請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘 | zh_TW |
| dc.contributor.advisor | Chien-Ming Wu | en |
| dc.contributor.author | 謝旻耕 | zh_TW |
| dc.contributor.author | Min-Ken Hsieh | en |
| dc.date.accessioned | 2024-09-16T16:11:05Z | - |
| dc.date.available | 2024-09-17 | - |
| dc.date.copyright | 2024-09-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), 533–538. https://doi.org/10.1038/s41586-023-06185-3
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Jung, J.-H., & Arakawa, A. (2008). A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Monthly Weather Review, 136(1), 276–294. https://doi.org/10.1175/2007MWR2095.1 Kingma, D. P., & Welling, M. (2019). An Introduction to Variational Autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056 Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv. Retrieved from http://arxiv.org/abs/1312.6114Lai, H.-C., & Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 227, 117418. https://doi.org/10.1016/j.atmosenv.2020.117418 Lai, H.-C., & Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 227, 117418. https://doi.org/10.1016/j.atmosenv.2020.117418 Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., et al. (2022, December 24). GraphCast: Learning skillful medium-range global weather forecasting. arXiv. https://doi.org/10.48550/arXiv.2212.12794 Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I. -chun, Tu, C.-Y., Lan, Y.-Y., et al. (2020). Taiwan Earth System Model Version 1: description and evaluation of mean state. Geoscientific Model Development, 13(9), 3887–3904. https://doi.org/10.5194/gmd-13-3887-2020 Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., et al. (2022, February 22). FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. arXiv. https://doi.org/10.48550/arXiv.2202.11214 Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 8, 42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199 Wu, C.-M., Lin, H.-C., Cheng, F.-Y., & Chien, M.-H. (2019). Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 701–717. https://doi.org/10.1007/s13143-019-00116-x | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95738 | - |
| dc.description.abstract | 本研究旨在透過結合高解析度物理模型TaiwanVVM和變分自編碼器(VAE)神經網絡,在機器學習框架的預測能力和可解釋性之間取得平衡。我們聚焦於東亞冬季季風期間,挑選了此期間可影響臺灣局地環流的各種綜觀尺度環境,使用解析度為2公里的TaiwanVVM進行系集模擬,以研究綜觀尺度條件對於臺灣局地環流的影響;利用這組模擬結果作為VAE之訓練資料集,使其得以捕捉背風渦旋主導的局地環流型態。VAE的特徵空間(latent space)有效地涵蓋了控制局地環流的綜觀條件,這與流體力學上臺灣局地背風渦旋形成原因的物理解釋相符合。這代表VAE能夠學習與背風渦旋形成相關的多重尺度非線性交互作用的現象。當VAE的特徵空間可以解釋為控制各種局地環流情境的綜觀環境流場時,此結果即建構了利用綜觀環境風速和風向來預測局地環流的降維模型。該模型能有效預測由大尺度環流驅動的局地環流,並可應用於未來暖化情境下評估臺灣局地環流與伴隨的空污天氣。本研究所提出的框架提供了一種具有物理解釋性並有效率的方法來評估全球暖化在局地造成的影響,有助於氣候適應政策的制定。本研究亦展示了透過機器學習可在高解析度模擬結果中學習其物理關聯,從而促進機器學習應用於大氣科學的可解釋性和可靠性。 | zh_TW |
| dc.description.abstract | This study aims to balance predictive power with interpretability by integrating the high-resolution physical model TaiwanVVM with the variational autoencoder (VAE) neural network framework. Focusing on local circulation in Taiwan during the East Asian Winter Monsoon (EAWM), we conduct large ensemble semi-realistic simulations using TaiwanVVM at a high resolution of 2 km, selecting critical characteristics of various synoptic flow regimes to examine their effects on local circulation. The VAE was trained on this ensemble dataset to capture essential representations of local circulation scenarios associated with lee vortices. The VAE's latent space effectively encapsulates synoptic flow regimes as controlling factors, aligning with the physical understanding of Taiwan’s local circulation dynamics. This indicates that the VAE can learn the nonlinear characteristics of multiscale interactions involving the lee vortex. As the latent space of VAE is interpreted as the physical parameters of upstream flow regimes driving the variability of local flows in large ensemble simulations, it serves as a reduced-order model for predicting local circulation based on synoptic wind speed and direction. This model efficiently predicts local circulation patterns driven by synoptic flow regimes and is applicable to future climate projections, enabling the assessment of global warming's impact on local circulation and associated future pollution weather. The proposed framework provides a physically explainable and efficient method for aiding policy making in climate change adaptations. This study demonstrates that our machine learning framework can learn physical connections from high-resolution ensemble simulations, thereby promoting interpretability and reliability in their application. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:11:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-16T16:11:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
誌謝 i 摘要 iii Abstract iv 1. Introduction 1 2. The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan 11 2.1 Introduction 12 2.2 Observational Basis 16 2.3 Model and experiment design 19 2.3.1 TaiwanVVM 19 2.3.2 Idealized experiments 20 2.4 Simulation results 22 2.4.1 Local circulation associated with the lee vortex under the northeast monsoon 22 2.4.2 Tracer transport processes in central Taiwan 25 2.4.3 Impact of the thinning of mixed-layer depth in the evening 28 2.5 Summary and Discussion 31 2.6 Appendix: A pollution episode in Taiwan with the existence of the lee vortex on March 27th, 2012 34 2.7 Data Availability Statement 34 2.8 Supplement 35 2.9 Acknowledgments 35 2.10 References 35 2.11 Tables 41 2.12 Figures 42 3. Developing an Explainable Variational Autoencoder (VAE) Framework for Accurate Representation of Local Circulation in Taiwan 56 3.1 Introduction 57 3.2 Data and Methods 63 3.2.1 Semi-Realistic TaiwanVVM Simulation Dataset 64 3.2.2 Variational Autoencoder 66 3.2.3 Explainable VAE Framework 71 3.3 Results 74 3.3.1 Reconstruction performance 74 3.2 Physical Interpretation of the Latent Space 76 3.4 Applicaiton and Discussion 83 3.5 Acknowledgments 89 3.6 Data Availability Statement 89 3.7 References 89 3.8 Tables 96 3.9 Figures 97 4. Using an explainable VAE framework to obtain fine-scale pollution patterns in Taiwan associated with the lee-vortex circulation change from future climate projections 107 4.1 Introduction 108 4.2 Data and Method 112 4.2.1 Synoptic Conditions of Lee-Vortex Days 112 4.2.2 Particulate Pollution Weather of Taiwan under Lee Vortex Days 117 4.2.3 Local circulation of Lee Vortex Days 121 4.3 Results 124 4.3.1 Variability of Lee Vortex Days in TaiESM1 Historical Simulation 124 4.3.2 Trend of Local Pollution Deterioration Condition Occurrence in SSP585 Projection 125 4.3.3 Examination of Consecutive Local Pollution Weather 127 4.4 Discussion 129 4.5 Reference 132 4.6 Figures 136 5. Summary 143 6. Future work 144 7. Reference 145 | - |
| dc.language.iso | en | - |
| dc.subject | 背風渦旋 | zh_TW |
| dc.subject | 可解釋機器學習 | zh_TW |
| dc.subject | 局地環流 | zh_TW |
| dc.subject | 氣候預測 | zh_TW |
| dc.subject | 未來局地天氣 | zh_TW |
| dc.subject | 變分自編碼器 | zh_TW |
| dc.subject | future local weather | en |
| dc.subject | explainable machine learning | en |
| dc.subject | variational autoencoder | en |
| dc.subject | lee vortex | en |
| dc.subject | local circulation | en |
| dc.subject | climate projection | en |
| dc.title | 發展可解釋機器學習框架: 臺灣背風渦漩局地環流之應用 | zh_TW |
| dc.title | Development of an Explainable Machine Learning Framework: Application to Local Circulation Associated with Lee Vortex in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 郭鴻基;羅敏輝;陳維婷;蘇世顥;王懌琪;曾琬鈴 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Chi Kuo;Min-Hui Lo;Wei-Ting Chen;Shih-Hao Su;Yi-Chi Wang;Wan-Ling Tseng | en |
| dc.subject.keyword | 可解釋機器學習,變分自編碼器,背風渦旋,局地環流,氣候預測,未來局地天氣, | zh_TW |
| dc.subject.keyword | explainable machine learning,variational autoencoder,lee vortex,local circulation,climate projection,future local weather, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202402482 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2025-07-29 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 11.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
