19
二、 棕櫚酸誘發之體外發炎模式19
三、 高糖誘發之體外發炎模式20
四、 TGFβ誘發之體外肺纖維化模式20
第二章 實驗動機與實驗設計22
第一節 研究動機與假說22
第二節 實驗目的23
第三節 研究架構24
第三章 實驗材料與方法25
第一節 實驗材料25
一、 實驗室儀器設備25
二、 拋棄式無菌耗材25
第二節 實驗方法26
一、 A549人類肺上皮細胞培養與藥物處理26
二、 Lunasin處理對肥胖微環境下A549細胞發炎激素及肺泡表面蛋白之影響29
三、 Lunasin處理對A549細胞遷移及其上皮細胞間質轉化之影響 31
四、 Lunasin處理對肥胖微環境下A549細胞肺泡表面蛋白及NFκB路徑表現之影響32
五、 Lunasin處理對飲食誘導的肥胖小鼠肺臟中細胞激素之影響34
六、 統計分析36
第四章 實驗結果38
第一節 建立A549細胞之體外肥胖微環境的實驗條件38
一、 葡萄糖與甘露醇處理對A549細胞存活率的影響38
二、 Lunasin、PA和TGFβ處理對A549細胞存活率的影響39
三、 在正常糖與高糖環境下PA處理對A549細胞激素分泌的影響40
第二節 Lunasin處理在肥胖微環境下對A549肺泡細胞發炎反應的影響42
一、 Lunasin處理對肥胖微環境下A549細胞其細胞激素分泌之影響42
二、 Lunasin處理對肥胖微環境下A549細胞其表面活性蛋白分泌之影響46
(一) ELISA分析46
(二) Western blot (WB) 分析46
三、 Lunasin處理對肥胖微環境下A549細胞其NFκB路徑表現之影響49
第三節 Lunasin處理在肥胖微環境下對A549肺泡細胞纖維化的影響51
一、 在高低糖環境下TGFβ處理對A549細胞存活率和細胞激素分泌的影響51
三、 上皮間質轉化標誌物螢光免疫染色57
第四節、Lunasin 介入對於餵食高油高果糖誘發肥胖小鼠肺部發炎之影響60
一、 C57BL/6小鼠在22週齡其肺臟細胞激素之分析60
二、 C57BL/6小鼠在33週齡其肺臟細胞激素之分析60
三、 C57BL/6小鼠在22週齡與33週齡其肺臟細胞激素之分析63
第五章 討論與結論64
第一節 討論64
一、 Lunasin處理在肥胖微環境下對A549肺泡細胞發炎反應的影響64
二、 Lunasin處理在肥胖微環境下對A549肺泡細胞纖維化的影響 67
三、 Lunasin介入對於飲食誘發肥胖小鼠其肺部發炎情形之影響 68
四、 肥胖微環境中體外實驗與體內實驗結果比較69
第二節 結論70
參考文獻 72
附錄96
-
dc.language.isozh_TW-
dc.title探討Lunasin在肥胖微環境下對A549肺泡上皮細胞發炎反應與其可能影響機制zh_TW
dc.titleThe effect of lunasin on inflammation and its possible mechanisms in A549 pulmonary epithelial cells under obese microenvironmentsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林璧鳳;陳俊任;洪永瀚zh_TW
dc.contributor.oralexamcommitteeBi-Fong Lin;Chun-Jen Chen;Yong-Han Hongen
dc.subject.keyword肥胖,發炎,纖維化,Lunasin,肺泡上皮細胞,Surfactant protein,zh_TW
dc.subject.keywordobesity,inflammation,fibrosis,Lunasin,alveolar cell,surfactant protein,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202404185-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2029-08-10-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved