Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游琇伃zh_TW
dc.contributor.advisorHsiu-Yu Yuen
dc.contributor.author陳宇翔zh_TW
dc.contributor.authorYu-Shiang Chenen
dc.date.accessioned2024-09-16T16:14:52Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation[1] X. Lu, M. Elimelech, Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions, Chemical Society Reviews, 50 (2021) 6290-6307.
[2] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712-717.
[3] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Advanced Functional Materials, 23 (2013) 3693-3700.
[4] C. Niewersch, A.B. Bloch, S. Yüce, T. Melin, M. Wessling, Nanofiltration for the recovery of phosphorus—Development of a mass transport model, Desalination, 346 (2014) 70-78.
[5] J. de Grooth, B. Haakmeester, C. Wever, J. Potreck, W.M. de Vos, K. Nijmeijer, Long term physical and chemical stability of polyelectrolyte multilayer membranes, Journal of membrane science, 489 (2015) 153-159.
[6] S. Yu, C. Gao, H. Su, M. Liu, Nanofiltration used for desalination and concentration in dye production, Desalination, 140 (2001) 97-100.
[7] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, Journal of Water Process Engineering, 19 (2017) 164-171.
[8] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226-254.
[9] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242 (2009) 168-182.
[10] O. Labban, C. Liu, T.H. Chong, Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening, Journal of Membrane Science, 521 (2017) 18-32.
[11] M.D. Miller, M.L. Bruening, Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition, Langmuir, 20 (2004) 11545-11551.
[12] S.T. Dubas, T.R. Farhat, J.B. Schlenoff, Multiple membranes from “true” polyelectrolyte multilayers, Journal of the American Chemical Society, 123 (2001) 5368-5369.
[13] J.-M. Leväsalmi, T.J. McCarthy, Poly (4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability, Macromolecules, 30 (1997) 1752-1757.
[14] X.-L. Wang, T. Tsuru, S.-i. Nakao, S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, Journal of membrane science, 135 (1997) 19-32.
[15] W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy, Journal of membrane science, 126 (1997) 91-105.
[16] A.E. Yaroshchuk, Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion, Separation and purification Technology, 22 (2001) 143-158.
[17] A. Yaroshchuk, M.L. Bruening, E.E.L. Bernal, Solution-Diffusion–Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions, Journal of membrane science, 447 (2013) 463-476.
[18] W.R. Bowen, J.S. Welfoot, Modelling of membrane nanofiltration—pore size distribution effects, Chemical engineering science, 57 (2002) 1393-1407.
[19] B. Saliha, F. Patrick, S. Anthony, Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model, Chemical Engineering Science, 64 (2009) 3789-3798.
[20] L. Krasemann, B. Tieke, Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes, Langmuir, 16 (2000) 287-290.
[21] Y.I. Dirir, Y. Hanafi, A. Ghoufi, A. Szymczyk, Theoretical investigation of the ionic selectivity of polyelectrolyte multilayer membranes in nanofiltration, Langmuir, 31 (2015) 451-457.
[22] E. Evdochenko, J. Kamp, R. Femmer, Y. Xu, V. Nikonenko, M. Wessling, Unraveling the effect of charge distribution in a polyelectrolyte multilayer nanofiltration membrane on its ion transport properties, Journal of Membrane Science, 611 (2020) 118045.
[23] E. Evdochenko, J. Kamp, R. Dunkel, V. Nikonenko, M. Wessling, Charge distribution in polyelectrolyte multilayer nanofiltration membranes affects ion separation and scaling propensity, Journal of Membrane Science, 636 (2021) 119533.
[24] X. Liu, M.L. Bruening, Size-selective transport of uncharged solutes through multilayer polyelectrolyte membranes, Chemistry of materials, 16 (2004) 351-357.
[25] J.-P. Hsu, A.M. Spasic, Interfacial electroviscoelasticity and electrophoresis, CRC Press, 2010.
[26] G. Gouy, Electrical charge on the surface of an electrolyte, Journal of Physics, 4 (1910) 457-468.
[27] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin philosophical magazine and journal of science, 25 (1913) 475-481.
[28] A. Szymczyk, H. Zhu, B. Balannec, Pressure-driven ionic transport through nanochannels with inhomogenous charge distributions, Langmuir, 26 (2010) 1214-1220.
[29] A. Szymczyk, H. Zhu, B. Balannec, Ion rejection properties of nanopores with bipolar fixed charge distributions, The Journal of Physical Chemistry B, 114 (2010) 10143-10150.
[30] H. Zhu, A. Szymczyk, B. Balannec, On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization, Journal of Membrane Science, 379 (2011) 215-223.
[31] F. Fadhillah, S. Zaidi, Z. Khan, M. Khaled, F. Rahman, P. Hammond, Development of polyelectrolyte multilayer thin film composite membrane for water desalination application, Desalination, 318 (2013) 19-24.
[32] L. Wang, N. Wang, J. Li, J. Li, W. Bian, S. Ji, Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance, Separation and Purification Technology, 160 (2016) 123-131.
[33] R. Malaisamy, A. Talla-Nwafo, K.L. Jones, Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions, Separation and purification technology, 77 (2011) 367-374.
[34] P. Wang, T.-S. Chung, Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring, Journal of membrane science, 474 (2015) 39-56.
[35] Y.-X. Lin, Y.-K. Liou, S.L. Lee, S.-Y. Chen, F.-T. Tao, T.-W. Cheng, K.-L. Tung, Preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation, Journal of Membrane Science, 679 (2023) 121676.
[36] J.A. Wood, A.M. Benneker, R.G. Lammertink, Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels, Journal of physics: Condensed matter, 28 (2016) 114002.
[37] C.-C. Lai, C.-J. Chang, Y.-S. Huang, W.-C. Chang, F.-G. Tseng, Y.-L. Chueh, Desalination of saline water by nanochannel arrays through manipulation of electrical double layer, Nano energy, 12 (2015) 394-400.
[38] T.-Y. Tsou, J.-P. Hsu, Pressure-driven ion separation through a pH-regulated cylindrical nanopore, Journal of Membrane Science, 604 (2020) 118073.
[39] T.-Y. Tsou, J.-P. Hsu, Nanofiltration through pH-regulated bipolar cylindrical nanopores for solution containing symmetric, asymmetric, and mixed salts, Journal of Membrane Science, 641 (2022) 119869.
[40] T.-Y. Tsou, J.-P. Hsu, Nanofiltration through cylindrical nanopores end-grafted with polyelectrolytes, Journal of Membrane Science, 686 (2023) 121968.
[41] J.A. Wood, A.M. Benneker, R.G. Lammertink, Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels, Journal of Physics: Condensed Matter, 28 (2016) 114002.
[42] J. Agar, C. Mou, J.L. Lin, Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory, The Journal of Physical Chemistry, 93 (1989) 2079-2082.
[43] A. Würger, Transport in charged colloids driven by thermoelectricity, Physical review letters, 101 (2008) 108302.
[44] P. Giddings, E. Kucera, C.P. Russelance factors for diffusion and convection in pores, Industrial & engineering chemistry research, 45 (2006) 6953-6959.
[45] B.B. Owen, R.C. Miller, C.E. Milner, H.L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, The Journal of Physical Chemistry, 65 (1961) 2065-2070.
[46] T. Al-Shemmeri, Engineering fluid mechanics, Bookboon, 2012.
[47] B.E. Poling, J.M. Prausnitz, J.P. O’connell, Properties of gases and liquids, McGraw-Hill Education, 2001.
[48] H.S. Harned, B.B. Owen, The physical chemistry of electrolytic solutions, (1939).
[49] A. Anderko, M.M. Lencka, Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges, Industrial & engineering chemistry research, 36 (1997) 1932-1943.
[50] J.C. Giddings, E. Kucera, C.P. Russell, M.N. Myers, Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography, The Journal of Physical Chemistry, 72 (1968) 4397-4408.
[51] W. Deen, Hindered transport of large molecules in liquid‐filled pores, AICHE journal, 33 (1987) 1409-1425.
[52] L. Ouyang, R. Malaisamy, M.L. Bruening, Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations, Journal of membrane science, 310 (2008) 76-84.
[53] M. Lösche, J. Schmitt, G. Decher, W.G. Bouwman, K. Kjaer, Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry, Macromolecules, 31 (1998) 8893-8906.
[54] S.U. Hong, R. Malaisamy, M.L. Bruening, Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23 (2007) 1716-1722.
[55] P. Ahmadiannamini, X. Li, W. Goyens, B. Meesschaert, I.F. Vankelecom, Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation, Journal of Membrane Science, 360 (2010) 250-258.
[56] R. Malaisamy, M.L. Bruening, High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports, Langmuir, 21 (2005) 10587-10592.
[57] R.M. DuChanois, R. Epsztein, J.A. Trivedi, M. Elimelech, Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions, Journal of Membrane Science, 581 (2019) 413-420.
[58] C.I. Covaliu-Mierlă, O. Păunescu, H. Iovu, Recent advances in membranes used for nanofiltration to remove heavy metals from wastewater: a review, Membranes, 13 (2023) 643.
[59] G.M. Shi, Y. Feng, B. Li, H.M. Tham, J.-Y. Lai, T.-S. Chung, Recent progress of organic solvent nanofiltration membranes, Progress in Polymer Science, 123 (2021) 101470.
[60] M. Taheran, S.K. Brar, M. Verma, R.Y. Surampalli, T.C. Zhang, J.R. Valéro, Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters, Science of the Total Environment, 547 (2016) 60-77.
[61] S. Mallakpour, E. Azadi, Nanofiltration membranes for food and pharmaceutical industries, Emergent materials, 5 (2022) 1329-1343.
[62] U.M. Aliyu, S. Rathilal, Y.M. Isa, Membrane desalination technologies in water treatment: A review, Water Practice & Technology, 13 (2018) 738-752.
[63] S. Mondal, S.R. Wickramasinghe, Produced water treatment by nanofiltration and reverse osmosis membranes, Journal of membrane science, 322 (2008) 162-170.
[64] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226-254.
[65] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination, 242 (2009) 149-167.
[66] C.M. Galanakis, G. Fountoulis, V. Gekas, Nanofiltration of brackish groundwater by using a polypiperazine membrane, Desalination, 286 (2012) 277-284.
[67] M. Tahaikt, R. El Habbani, A.A. Haddou, I. Achary, Z. Amor, M. Taky, A. Alami, A. Boughriba, M. Hafsi, A. Elmidaoui, Fluoride removal from groundwater by nanofiltration, Desalination, 212 (2007) 46-53.
[68] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Reviews of modern physics, 80 (2008) 839-883.
[69] J.-H. Jang, J.Y. Woo, J. Lee, C.-S. Han, Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane, Environmental Science & Technology, 50 (2016) 10024-10030.
[70] M.R. Teixeira, M.J. Rosa, M. Nyström, The role of membrane charge on nanofiltration performance, Journal of Membrane Science, 265 (2005) 160-166.
[71] H. Zhang, X. Quan, S. Chen, X. Fan, G. Wei, H. Yu, Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes, Environmental science & technology, 52 (2018) 4827-4834.
[72] J. Peng, Y. Su, W. Chen, X. Zhao, Z. Jiang, Y. Dong, Y. Zhang, J. Liu, C. Xingzhong, Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization, Journal of membrane science, 427 (2013) 92-100.
[73] M. Safarpour, V. Vatanpour, A. Khataee, M. Esmaeili, Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2, Separation and Purification Technology, 154 (2015) 96-107.
[74] V. Vatanpour, M. Esmaeili, M.H.D.A. Farahani, Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, Journal of Membrane Science, 466 (2014) 70-81.
[75] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration, ACS applied materials & interfaces, 9 (2017) 11082-11094.
[76] H. Zhang, X. Quan, X. Fan, G. Yi, S. Chen, H. Yu, Y. Chen, Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density, Environmental science & technology, 53 (2018) 868-877.
[77] A.A. Kapitonov, I.I. Ryzhkov, Modelling the performance of electrically conductive nanofiltration membranes, Membranes, 13 (2023) 596.
[78] D. Lebedev, V. Solodovnichenko, M. Simunin, I. Ryzhkov, Effect of electric field on ion transport in nanoporous membranes with conductive surface, Petroleum chemistry, 58 (2018) 474-481.
[79] I.I. Ryzhkov, M.A. Shchurkina, E.V. Mikhlina, M.M. Simunin, I.V. Nemtsev, Switchable ionic selectivity of membranes with electrically conductive surface: Theory and experiment, Electrochimica Acta, 375 (2021) 137970.
[80] C. Hu, Z. Liu, X. Lu, J. Sun, H. Liu, J. Qu, Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane, Journal of Materials Chemistry A, 6 (2018) 4737-4745.
[81] A. Szymczyk, Mechanistic modeling of transport in nanofiltration, Encyclopedia of Membrane Science and Technology, (2013) 1-29.
[82] W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration—critical assessment and model development, Chemical engineering science, 57 (2002) 1121-1137.
[83] R. Wang, S. Lin, Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects, Journal of Membrane Science, 620 (2021) 118809.
[84] Z. Lin, L. Liu, C. Zhang, P. Su, X. Zhang, X. Li, Y. Jiao, Emerging conductive ceramic membranes for water purification and membrane fouling mitigation, Chemical Engineering Journal, (2024) 152474.
[85] P. Formoso, E. Pantuso, G. De Filpo, F.P. Nicoletta, Electro-conductive membranes for permeation enhancement and fouling mitigation: a short review, Membranes, 7 (2017) 39.
[86] S. Naghdi, K.Y. Rhee, D. Hui, S.J. Park, A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications, Coatings, 8 (2018) 278.
[87] N.H. Barbhuiya, U. Misra, S.P. Singh, Synthesis, fabrication, and mechanism of action of electrically conductive membranes: a review, Environmental Science: Water Research & Technology, 7 (2021) 671-705.
[88] W.-K. Yen, J.-P. Hsu, Electrokinetic behavior of a pH-regulated dielectric cylindrical nanopore, Journal of Colloid and Interface Science, 588 (2021) 94-100.
[89] S. Tseng, J.-Y. Lin, J.-P. Hsu, Theoretical study of temperature influence on the electrophoresis of a pH-regulated polyelectrolyte, Analytica Chimica Acta, 847 (2014) 80-89.
[90] H. Zhang, X. Quan, S. Chen, H. Yu, J. Niu, Electrokinetic enhancement of water flux and ion rejection through graphene oxide/carbon nanotube membrane, Environmental Science & Technology, 54 (2020) 15433-15441.
[91] O. Stern, Zur theorie der elektrolytischen doppelschicht, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30 (1924) 508-516.
[92] J.-P. Hsu, A.M. Spasic, Interfacial electroviscoelasticity and electrophoresis, CRC Press, 2010.
[93] M. Osada, T. Sasaki, Two‐dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks, Advanced Materials, 24 (2012) 210-228.
[94] J.W. McPherson, J. Kim, A. Shanware, H. Mogul, J. Rodriguez, Trends in the ultimate breakdown strength of high dielectric-constant materials, IEEE transactions on electron devices, 50 (2003) 1771-1778.
[95] D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie, The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel, The Journal of chemical physics, 125 (2006).
[96] J. Azadmanjiri, C.C. Berndt, J. Wang, A. Kapoor, V.K. Srivastava, C. Wen, A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications, Journal of Materials Chemistry A, 2 (2014) 3695-3708.
[97] S.-L. Shi, L.-Z. Zhang, J.-S. Li, Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites, Journal of polymer research, 16 (2009) 395-399.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95750-
dc.description.abstract奈米過濾技術近幾十年來被廣泛應用於水處理和溶液分離等多個領域。是一種壓力驅動的薄膜分離技術,其孔徑介於反滲透和超濾之間,有效地從水中分離離子、有機分子和粒子。
聚電解質多層膜是一種高度定制化的薄膜製備技術,利用正負電荷的多層聚電解質來控制薄膜的選擇性和滲透性。這些薄膜通常用於分離具有大顆粒或分子以及多價離子的溶液。在第一章中,我們考慮了各種因素例如孔徑、進料濃度和薄膜兩側溫差的影響,研究聚電解質多層膜對於溶液中各離子的脫鹽率、鈉離子和鎂離子之間的選擇性,圓柱狀奈米孔道的體積通量。我們發現小孔徑能夠提高選擇性。然而,在固定的施加壓降下增加雙層數量(即聚電解質多層膜的厚度)卻不能顯著提高選擇性,因為此時奈米孔道的體積通量會降低。除此之外,稀薄的溶液使奈米孔道具有更厚的電雙層,能夠產生較好的選擇性和體積通量。另外,為了降低能耗,我們也在薄膜兩側施加溫度梯度提供熱驅動力,從而減少所需的施加壓降,其中溫度梯度可以顯著提高選擇性和體積通量,但具體效果取決於梯度的方向。
傳統奈米過濾薄膜要在不降低通透率的情況下實現高離子脫鹽率存在一定的困難。在第二章中,我們嘗試通過電輔助的方法增強奈米孔道的過濾性能,其中導電材料在可極化薄膜中充當虛擬陰極。我們通過增加奈米孔道的表面電荷密度,強化離子與奈米孔壁之間的電荷交互作用來克服以往必須在增加脫鹽率和體積通量之間作取捨的困境。然而,與薄膜官能基團中解離出的極化電荷相比,電輔助的方法表現出一些反效果,例如當施加壓力降不夠大但足夠高的額外偏壓時,電極之間因電位差而產生的電場會影響到施加偏壓的驅動力,導致奈米孔道的體積通量略微降低。在本研究中,陰極的位置、陽極到奈米孔壁的距離以及薄膜的介電常數等皆是決定奈米過濾效率的主要因素。此外,我們也證明了此系統能在相對濃度較高的氯化鈉溶液中保持一定水平的脫鹽率和體積通量,同時不需要施加過大的壓力降和額外偏壓作為驅動力,顯示了奈米過濾技術在海水淡化和水處理方面仍具有很大的發展潛力。
zh_TW
dc.description.abstractNanofiltration (NF) has been widely utilized in the past few decades in versatile applications such as water treatment and solution separation. It is a pressure-driven membrane separation technology having a pore size between reverse osmosis (RO) and ultrafiltration, effectively separating ions, organic molecules, and particles from water.
Polyelectrolyte multilayer membranes (PEMMs) are highly customized membrane technologies that utilize layers of positively and negatively charged polyelectrolytes to control membrane selectivity and permeability. These membranes are commonly used to separate components of solutions with large size particles/molecules and multivalent ions. In Chapter 1, the individual ion rejection rate, the selectivity between Na^+ and Mg^(2+) (S(Na^+/Mg^(2+) )) and the volumetric flux (vf) of PEMMs, which is considered by an effective cylindrical nanopore, is investigated theoretically with consideration of the effects from various factors, e.g., pore size, feed concentration, and a temperature difference applied across the membrane. Due to electrostatic interactions between ions and nanopore surface, the results show that small pore radius leads to greater S(Na^+/Mg^(2+) ). Increasing the number of bilayers (and PEMM thickness) under fixed ΔP cannot significantly improve S(Na^+/Mg^(2+) ) owing to the decline in the vf. Dilute possesses thick electric double layer, leading to high S(Na^+/Mg^(2+) ) and high vf. To lower energy consumption, a temperature gradient can be applied across the membrane to provide thermal driving force and thus reduce the required ΔP. Temperature gradients can appreciably raise S(Na^+/Mg^(2+) ) or vf, depending on the direction of the gradient.
In addition, achieving a high ion rejection rate in conventional NF membranes without compromising permeability poses significant challenges. In Chapter 2, we investigate theoretical enhancements in the NF performance of a cylindrical nanopore through electrically assisted method, where conductive materials within a polarizable membrane act as the virtual cathode. The approach focuses on increasing the charge interaction between ions and nanopore walls by augmenting surface charge density, thereby utilizing high charge density to mitigate the trade-off between rejection rate and volumetric flux (U_P). Unfortunately, compared to polarizable charge dissociated from membrane functional groups, the electrical assistance system exhibits some counterproductive effects. For instance, when pressure drop ΔP is not sufficiently large but high external voltage ΔV is applied, there are interactions between electric body force generated by the potential difference from the electrodes and pressure-driven force, leading to a slightly lower U_P. Factors such as the position of anode, radial distance from cathode to nanopores, and membrane dielectric constant significantly enhance NF efficiency in this study. Moreover, the system demonstrates its ability to maintain a certain level of rejection rate and U_P for relatively concentrated NaCl solutions while simultaneously increasing ΔP and ΔV without excessively large values. These findings suggest promising applications in desalination and water treatment using NF technology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:14:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:14:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Contents V
List of Figures VI
List of Tables XII
Chapter 1 Pressure-Driven Ion Separation through Polyelectrolyte Multilayer Membranes with Thermal Gradients 1
1.1 Introduction 2
1.2 Theoretical model 5
1.3 Results and discussion 12
Chapter 2 Enhanced Ion Rejection and Separation via Electrically Assisted Nanofiltration 30
2.1 Introduction 31
2.2 Theoretical model 35
2.3 Results and discussion 43
Conclusions 69
References 71
Appendix 83
-
dc.language.isoen-
dc.title壓力驅動的奈米過濾系統:以電輔助薄膜及溫度梯度下的聚電解質多層薄膜進行離子分離的研究zh_TW
dc.titlePressure-Driven Nanofiltration: Theoretical Study of Electrically Assisted Membranes and Ion Separation via Polyelectrolyte Multilayer Membranes with Thermal Gradientsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee諶玉真;曾琇瑱zh_TW
dc.contributor.oralexamcommitteeYu-Jane Sheng;Shio-jenn Tsengen
dc.subject.keyword奈米過濾技術,聚電解質多層薄膜,脫鹽率,體積通量,離子選擇性,溫度梯度,外加電壓,zh_TW
dc.subject.keywordnanofiltration,polyelectrolyte multilayer membranes,rejection rate,volumetric flux,ionic selectivity,thermal gradients,external voltage,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202402378-
dc.rights.note未授權-
dc.date.accepted2024-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved