Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95744
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor游琇伃zh_TW
dc.contributor.advisorHsiu-Yu Yuen
dc.contributor.author錡俊綸zh_TW
dc.contributor.authorChun-Lun Chien
dc.date.accessioned2024-09-16T16:13:02Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems, Materials Chemistry Frontiers 2(5) (2018) 935-941.
[2] R. Long, Z. Luo, Z. Kuang, Z. Liu, W. Liu, Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion, Nano Energy 67 (2020) 104284.
[3] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and colloid transport phenomena, John Wiley & Sons2006.
[4] P. Eriksson, Nanofiltration extends the range of membrane filtration, Environ. Prog. 7(1) (1988) 58-62.
[5] S.S. Shenvi, A.M. Isloor, A. Ismail, A review on RO membrane technology: Developments and challenges, Desalination 368 (2015) 10-26.
[6] U. Caldera, D. Bogdanov, C. Breyer, Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate, Desalination 385 (2016) 207-216.
[7] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination 356 (2015) 226-254.
[8] W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration—critical assessment and model development, Chem. Eng. Sci. 57(7) (2002) 1121-1137.
[9] W. Richard Bowen, A. Wahab Mohammad, Diafiltration by nanofiltration: prediction and optimization, AIChE journal 44(8) (1998) 1799-1812.
[10] N. Hilal, H. Al-Zoubi, N. Darwish, A. Mohamma, M.A. Arabi, A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy, Desalination 170(3) (2004) 281-308.
[11] D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower cost seawater desalination processes using nanofiltration technologies — A review, Desalination 376 (2015) 109-116.
[12] M. Liu, Z. Lü, Z. Chen, S. Yu, C. Gao, Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse, Desalination 281 (2011) 372-378.
[13] N. García-Vaquero, E. Lee, R.J. Castañeda, J. Cho, J. López-Ramírez, Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility, Desalination 347 (2014) 94-102.
[14] A. AlTaee, A.O. Sharif, Alternative design to dual stage NF seawater desalination using high rejection brackish water membranes, Desalination 273(2-3) (2011) 391-397.
[15] A. Hassan, M. Al-Sofi, A. Al-Amoudi, A. Jamaluddin, A. Farooque, A. Rowaili, A. Dalvi, N. Kither, G. Mustafa, I. Al-Tisan, A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1), Desalination 118(1-3) (1998) 35-51.
[16] M.B. Martínez, B. Van der Bruggen, Z.R. Negrin, P.L. Alconero, Separation of a high-value pharmaceutical compound from waste ethanol by nanofiltration, Journal of Industrial and Engineering Chemistry 18(5) (2012) 1635-1641.
[17] M.A. Seman, M. Khayet, N. Hilal, Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, Journal of membrane science 348(1-2) (2010) 109-116.
[18] M.A. Seman, M. Khayet, N. Hilal, Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation, Desalination 273(1) (2011) 36-47.
[19] Q. Wang, B. Wu, C. Jiang, Y. Wang, T. Xu, Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101, Journal of membrane science 524 (2017) 370-376.
[20] A.M. Rajesh, M. Kumar, V.K. Shahi, Functionalized biopolymer based bipolar membrane with poly ethylene glycol interfacial layer for improved water splitting, Journal of membrane science 372(1-2) (2011) 249-257.
[21] B. Roux, Ion channels and ion selectivity, Essays in biochemistry 61(2) (2017) 201-209.
[22] B. Roux, S. Bernèche, B. Egwolf, B. Lev, S.Y. Noskov, C.N. Rowley, H. Yu, Ion selectivity in channels and transporters, Journal of general physiology 137(5) (2011) 415-426.
[23] M. Li, R.K. Anand, Recent advancements in ion concentration polarization, Analyst 141(12) (2016) 3496-3510.
[24] S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization, Nature nanotechnology 5(4) (2010) 297-301.
[25] Y. Qiu, Z.S. Siwy, M. Wanunu, Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores, Anal. Chem. 91(1) (2019) 996-1004.
[26] S. Nasir, M. Ali, J. Cervera, V. Gomez, M. Hamza Ali Haider, W. Ensinger, S. Mafe, P. Ramirez, Ionic transport characteristics of negatively and positively charged conical nanopores in 1:1, 2:1, 3:1, 2:2, 1:2, and 1:3 electrolytes, J. Colloid Interface Sci. 553 (2019) 639-646.
[27] C.Y. Lin, L.H. Yeh, Z.S. Siwy, Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls, J. Phys. Chem. Lett. 9(2) (2018) 393-398.
[28] X. Zuo, C. Zhu, W. Xian, Q.W. Meng, Q. Guo, X. Zhu, S. Wang, Y. Wang, S. Ma, Q. Sun, Thermo‐Osmotic Energy Conversion Enabled by Covalent‐Organic‐Framework Membranes with Record Output Power Density, Angew. Chem. Int. Ed. 61(18) (2022) e202116910.
[29] Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S.C. Mannsfeld, R. Dong, T. Heine, X. Feng, Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion, Nature communications 13(1) (2022) 3935.
[30] C.-W. Chang, C.-W. Chu, Y.-S. Su, L.-H. Yeh, Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion, J. Mater. Chem. A 10(6) (2022) 2867-2875.
[31] A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, Journal of membrane science 252(1-2) (2005) 77-88.
[32] A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J. Pagetti, Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes, Adv. Colloid Interface Sci. 103(1) (2003) 77-94.
[33] A. Szymczyk, H. Zhu, B. Balannec, Ion rejection properties of nanopores with bipolar fixed charge distributions, J. Phys. Chem. B 114(31) (2010) 10143-10150.
[34] B. Balannec, A. Ghoufi, A. Szymczyk, Nanofiltration performance of conical and hourglass nanopores, Journal of Membrane Science 552 (2018) 336-340.
[35] T.-Y. Tsou, J.-P. Hsu, Nanofiltration through pH-regulated bipolar cylindrical nanopores for solution containing symmetric, asymmetric, and mixed salts, Journal of Membrane Science 641 (2022) 119869.
[36] A. Szymczyk, H. Zhu, B. Balannec, Pressure-driven ionic transport through nanochannels with inhomogenous charge distributions, Langmuir 26(2) (2010) 1214-1220.
[37] H. Zhang, X. Quan, X. Fan, G. Yi, S. Chen, H. Yu, Y. Chen, Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density, Environmental science & technology 53(2) (2018) 868-877.
[38] C.-Y. Chung, J.-P. Hsu, Nanopore-based desalination subject to simultaneously applied pressure gradient and gating potential, Journal of Colloid and Interface Science 594 (2021) 737-744.
[39] S. Kim, E.I. Ozalp, M. Darwish, J.A. Weldon, Electrically gated nanoporous membranes for smart molecular flow control, Nanoscale 10(44) (2018) 20740-20747.
[40] K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel, Lab on a Chip 12(7) (2012) 1332-1339.
[41] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature 494(7438) (2013) 455-458.
[42] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Single-layer MoS2 nanopores as nanopower generators, Nature 536(7615) (2016) 197-200.
[43] J. Su, D. Ji, J. Tang, H. Li, Y. Feng, L. Cao, L. Jiang, W. Guo, Anomalous pore‐density dependence in nanofluidic osmotic power generation, Chin. J. Chem . 36(5) (2018) 417-420.
[44] F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model, Inorganic Chemistry Frontiers 5(7) (2018) 1677-1682.
[45] A. Gadaleta, C. Sempere, S. Gravelle, A. Siria, R. Fulcrand, C. Ybert, L. Bocquet, Sub-additive ionic transport across arrays of solid-state nanopores, Physics of Fluids 26(1) (2014) 012005.
[46] L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo, L. Jiang, Anomalous channel‐length dependence in nanofluidic osmotic energy conversion, Advanced Functional Materials 27(9) (2017) 1604302.
[47] H.-Y. Lo, T.-Y. Tsou, J.-P. Hsu, Improving the osmotic energy conversion efficiency of multiple nanopores by a cross flow, Journal of Membrane Science 644 (2022) 120075.
[48] J. Gilron, N. Gara, O. Kedem, Experimental analysis of negative salt rejection in nanofiltration membranes, Journal of Membrane science 185(2) (2001) 223-236.
[49] C.-Y. Lin, F. Chen, L.-H. Yeh, J.-P. Hsu, Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size, Physical Chemistry Chemical Physics 18(43) (2016) 30160-30165.
[50] T.-Y. Tsou, J.-P. Hsu, Pressure-driven ion separation through a pH-regulated cylindrical nanopore, Journal of Membrane Science 604 (2020) 118073.
[51] M.-H. Hsu, T.-Y. Tsou, J.-P. Hsu, H.-Y. Yu, Influence of pore size distribution and applied cross-flow on ion rejection and separation, Separation and Purification Technology 352 (2025) 128248.
[52] D.W. Solutions, Filmtec™ reverse osmosis membranes, Technical Manual, Form 399(609-00071) (2010) 1-180.
[53] J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proceedings of the National Academy of Sciences 93(24) (1996) 13770-13773.
[54] A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton, Rapid nanopore discrimination between single polynucleotide molecules, Proceedings of the National Academy of Sciences 97(3) (2000) 1079-1084.
[55] L. Song, M.R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, J.E. Gouaux, Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore, Science 274(5294) (1996) 1859-1865.
[56] A.J. Storm, J. Chen, H. Zandbergen, C. Dekker, Translocation of double-strand DNA through a silicon oxide nanopore, Physical review E 71(5) (2005) 051903.
[57] O.A. Saleh, L.L. Sohn, An artificial nanopore for molecular sensing, Nano letters 3(1) (2003) 37-38.
[58] J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nature materials 2(9) (2003) 611-615.
[59] A. Storm, J. Chen, X. Ling, H. Zandbergen, C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision, Nature materials 2(8) (2003) 537-540.
[60] D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, The potential and challenges of nanopore sequencing, Nature biotechnology 26(10) (2008) 1146-1153.
[61] C. Dekker, Solid-state nanopores, Nature nanotechnology 2(4) (2007) 209-215.
[62] S.M. Iqbal, D. Akin, R. Bashir, Solid-state nanopore channels with DNA selectivity, Nature nanotechnology 2(4) (2007) 243-248.
[63] Y. Qiu, C.-Y. Lin, P. Hinkle, T.S. Plett, C. Yang, J.V. Chacko, M.A. Digman, L.-H. Yeh, J.-P. Hsu, Z.S. Siwy, Highly charged particles cause a larger current blockage in micropores compared to neutral particles, ACS nano 10(9) (2016) 8413-8422.
[64] G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M. Vandersypen, C. Dekker, DNA translocation through graphene nanopores, Nano letters 10(8) (2010) 3163-3167.
[65] M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient, Nature nanotechnology 5(2) (2010) 160-165.
[66] R.M. Smeets, U.F. Keyser, D. Krapf, M.-Y. Wu, N.H. Dekker, C. Dekker, Salt dependence of ion transport and DNA translocation through solid-state nanopores, Nano letters 6(1) (2006) 89-95.
[67] W.-J. Lan, D.A. Holden, B. Zhang, H.S. White, Nanoparticle transport in conical-shaped nanopores, Analytical chemistry 83(10) (2011) 3840-3847.
[68] W.-J. Lan, D.A. Holden, J. Liu, H.S. White, Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore, The Journal of Physical Chemistry C 115(38) (2011) 18445-18452.
[69] D. Kozak, W. Anderson, R. Vogel, S. Chen, F. Antaw, M. Trau, Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors, ACS nano 6(8) (2012) 6990-6997.
[70] M. Tsutsui, S. Hongo, Y. He, M. Taniguchi, N. Gemma, T. Kawai, Single-nanoparticle detection using a low-aspect-ratio pore, ACS nano 6(4) (2012) 3499-3505.
[71] L.-H. Yeh, M. Zhang, S. Qian, J.-P. Hsu, Regulating DNA translocation through functionalized soft nanopores, Nanoscale 4(8) (2012) 2685-2693.
[72] Y. Ai, J. Liu, B. Zhang, S. Qian, Field effect regulation of DNA translocation through a nanopore, Analytical chemistry 82(19) (2010) 8217-8225.
[73] Y. He, M. Tsutsui, C. Fan, M. Taniguchi, T. Kawai, Gate manipulation of DNA capture into nanopores, Acs Nano 5(10) (2011) 8391-8397.
[74] M. Zhang, L.-H. Yeh, S. Qian, J.-P. Hsu, S.W. Joo, DNA electrokinetic translocation through a nanopore: Local permittivity environment effect, The Journal of Physical Chemistry C 116(7) (2012) 4793-4801.
[75] P. Kohli, C.C. Harrell, Z. Cao, R. Gasparac, W. Tan, C.R. Martin, DNA-functionalized nanotube membranes with single-base mismatch selectivity, Science 305(5686) (2004) 984-986.
[76] E.C. Yusko, J.M. Johnson, S. Majd, P. Prangkio, R.C. Rollings, J. Li, J. Yang, M. Mayer, Controlling protein translocation through nanopores with bio-inspired fluid walls, Nature nanotechnology 6(4) (2011) 253-260.
[77] B. Luan, A. Aksimentiev, Electro-osmotic screening of the DNA charge in a nanopore, Physical Review E 78(2) (2008) 021912.
[78] A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano letters 5(7) (2005) 1193-1197.
[79] S. Van Dorp, U.F. Keyser, N.H. Dekker, C. Dekker, S.G. Lemay, Origin of the electrophoretic force on DNA in solid-state nanopores, Nature Physics 5(5) (2009) 347-351.
[80] C.Y. Lin, L.H. Yeh, J.P. Hsu, S. Tseng, Regulating current rectification and nanoparticle transport through a salt gradient in bipolar nanopores, Small 11(35) (2015) 4594-4602.
[81] M. van den Hout, I.D. Vilfan, S. Hage, N.H. Dekker, Direct force measurements on double-stranded RNA in solid-state nanopores, Nano letters 10(2) (2010) 701-707.
[82] U.F. Keyser, B.N. Koeleman, S. Van Dorp, D. Krapf, R.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Direct force measurements on DNA in a solid-state nanopore, Nature Physics 2(7) (2006) 473-477.
[83] U.F. Keyser, J. Van der Does, C. Dekker, N. Dekker, Optical tweezers for force measurements on DNA in nanopores, Review of Scientific Instruments 77(10) (2006).
[84] H. Peng, X.S. Ling, Reverse DNA translocation through a solid-state nanopore by magnetic tweezers, Nanotechnology 20(18) (2009) 185101.
[85] Y. He, M. Tsutsui, C. Fan, M. Taniguchi, T. Kawai, Controlling DNA translocation through gate modulation of nanopore wall surface charges, ACS nano 5(7) (2011) 5509-5518.
[86] B.R. Fonslow, M.T. Bowser, Free-flow electrophoresis on an anodic bonded glass microchip, Analytical chemistry 77(17) (2005) 5706-5710.
[87] L.-M. Fu, J.-H. Wang, W.-B. Luo, C.-H. Lin, Experimental and numerical investigation into the joule heating effect for electrokinetically driven microfluidic chips utilizing total internal reflection fluorescence microscopy, Microfluidics and nanofluidics 6 (2009) 499-507.
[88] J. Knox, K. McCormack, Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance, Chromatographia 38 (1994) 207-214.
[89] M.U. Musheev, Y. Filiptsev, S.N. Krylov, Temperature difference between the cooled and the Noncooled parts of an electrolyte in capillary electrophoresis, Analytical chemistry 82(20) (2010) 8692-8695.
[90] C.J. Evenhuis, M.U. Musheev, S.N. Krylov, Universal method for determining electrolyte temperatures in capillary electrophoresis, Analytical chemistry 83(5) (2011) 1808-1814.
[91] K.H. Patel, C.J. Evenhuis, L.T. Cherney, S.N. Krylov, Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced‐air cooling, Electrophoresis 33(6) (2012) 1079-1085.
[92] J.-P. Hsu, Y.-H. Tai, L.-H. Yeh, S. Tseng, Importance of temperature effect on the electrophoretic behavior of charge-regulated particles, Langmuir 28(1) (2012) 1013-1019.
[93] D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Slowing DNA translocation in a solid-state nanopore, Nano letters 5(9) (2005) 1734-1737.
[94] R. Piazza, A. Parola, Thermophoresis in colloidal suspensions, Journal of Physics: Condensed Matter 20(15) (2008) 153102.
[95] H. Ning, J.K. Dhont, S. Wiegand, Thermal-diffusive behavior of a dilute solution of charged colloids, Langmuir 24(6) (2008) 2426-2432.
[96] A. Würger, Thermal non-equilibrium transport in colloids, Reports on Progress in Physics 73(12) (2010) 126601.
[97] D. Vigolo, S. Buzzaccaro, R. Piazza, Thermophoresis and thermoelectricity in surfactant solutions, Langmuir 26(11) (2010) 7792-7801.
[98] K.A. Eslahian, A. Majee, M. Maskos, A. Würger, Specific salt effects on thermophoresis of charged colloids, Soft Matter 10(12) (2014) 1931-1936.
[99] O. Syshchyk, D. Afanasenkau, Z. Wang, H. Kriegs, J. Buitenhuis, S. Wiegand, Influence of temperature and charge effects on thermophoresis of polystyrene beads⋆, The European Physical Journal E 39 (2016) 1-9.
[100] F.M. Weinert, D. Braun, Observation of slip flow in thermophoresis, Physical review letters 101(16) (2008) 168301.
[101] S. Iacopini, R. Rusconi, R. Piazza, The “macromolecular tourist": Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions, The European Physical Journal E 19 (2006) 59-67.
[102] A.P. Bregulla, A. Würger, K. Günther, M. Mertig, F. Cichos, Thermo-osmotic flow in thin films, Physical review letters 116(18) (2016) 188303.
[103] S. Duhr, D. Braun, Why molecules move along a temperature gradient, Proceedings of the National Academy of Sciences 103(52) (2006) 19678-19682.
[104] A. Würger, Transport in charged colloids driven by thermoelectricity, Physical review letters 101(10) (2008) 108302.
[105] L. Longsworth, The temperature dependence of the Soret coefficient of aqueous potassium chloride, The Journal of Physical Chemistry 61(11) (1957) 1557-1562.
[106] M. Braibanti, D. Vigolo, R. Piazza, Does thermophoretic mobility depend on particle size?, Physical review letters 100(10) (2008) 108303.
[107] Y. He, M. Tsutsui, R.H. Scheicher, F. Bai, M. Taniguchi, T. Kawai, Thermophoretic manipulation of DNA translocation through nanopores, ACS nano 7(1) (2013) 538-546.
[108] H. Xu, X. Zheng, X. Shi, Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space, Journal of Colloid and Interface Science 637 (2023) 489-499.
[109] R. Long, F. Wu, X. Chen, Z. Liu, W. Liu, Temperature-depended ion concentration polarization in electrokinetic energy conversion, International Journal of Heat and Mass Transfer 168 (2021) 120842.
[110] H.-Y. Lo, T.-Y. Tsou, J.-P. Hsu, Ion transport in a non-isothermal electrokinetic energy conversion system, Electrochimica Acta 427 (2022) 140887.
[111] B.B. Owen, R.C. Miller, C.E. Milner, H.L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, The Journal of Physical Chemistry 65(11) (1961) 2065-2070.
[112] T. Al-Shemmeri, Engineering fluid mechanics, Bookboon2012.
[113] B.E. Poling, J.M. Prausnitz, J.P. O'connell, The properties of gases and liquids, Mcgraw-hill New York2001.
[114] H.S. Harned, B.B. Owen, C. King, The physical chemistry of electrolytic solutions, Journal of The Electrochemical Society 106(1) (1959) 15C.
[115] J.-P. Hsu, C.-H. Huang, S. Tseng, Influence of temperature on the gel electrophoresis of a pH-regulated, zwitterionic sphere, Soft Matter 9(48) (2013) 11534-11541.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95744-
dc.description.abstract近年來,薄膜製備技術的飛速發展使得薄膜孔徑大小得以達奈米級別,展現出極具應用價值的微觀特性。其中,與薄膜孔徑大小相當的電雙層賦予孔道離子選擇性,使其在奈米過濾、整流、發電、膠體檢測等領域得到廣泛應用。
在奈米過濾領域中,過去文獻主要聚焦於單一孔道之除鹽研究,而忽略離子濃度極化及孔與孔之間相互作用的影響。本研究探討多孔道薄膜的過濾性能,且發現多孔薄膜常伴隨著嚴重的離子濃度極化現象使得過濾效能嚴重下降。為解決這一問題,引入側流輔助消除入口端的離子濃度積累。 結果表明,側流流速越大,過濾能力越強,但超過特定值后提升效果趨於平緩,表明大部分離子積累已得到去除。此外,通過擬合數據點,調查過濾能力與側流流速之間的定量關係,系統地闡述了流速對過濾能力的提升作用。
在此類奈米流體裝置的研究中,另一個重要的研究主題為膠體檢測。透過施加電位之電泳行為來捕捉溶液中的膠體對其進行分析。這類應用面臨的兩大挑戰為提高捕捉速率與減低遷移速率,這兩者往往是難以兼顧的。為此,我們對一電泳系統施加溫度梯度,討論溫度梯度對其造成的影響。結果顯示,單純施加溫度梯度之熱泳系統會使奈米孔道兩端產生誘發的電位差引發電滲流。施加電位與溫度場時,一帶負電之球形膠體置於溶液時,同向的溫度梯度與電位梯度可以在幾乎保持同樣的遷移時間的前提下,顯著降低捕捉膠體所需時間來達到更好的捕捉效率。
zh_TW
dc.description.abstractThe rapid development of thin-film preparation techniques has enabled the fabrication of thin films with nanopore sizes, opening up new avenues for the exploration of their unique microstructural properties and potential applications. Among these, the electrical double layer, with a thickness comparable to the pore size, imparts ion selectivity to the nanochannels, rendering them promising candidates for a wide range of applications, including ion filtration, rectification, power generation, and colloid detection.
In the nanofiltration field, previous studies have primarily focused on the single nanopores, neglecting the influence of ion concentration polarization (ICP) and inter-pore interactions. This study delves into the filtration performance of multi-pore thin films, revealing that ICP poses a significant challenge, leading to a substantial decline in rejection. To address this issue, a cross-flow is introduced to assist in eliminating the accumulation of ions at the inlet of the nanopore. The results demonstrate that as the cross-flow velocity increases, the rejection also enhances. However, beyond a specific value, the improvement in performance becomes less pronounced, indicating that the majority of ion accumulation has been effectively removed. Furthermore, by fitting the experimental data, a quantitative relationship between rejection and cross-flow velocity is established, providing a systematic understanding of the velocity in enhancing rejection
In the context of nano-fluid devices, colloid detection stands as another critical research area. Electrophoresis, induced by an applied potential, serves as a powerful tool for capturing and analyzing colloids in solution. However, this application faces two major challenges: achieving high capture speed while maintaining low translocation velocity. These two objectives often conflict, as increasing capture rates typically results in faster translocation, while reducing translocation velocity compromises capture efficiency. To address this challenge, a temperature gradient is introduced into the electrophoresis system, and its impact on the system's performance is investigated. The results reveal that a thermophoresis system, solely driven by a temperature gradient, generates an induced potential difference across the nanochannels, leading to electroosmotic flow. When both an electric potential and a temperature field are applied, for negatively charged spherical colloids suspended in the solution, an aligned temperature gradient and electric potential gradient can significantly reduce the time required for colloid capture while maintaining a similar translocation velocity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:13:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:13:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
Contents V
List of Figures VI
List of Tables XIII
Chapter 1 Cross-flow nanofiltration through multi-pore membrane 1
1.1 Introduction 2
1.2 Modeling 5
1.3 Results and Discussion 8
Chapter 2 Influence of temperature gradients on the electrokinetic translocation of spherical particle through a single solid-state nanopore 23
2.1 Introduction 24
2.2 Modeling 28
2.3 Results and Discussion 33
Conclusions 53
References 56
Appendix A 68
Appendix B 75
-
dc.language.isoen-
dc.subject除鹽zh_TW
dc.subject多孔奈米孔道zh_TW
dc.subject奈米流體裝置zh_TW
dc.subject膠體檢測zh_TW
dc.subject電泳zh_TW
dc.subject熱泳zh_TW
dc.subject奈米過濾zh_TW
dc.subjectthermophoresisen
dc.subjectnanofiltrationen
dc.subjectdesalinationen
dc.subjectmulti-poreen
dc.subjectnanofluidic devicesen
dc.subjectcolloid detectionen
dc.subjectelectrophoresisen
dc.title電動力輸送在側流輔助之奈米過濾及熱輔助膠體檢測上的應用zh_TW
dc.titleElectrokinetic Investigations on Cross-flow Nanofiltration and Thermally-assisted Colloidal Detectionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee諶玉真;曾琇瑱zh_TW
dc.contributor.oralexamcommitteeYu-Jane Sheng;Shio-Jenn Tsengen
dc.subject.keyword奈米過濾,除鹽,多孔奈米孔道,奈米流體裝置,膠體檢測,電泳,熱泳,zh_TW
dc.subject.keywordnanofiltration,desalination,multi-pore,nanofluidic devices,colloid detection,electrophoresis,thermophoresis,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202403177-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-07-25-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
5.35 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved