Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95743
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯佳吟zh_TW
dc.contributor.advisorChia-Ying Koen
dc.contributor.author李佳怡zh_TW
dc.contributor.authorJia-Yi Lien
dc.date.accessioned2024-09-16T16:12:45Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citationAmarasekare, P. (2015). Effects of temperature on consumer-resource interactions. Journal of Animal Ecology, 84(3), 665-679. https://doi.org/10.1111/1365-2656.12320
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. https://doi.org/10.1016/j.envint.2017.02.013
Barord, G. J., Keister, K. N., & Lee, P. G. (2010). Determining the effects of stocking density and temperature on growth and food consumption in the pharaoh cuttlefish, Sepia pharaonis, Ehrenberg 1890. Aquaculture International, 18(3), 271-283. https://doi.org/10.1007/s10499-009-9242-x
Bertucci, J. I., & Bellas, J. (2021). Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus). Science of the Total Environment, 782, 146888. https://doi.org/10.1016/j.scitotenv.2021.146888.
Bidel, F., Di Poi, C., Imarazene, B., Koueta, N., Budzinski, H., Van Delft, P., Bellanger, C., & Jozet-Alves, C. (2016). Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish. Environmental Science and Pollution Research, 23, 5030-5045. https://doi.org/10.1007/s11356-015-4591-7
Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution, 25(11), 653-659. https://doi.org/10.1016/j.tree.2010.08.003
Boavida-Portugal, J., Guilhaumon, F., Rosa, R., & Araújo, M. B. (2022). Global patterns of coastal Cephalopod diversity under climate change. Frontiers in Marine Science, 8, 740781. https://doi.org/10.3389/fmars.2021.740781
Borges, F. O., Sampaio, E., Santos, C. P., & Rosa, R. (2023). Climate-change impacts on Cephalopods: A meta-analysis. Integrative And Comparative Biology, 63(6), 1240-1265. https://doi.org/10.1093/icb/icad102
Boucaud-Camou, E., Yim, M., & Tresgot, A. (1985). Feeding and digestion of young Sepia officinalis L. (Mollusca: Cephalopoda) during post-hatching development. Vie et Milieu / Life & Environment, 35, 263-266. https://hal.sorbonne-universite.fr/hal-03022221
Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P., Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M., Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H., McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., Pörtner, H. O. (2018). Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review. Global Change Biology, 24(6), 2239-2261. https://doi.org/10.1111/gcb.14102
Brierley, A. S., & Kingsford, M. J. (2009). Impacts of climate change on marine organisms and ecosystems. Current Biology, 19(14), R602-R614. https://doi.org/10.1016/j.cub.2009.05.046
Brown, C. J., O’Connor, M. I., Poloczanska, E. S., Schoeman, D. S., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Pandolfi, J. M., Parmesan, C., & Richardson, A. J. (2016). Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Global Change Biology, 22(4), 1548-1560. https://doi.org/10.1111/gcb.13184
Catarino, A. I., Asselman, J., Niu, Z., & Everaert, G. (2022). Micro- and nanoplastics effects in a multiple stressed marine environment. Journal of Hazardous Materials Advances, 7, 100119. https://doi.org/10.1016/j.hazadv.2022.100119
Chen, J. Y. S., Lee, Y. C., & Walther, B. A. (2020). Microplastic contamination of three commonly consumed seafood species from Taiwan: A pilot study. Sustainability, 12(22), 9543. https://doi.org/10.3390/su12229543
Chung, M. T., Huang, K. F., You, C. F., Chiao, C. C., & Wang, C. H. (2020). Elemental ratios in cuttlebone indicate growth rates in the cuttlefish Sepia pharaonis. Frontiers in Marine Science, 6, 796. https://doi.org/10.3389/fmars.2019.00796
Chung, W. S., Marshall, N. J., Watson, S. A., Munday, P. L., & Nilsson, G. E. (2014). Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology, 217(3), 323-326. https://doi.org/10.1242/jeb.092478
Court, M., Paula, J. R., Macau, M., Otjacques, E., Repolho, T., Rosa, R., & Lopes, V. M. (2022). Camouflage and exploratory avoidance of newborn cuttlefish under warming and acidification. Biology, 11(10), 1394. https://doi.org/10.3390/biology11101394
Daniel, D. B., Ashraf, P. M., Thomas, S. N., & Thomson, K. T. (2021). Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere, 264, 128554. https://doi.org/10.1016/j.chemosphere.2020.128554
de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645, 1029-1039. https://doi.org/10.1016/j.scitotenv.2018.07.207
Dorey, N., Melzner, F., Martin, S., Oberhänsli, F., Teyssié, J. L., Bustamante, P., Gattuso, J. P., & Lacoue-Labarthe, T. (2013). Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Marine Biology, 160, 2007-2022. https://doi.org/10.1007/s00227-012-2059-6
Doubleday, Z. A., Prowse, T. A. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., & Gillanders, B. M. (2016). Current Biology Global proliferation of cephalopods. Current Biology, 26(10), R406-R407. https://doi.org/10.1016/j.cub.2016.04.002
Elizalde-Velázquez, A., Carcano, A. M., Crago, J., Green, M. J., Shah, S. A., & Cañas-Carrell, J. E. (2020). Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. Environmental Pollution, 259, 113937. https://doi.org/10.1016/j.envpol.2020.113937
Fabry, V. J., Seibel, B. A., Feely, R. A., Orr Fabry, J. C., & Fabry, V. J. (2006). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3), 414-432. https://doi.org/10.1093/icesjms/fsn048
Ferrari, M. C. O., Munday, P. L., Rummer, J. L., Mccormick, M. I., Corkill, K., Watson, S. A., Allan, B. J. M., Meekan, M. G., & Chivers, D. P. (2015). Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Global Change Biology, 21(5), 1848-1855. https://doi.org/10.1111/gcb.12818
Fiorito, G., Affuso, A., Basil, J., Cole, A., de Girolamo, P., D’angelo, L., Dickel, L., Gestal, C., Grasso, F., Kuba, M., Mark, F., Melillo, D., Osorio, D., Perkins, K., Ponte, G., Shashar, N., Smith, D., Smith, J., & Andrews, P. L. (2015). Guidelines for the care and welfare of Cephalopods in research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory Animals, 49(2_suppl), 1-90. https://doi.org/10.1177/0023677215580006
Firmino, V. C., Martins, R. T., Brasil, L. S., Cunha, E. J., Pinedo-Garcia, R. B., Hamada, N., & Juen, L. (2023). Do microplastics and climate change negatively affect shredder invertebrates from an amazon stream? An ecosystem functioning perspective. Environmental Pollution, 321, 121184. https://doi.org/10.1016/j.envpol.2023.121184
Ford, H. V., Jones, N. H., Davies, A. J., Godley, B. J., Jambeck, J. R., Napper, I. E., Suckling, C. C., Williams, G. J., Woodall, L. C., & Koldewey, H. J. (2022). The fundamental links between climate change and marine plastic pollution. Science of the Total Environment, 806, 150392. https://doi.org/10.1016/j.scitotenv.2021.150392
Forsythe, J., Lee, P., Walsh, L., & Clark, T. (2002). The effects of crowding on growth of the European cuttlefish, Sepia officinalis Linnaeus, 1758 reared at two temperatures. Journal of Experimental Marine Biology and Ecology, 269(2), 173-185. https://doi.org/10.1016/S0022-0981(02)00006-0
Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology and Evolution, 1(5), 0116. https://doi.org/10.1038/s41559-017-0116
Gallowaya, T. S., & Lewisa, C. N. (2016). Marine microplastics spell big problems for future generations. Proceedings of the National Academy of Sciences of the United States of America, 113(9), 2331-2333. https://doi.org/10.1073/pnas.1600715113
Gibson, R., Atkinson, R., Gordon, J., Smith, I., & Hughes, D. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and marine biology an annual review, 49, 1-42.
Golikov, A. V., Sabirov, R. M., Lubin, P. A., & Jørgensen, L. L. (2013). Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity, 14(1), 28-35. https://doi.org/10.1080/14888386.2012.702301
Grigoriou, P., & Richardson, C. A. (2009). Effect of body mass, temperature and food deprivation on oxygen consumption rate of common cuttlefish Sepia officinalis. Marine Biology, 156(12), 2473-2481. https://doi.org/10.1007/s00227-009-1272-4
Guppy, M., & Withers, P. (1999). Metabolic depression in animals : physiological perspectives and biochemical generalizations. Biological Reviews, 74(1), 1-40. https://doi.org/10.1017/S0006323198005258
Gutowska, M. A., Melzner, F., Langenbuch, M., Bock, C., Claireaux, G., & Pörtner, H. O. (2010). Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B, 180, 323-335. https://doi.org/10.1007/s00360-009-0412-y
Gutowska, M. A., Pörtner, H. O., & Melzner, F. (2008). Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Marine Ecology Progress Series, 373, 303-309. https://doi.org/10.3354/meps07782
Helmuth, B., Mieszkowska, N., Moore, P., & Hawkins, S. J. (2006). Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 373-404. https://doi.org/10.1146/annurev.ecolsys.37.091305.110149
Horton, A. A., & Barnes, D. K. A. (2020). Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. Science of the Total Environment, 738, 140349. https://doi.org/10.1016/j.scitotenv.2020.140349
Horwitz, R., Norin, T., Watson, S. A., Pistevos, J. C. A., Beldade, R., Hacquart, S., Gattuso, J. P., Rodolfo-Metalpa, R., Vidal-Dupiol, J., Killen, S. S., & Mills, S. C. (2020). Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc. Scientific Reports, 10(1), 5461. https://doi.org/10.1038/s41598-020-62304-4
Intergovernmental Panel on Climate Change (IPCC). (2022). Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 447-588. https://doi.org/10.1017/9781009157964.007
Ivar Do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352-364. https://doi.org/10.1016/j.envpol.2013.10.036
Nabhitabhata, J. (2014). Sepia pharaonis. In Iglesias, J., Fuentes, L., Villanueva, R. (eds.), Cephalopod Culture, 205-224. Springer. https://doi.org/10.1007/978-94-017-8648-5_12.
Jovanović, B. (2017). Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integrated Environmental Assessment and Management, 13(3), 510-515. https://doi.org/10.1002/ieam.1913
Killen, S. S., Marras, S., & Mckenzie, D. J. (2011). Fuel, fasting, fear: Routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. Journal of Animal Ecology, 80(5), 1024-1033. https://doi.org/10.1111/j.1365-2656.2011.01844.x
Ko, C. Y., Lee, Y. C., Wang, Y. C., Hsu, H. H., Chow, C. H., Chen, R. G., Liu, T. H., Chen, C. S., Chiu, T. S., Chiang, D. H., Wu, R. F., & Tseng, W. L. (2024). Modulations of ocean-atmosphere interactions on squid abundance over Southwest Atlantic. Environmental Research, 250, 118444. https://doi.org/10.1016/j.envres.2024.118444
Kratina, P., Watts, T. J., Green, D. S., Kordas, R. L., & O’Gorman, E. J. (2019). Interactive effects of warming and microplastics on metabolism but not feeding rates of a key freshwater detritivore. Environmental Pollution, 255, 113259. https://doi.org/10.1016/j.envpol.2019.113259
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., R. Christian, J., P. Dunne, J., Gehlen, M., Ilyina, T., G. John, J., Lenton, A., Li, H., S. Lovenduski, N., C. Orr, J., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., A. Stock, C., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., & Ziehn, T. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 17(13), 3439-3470. https://doi.org/10.5194/bg-17-3439-2020
Lee, K. W., Shim, W. J., Kwon, O. Y., & Kang, J. H. (2013). Size-dependent effects of micro polystyrene particles in the marine Copepod Tigriopus japonicus. Environmental Science and Technology, 47(19), 11278-11283. https://doi.org/10.1021/es401932b
Lee, M. F., Lin, C. Y., Chiao, C. C., & Lu, C. C. (2016). Reproductive behavior and embryonic development of the pharaoh cuttlefish, Sepia pharaonis (Cephalopoda: Sepiidae). Zoological Studies, 55, e41. https://doi.org/10.6620/ZS.2016.55-41
Lima, F. P., & Wethey, D. S. (2012). Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nature Communications, 3(1), 704. https://doi.org/10.1038/ncomms1713
Liu, X., Bao, X., Wang, X., Li, C., Yang, J., & Li, Z. (2023). Time-dependent immune injury induced by short-term exposure to nanoplastics in the Sepia esculenta larvae. Fish and Shellfish Immunology, 132, 108477. https://doi.org/10.1016/j.fsi.2022.108477
Liu, Y. C., Liu, T. H., Su, C. H., & Chiao, C. C. (2017). Neural organization of the optic lobe changes steadily from late embryonic stage to adulthood in cuttlefish Sepia pharaonis. Frontiers in Physiology, 8, 538. https://doi.org/10.3389/fphys.2017.00538
López-Rojo, N., Pérez, J., Alonso, A., Correa-Araneda, F., & Boyero, L. (2020). Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning. Environmental Pollution, 259, 113898. https://doi.org/10.1016/j.envpol.2019.113898
Lu, C.-C., & Chung, W.-S. (2017). 臺灣產頭足類動物圖鑑 = Guide to the cephalopods of Taiwan / 盧重成, 鍾文松著 (第一版). 國立自然科學博物館.
Messenger, J. B. (1968). The visual attack of the cuttlefish, Sepia officinalis. Animal Behaviour, 16(2-3), 342-357.
Moura, É., Pimentel, M., Santos, C. P., Sampaio, E., Pegado, M. R., Lopes, V. M., & Rosa, R. (2019). Cuttlefish early development and behavior under future high CO2 conditions. Frontiers in Physiology, 10, 975. https://doi.org/10.3389/fphys.2019.00975
Nagelkerken, I., & Munday, P. L. (2016). Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Global Change Biology, 22(3), 974-989. https://doi.org/10.1111/gcb.13167
National Oceanic and Atmospheric Administration. (2024, April 5). No sign of greenhouse gases increases slowing in 2023. NOAA. https://research.noaa.gov/2024/04/05/no-sign-of-greenhouse-gases-increases-slowing-in-2023/
Orr, J. (2011). Recent and future changes in ocean carbonate chemistry. Ocean acidification, 1, 41-66. Oxford University Press, Incorporated.
Otjacques, E., Repolho, T., Paula, J. R., Simão, S., Baptista, M., & Rosa, R. (2020). Cuttlefish buoyancy in response to food availability and ocean acidification. Biology, 9(7), 147. https://doi.org/10.3390/biology9070147
Peinado, P., Fitzgibbon, Q. P., Semmens, J. M., Tracey, S., & Pecl, G. T. (2023). Understanding species responses in a changing world by examining the predatory behaviour of southern calamari to changes on temperature. Frontiers in Marine Science, 10, 1113984. https://doi.org/10.3389/fmars.2023.1113984
Pimentel, M. S., Trübenbach, K., Faleiro, F., Boavida-Portugal, J., Repolho, T., & Rosa, R. (2012). Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Marine Biology, 159(9), 2051-2059. https://doi.org/10.1007/s00227-012-1991-9
Prasetyo, D., & E Putri, L. S. (2021). Cuttlefish (Sepia pharaonis Ehrenberg, 1831) as a bioindicator of microplastic pollution Aquaculture, Aquarium, Conservation & Legislation, 14(2), 918-930.
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rosa, R., Dierssen, H. M., Gonzalez, L., & Seibel, B. A. (2008). Ecological biogeography of cephalopod molluscs in the Atlantic Ocean: Historical and contemporary causes of coastal diversity patterns. Global Ecology and Biogeography, 17(5), 600-610. https://doi.org/10.1111/j.1466-8238.2008.00397.x
Rosa, R., & Seibel, B. A. (2008). Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Sciences, 105(52), 20776-20780. https://doi.org/10.1073/pnas.0806886105
Rosa, R., Trubenbach, K., Repolho, T., Pimentel, M., Faleiro, F., Boavida-Portugal, J., Baptista, M., Lopes, V. M., Dionísio, G., Leal, M. C., Calado, R., & Pörtner, H. O. (2013). Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proceedings of the Royal Society B: Biological Sciences, 280(1768), 20131695. https://doi.org/10.1098/rspb.2013.1695
Roscian, M., Herrel, A., Zaharias, P., Cornette, R., Fernandez, V., Kruta, I., Cherel, Y., & Rouget, I. (2022). Every hooked beak is maintained by a prey: Ecological signal in cephalopod beak shape. Functional Ecology, 36(8), 2015-2028. https://doi.org/10.1111/1365-2435.14098
Safi, G., Martinez, A. S., Le Pabic, C., Le Bihan, E., Robin, J. P., & Koueta, N. (2018). Digestive enzyme ratios are good indicators of hatchling yolk reserve and digestive gland maturation in early life stages of cuttlefish Sepia officinalis L.: Application of these new tools in ecology and aquaculture. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 188(1), 57-76. https://doi.org/10.1007/s00360-017-1115-4
Salerno, M., Berlino, M., Mangano, M. C., & Sarà, G. (2021). Microplastics and the functional traits of fishes: A global meta-analysis. Global Change Biology, 27(2), 2645-2655. https://doi.org/10.1111/gcb.15570
Santos, R. G., Machovsky-Capuska, G. E., & Andrades, R. (2021). Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science, 373(6550), 56-60. https://doi.org/10.1126/science.abh094
Seibel, B. A., & Walsh, P. J. (2001). Potential Impacts of CO2 Injection on Deep-Sea Biota. Science, 294(5541), 319-320. https://doi.org/10.1126/science.1065301
Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R., & Byrne, M. (2010). Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE, 5(6), e11372. https://doi.org/10.1371/journal.pone.0011372
Smith, J. G., Tomoleoni, J., Staedler, M., Lyon, S., Fujii, J., & Tinker, M. T. (2021). Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proceedings of the National Academy of Sciences, 118(11), e2012493118. https://doi.org/10.1073/pnas.2012493118
Somero, G. N. (2010). The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers.” Journal of Experimental Biology, 213(6), 912-920. https://doi.org/10.1242/jeb.037473
Spady, B. L., Munday, P. L., & Watson, S. A. (2018). Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biology, 24(6), 2585-2596. https://doi.org/10.1111/gcb.14098
Spady, B. L., Watson, S. A., Chase, T. J., & Munday, P. L. (2014). Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biology Open, 3(11), 1063-1070. https://doi.org/10.1242/bio.20149894
Sugimoto, C., & Ikeda, Y. (2013). Comparison of the Ontogeny of Hunting Behavior in Pharaoh Cuttlefish (Sepia pharaonis) and Oval Squid (Sepioteuthis lessoniana). The Biological Bulletin, 225(1), 50-59. https://doi.org/10.1086/BBLv225n1p50
Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., Goïc, N. Le, Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., & Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences, 113(9), 2430-2435. https://doi.org/10.1073/pnas.1519019113
Tito, O. D., Ferdinand, R., Traifalgar, M., Pedroso, F. L., Quinitio, G. F., & Peralta, J. P. (2016). Digestive enzymes of the developing Sepia pharaonis Ehrenberg 1831 paralarvae. The Israeli Journal of Aquaculture-Bamidgeh, 68, 1-8. http://hdl.handle.net/10524/54933
Villanueva, R., Perricone, V., & Fiorito, G. (2017). Cephalopods as predators: A short journey among behavioral flexibilities, adaptions, and feeding habits. Frontiers in Physiology, 8, 598. https://doi.org/10.3389/fphys.2017.00598
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., & Gobler, C. J. (2014). Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science, 148, 1-13. https://doi.org/10.1016/j.ecss.2014.05.027
Wang, X., Song, L., Chen, Y., Ran, H., & Song, J. (2017). Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Marine Environmental Research, 131, 10-18. https://doi.org/10.1016/j.marenvres.2017.09.001
Warrant, E. J., & Locket, N. A. (2004). Vision in the deep sea. Biological Reviews of the Cambridge Philosophical Society,79(3), 671-712. https://doi.org/10.1017/S1464793103006420
Weber, A., Scherer, C., Brennholt, N., Reifferscheid, G., & Wagner, M. (2018). PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environmental Pollution, 234, 181-189. https://doi.org/10.1016/j.envpol.2017.11.014
Wen, B., Zhang, N., Jin, S. R., Chen, Z. Z., Gao, J. Z., Liu, Y., Liu, H. P., & Xu, Z. (2018). Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquatic Toxicology, 195, 67-76. https://doi.org/10.1016/j.aquatox.2017.12.010
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031
Wu, Y.-L., Ho, C.-W., Chen, H.-S., Chen, K.-S., Hsu, Y.-W., Chen, C.-Y., & Chen, M.-H. (2023). Spatiotemporal variation on the species composition of benthic Cephalopods in Taijiang National Park, Taiwan. Journal of National Park, 33(2),1-15.
Xavier, J. C., Allcock, A. L., Cherel, Y., Lipinski, M. R., Pierce, G. J., Rodhouse, P. G. K., Rosa, R., Shea, E. K., Strugnell, J. M., Vidal, E. A. G., Villanueva, R., & Ziegler, A. (2015). Future challenges in cephalopod research. Journal of the Marine Biological Association of the United Kingdom 95(5), 999-1015. https://doi.org/10.1017/S0025315414000782
Xavier, J. C., Peck, L. S., Fretwell, P., & Turner, J. (2016). Climate change and polar range expansions: Could cuttlefish cross the Arctic? Marine Biology, 163, 1-5. https://doi.org/10.1007/s00227-016-2850-x
Xie, J., Sun, X., Li, P., Zhou, T., Jiang, R., & Wang, X. (2023). The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). Marine Pollution Bulletin, 190, 114831. https://doi.org/10.1016/j.marpolbul.2023.114831
Yin, L., Chen, B., Xia, B., Shi, X., & Qu, K. (2018). Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). Journal of Hazardous Materials, 360, 97-105. https://doi.org/10.1016/j.jhazmat.2018.07.110
Yu, S. P., & Chan, B. K. K. (2020). Effects of polystyrene microplastics on larval development, settlement, and metamorphosis of the intertidal barnacle Amphibalanus amphitrite. Ecotoxicology and Environmental Safety, 194, 110362. https://doi.org/10.1016/j.ecoenv.2020.110362
Zakroff, C., Mooney, T. A., & Berumen, M. L. (2019). Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology, 166(5), 62. https://doi.org/10.1007/s00227-019-3510-8
Zheng, J., Li, C., & Zheng, X. (2022a). Polystyrene microplastic ingestion induces the damage in digestive gland of Amphioctopus fangsiao at the physiological, inflammatory, metabolome and transcriptomic levels. Environmental Pollution, 315, 120480. https://doi.org/10.1016/j.envpol.2022.120480
Zheng, J., Li, C., & Zheng, X. (2022b). Toxic effects of polystyrene microplastics on the intestine of Amphioctopus fangsiao (Mollusca: Cephalopoda): From physiological responses to underlying molecular mechanisms. Chemosphere, 308, 136362. https://doi.org/10.1016/j.chemosphere.2022.136362
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95743-
dc.description.abstract氣候變遷和環境污染正對海洋生態系統構成嚴峻挑戰,海洋酸化、暖化及微塑膠汙染是其中重要的環境壓力源。過去研究觀察到頭足類在氣候變遷下族群有上升趨勢,然而近年來區域性頭足類漁獲量的下降,引起了頭足類能否在多重環境壓力影響下生存的疑慮。此外生物早期生命階段的脆弱性與行為改變可能會影響到後續族群延續,因此本研究選擇孵化後一週及四週的幼生虎斑烏賊作為實驗動物,設計六組條件:控制組、酸化組、暖化組、微塑膠組、酸暖化組、酸暖化微塑膠組,以釐清暖化、酸化和微塑膠對幼生烏賊的影響,各組均透過捕食行為實驗、耗氧實驗、測量外套膜長和溼重來了解其行為、代謝和生長表現情況。研究發現,在捕食行為方面,雖然暴露在暖化環境中會導致幼生虎斑烏賊孵化一週後所需的捕食時間增加,但到了孵化後四週,各組之間所需的捕食時間表現並沒有顯著差異;暖化和微塑膠環境下會使幼生虎斑烏賊代謝增加,而暴露在酸化下則減緩了代謝表現;暴露在酸化和微塑膠污染的環境下,會對孵化後四週幼生虎斑烏賊溼重產生顯著負面影響,分別下降13%、15%。本研究證實,氣候變遷及環境污染可能會給幼生虎斑烏賊帶來相關的生理挑戰,但其捕食能力並不容易受到破壞。本研究為理解多重環境壓力源對幼生虎斑烏賊的影響提供了重要依據,可以更全面地理解在未來變遷海洋中頭足類動物如何反應及適應。zh_TW
dc.description.abstractClimate change and environmental pollution pose significant challenges to marine ecosystems, with ocean acidification, warming, and microplastic pollution being significant environmental stressors. Previous studies observed an increase in cephalopod populations under climate change. However, recent declines in regional cephalopod catches have raised concerns about their ability to survive under multiple environmental stressors. Additionally, the vulnerability and behavioral changes during early life stages of organisms could impact subsequent population sustainability. Therefore, this study focused on juvenile pharaoh cuttlefish (Sepia pharaonis) at one and four weeks after hatching. Six experimental conditions were designed: control, acidification, warming, microplastic, acidification-warming, and acidification-warming-microplastic, to clarify the effects of warming, acidification, and microplastic on juvenile cuttlefish. Each group was evaluated for predation behavior, metabolism, and growth performance through predation behavior experiments, oxygen consumption experiments, and measurements of mantle length and wet weight. The results revealed that while exposure to warming environments increased the time required for one-week-old juvenile pharaoh cuttlefish to catch prey, there were no significant differences in predation behavior among groups by four weeks after hatching. Both warming and microplastic environments led to increased metabolism, whereas exposure to acidification reduced metabolic performance. Moreover, exposure to acidification and microplastic pollution significantly reduced the wet weight of four-week-old juvenile pharaoh cuttlefish by 13% and 15%, respectively. This research confirms that climate change and environmental pollution may pose physiological challenges to juvenile pharaoh cuttlefish, but their predation abilities remain relatively unaffected. This study provides crucial insights into understanding the impacts of multiple environmental stressors on juvenile pharaoh cuttlefish. It offers a comprehensive understanding of how cephalopod may respond and adapt to future changing ocean.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:12:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:12:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
第一章、前言 1
1.1. 變遷中的海洋 1
1.2. 頭足類的現況 3
1.3. 酸化及暖化的影響 3
1.4. 微塑膠汙染的影響 5
1.5. 實驗目的 6
第二章、材料與方法 8
2.1. 實驗動物及養護 8
2.2. 實驗設計 8
2.2.1. 實驗組別 8
2.2.2. 實驗變因控制 9
2.2.3. 系統設置與水質維持 9
2.2.4. 實驗流程 10
2.3. 捕食行為實驗與生理實驗 11
2.3.1. 捕食行為實驗 11
2.3.2. 耗氧實驗 11
2.3.3. 犧牲與外套膜長、溼重測量 12
2.4. 資料分析 12
2.4.1. 捕食行為表現分析 12
2.4.2. 代謝表現分析 13
2.4.3. 統計方法 13
第三章、結果 15
3.1. 捕食行為表現 15
3.2. 代謝表現 17
3.3. 生長表現 19
第四章、討論 21
4.1. 環境壓力源對幼生虎斑烏賊生長與代謝表現之影響 21
4.2. 環境壓力源對幼生虎斑烏賊捕食行為表現之影響 23
4.3. 幼生虎斑烏賊捕食行為表現評估 25
4.4. 實驗中虎斑烏賊階段選擇探討 26
4.6. 酸化、暖化、微塑膠操縱實驗之限制 27
第五章、結論 29
參考文獻 31
-
dc.language.isozh_TW-
dc.title變遷海洋中的幼生烏賊:海洋酸化、暖化及微塑膠汙染對其生長及行為之探討zh_TW
dc.titleJuvenile Cuttlefish in a Changing Ocean: Exploring Effects of Ocean Acidification, Warming, and Microplastic Pollution on Growth and Behavioren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何傳愷;何熙誠;曾庸哲zh_TW
dc.contributor.oralexamcommitteeChuan-Kai Ho;Hsi-Cheng Ho;Yung-Che Tsengen
dc.subject.keyword氣候變遷,微塑膠汙染,頭足類,虎斑烏賊,捕食行為,zh_TW
dc.subject.keywordclimate change,microplastic pollution,cephalopod,pharaoh cuttlefish,predation behavior,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202401611-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2026-07-31-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-07-31
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved