請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德 | zh_TW |
| dc.contributor.advisor | Ta-Te Lin | en |
| dc.contributor.author | 劉易霖 | zh_TW |
| dc.contributor.author | Yih-Lin Liu | en |
| dc.date.accessioned | 2024-09-15T16:57:59Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Abdollahi, M., Giovenazzo, P., & Falk, T. H. (2022). Automated beehive acoustics monitoring: A comprehensive review of the literature and recommendations for future work. Applied Sciences, 12(8), 3920. https://doi.org/10.3390/app12083920
Abou-Shaara, H. F. (2014). The foraging behaviour of honey bees, Apis mellifera: a review. Veterinarni medicina, 59(1). https://doi.org/10.17221/7240-VETMED Anwar, O., Keating, A., Cardell-Oliver, R., Datta, A., & Putrino, G. (2023). Apis-Prime: A deep learning model to optimize beehive monitoring system for the task of daily weight estimation. Applied Soft Computing, 110546. https://doi.org/10.1016/j.asoc.2023.110546 Apiculture Global Market Report 2024. (2024). Ayton, S., Tomlinson, S., Phillips, R. D., Dixon, K. W., & Withers, P. C. (2016). Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Journal of Experimental Biology, 219(10), 1552-1562. https://doi.org/10.1242/jeb.137588 Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences, 108(51), 20645-20649. https://doi.org/10.1073/pnas.1115559108 Becsi, B., Formayer, H., & Brodschneider, R. (2021). A biophysical approach to assess weather impacts on honey bee colony winter mortality. Royal Society open science, 8(9), 210618. https://doi.org/10.1098/rsos.210618 Bencsik, M., Le Conte, Y., Reyes, M., Pioz, M., Whittaker, D., Crauser, D., Simon Delso, N., & Newton, M. I. (2015). Honeybee colony vibrational measurements to highlight the brood cycle. PloS one, 10(11), e0141926. https://doi.org/10.1371/journal.pone.0141926 Braga, A. R., Gomes, D. G., Rogers, R., Hassler, E. E., Freitas, B. M., & Cazier, J. A. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and electronics in agriculture, 169, 105161. https://doi.org/10.1016/j.compag.2019.105161 Chittka, L., & Waser, N. M. (1997). Why red flowers are not invisible to bees. Israel Journal of Plant Sciences, 45(2-3), 169-183. https://doi.org/10.1080/07929978.1997.10676682 Crawford, M. (2017). Automated collection of honey bee hive data using the Raspberry Pi Appalachian State University Boone, NC, USA]. Cuevas, A., Febrero, M., & Fraiman, R. (2004). An anova test for functional data. Computational statistics & data analysis, 47(1), 111-122. https://doi.org/10.1016/j.csda.2003.10.021 Degenfellner, J., & Templ, M. (2024). Modeling bee hive dynamics: Assessing colony health using hive weight and environmental parameters. Computers and electronics in agriculture, 218, 108742. https://doi.org/10.1080/0005772X.1924.11095639 Dineva, K., & Atanasova, T. (2018). OSEMN process for working over data acquired by IoT devices mounted in beehives. Curr. Trends Nat. Sci, 7(13), 47-53. https://doi.org/10.3390/s19091978 Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in bee hives for early detection of the swarming period. Computers and electronics in agriculture, 64(1), 72-77. https://doi.org/10.1016/j.compag.2008.05.010 Hambleton, J. I. (1925). The effect of weather upon the change in weight of a colony of bees during the honey flow. US Department of Agriculture. Ho, I.-C., Lai, Y.-J., Chiang, P.-N., Chen, Y.-F., & Lin, T.-T. (2022). Integration of Multiple Sensors for Beehive Health Status Monitoring and Assessment. 2022 ASABE Annual International Meeting, Holst, N., & Meikle, W. G. (2018). Breakfast canyon discovered in honeybee hive weight curves. Insects, 9(4), 176. https://doi.org/10.3390/insects9040176 Hong, W., Xu, B., Chi, X., Cui, X., Yan, Y., & Li, T. (2020). Long-term and extensive monitoring for bee colonies based on internet of things. IEEE Internet of Things Journal, 7(8), 7148-7155. https://doi.org/10.1109/JIOT.2020.2981681 Human, H., Nicolson, S. W., & Dietemann, V. (2006). Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften, 93, 397-401. https://doi.org/10.1007/s00114-006-0117-y Hunt, J., & Richard, F.-J. (2013). Intracolony vibroacoustic communication in social insects. Insectes Sociaux, 60, 403-417. https://doi.org/10.1007/s00040-013-0311-9 Jacques, A., Laurent, M., Consortium, E., Ribière-Chabert, M., Saussac, M., Bougeard, S., Budge, G. E., Hendrikx, P., & Chauzat, M.-P. (2017). A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PloS one, 12(3), e0172591. https://doi.org/10.1371/journal.pone.0172591 Jekel, C., & Venter, G. (2019). A python library for fitting 1D continuous piecewise linear functions. In: Tech. Rep., 2019, doi: 10.13140/RG. 2.2. 28530.56007. Kirchner, W. (1994). Hearing in honeybees: the mechanical response of the bee's antenna to near field sound. Journal of Comparative Physiology A, 175, 261-265. https://doi.org/10.1007/BF00192985 Kirchner, W. H., Dreller, C., & Towne, W. F. (1991). Hearing in honeybees: operant conditioning and spontaneous reactions to airborne sound. Journal of Comparative Physiology A, 168, 85-89. https://doi.org/10.1007/BF00217106 Kiromitis, D. I., Bellos, C. V., Stefanou, K. A., Stergios, G. S., Katsantas, T., & Kontogiannis, S. (2022). Bee sound detector: An easy-to-install, low-power, low-cost beehive conditions monitoring system. Electronics, 11(19), 3152. https://doi.org/10.3390/electronics11193152 Koetz, A. H. (2013). Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects, 4(4), 558-592. https://doi.org/10.3390/insects4040558 Kraus, B., Velthuis, H. H., & Tingek, S. (1998). Temperature profiles of the brood nests of Apis cerana and Apis mellifera colonies and their relation to varroosis. Journal of apicultural research, 37(3), 175-181. https://doi.org/10.1080/00218839.1998.11100969 Kronenberg, F., & Heller, H. C. (1982). Colonial thermoregulation in honey bees (Apis mellifera). Journal of comparative physiology, 148, 65-76. https://doi.org/10.1007/BF00688889 Lawson, D. A., & Rands, S. A. (2019). The effects of rainfall on plant–pollinator interactions. Arthropod-Plant Interactions, 13(4), 561-569. https://doi.org/10.1007/s11829-019-09686-z Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499-510. https://doi.org/10.1038/nature.2015.17950 Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM computing surveys (CSUR), 50(6), 1-45. https://doi.org/10.1016/B978-0-12-814761-0.00014-9 Maćkiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3), 303-342. https://doi.org/10.4135/9781412983907.n1497 Marchal, P., Buatois, A., Kraus, S., Klein, S., Gomez-Moracho, T., & Lihoreau, M. (2020). Automated monitoring of bee behaviour using connected hives: Towards a computational apidology. Apidologie, 51, 356-368. https://doi.org/10.1007/s13592-019-00714-8 Meikle, W., & Holst, N. (2015). Application of continuous monitoring of honeybee colonies. Apidologie, 46, 10-22. https://doi.org/10.1007/s13592-014-0298-x Meikle, W., Weiss, M., & Stilwell, A. (2016). Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives. Apidologie, 47, 1-14. https://doi.org/10.1007/s13592-015-0370-1 Meikle, W. G., Holst, N., Colin, T., Weiss, M., Carroll, M. J., McFrederick, Q. S., & Barron, A. B. (2018). Using within-day hive weight changes to measure environmental effects on honey bee colonies. PloS one, 13(5), e0197589. https://doi.org/10.1371/journal.pone.0197589 Murphy, F. E., Srbinovski, B., Magno, M., Popovici, E. M., & Whelan, P. M. (2015). An automatic, wireless audio recording node for analysis of beehives. 2015 26th Irish Signals and Systems Conference (ISSC), Ngo, T. N., Rustia, D. J. A., Yang, E.-C., & Lin, T.-T. (2021). Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Computers and electronics in agriculture, 187, 106239. https://doi.org/10.1016/j.compag.2021.106239 Ochoa, I. Z., Gutierrez, S., & Rodríguez, F. (2019). Internet of things: Low cost monitoring beehive system using wireless sensor network. 2019 IEEE International Conference on Engineering Veracruz (ICEV), Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramérez, E., & Galván-Tejada, C. E. (2017). Frequency Analysis of Honey Bee Buzz for Automatic Recognition of Health Status: A Preliminary Study. Res. Comput. Sci., 142, 89-98. https://doi.org/10.13053/rcs-142-1-9 Roubik, D. W., & Buchmann, S. L. (1984). Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia, 61, 1-10. https://doi.org/10.1007/BF00379082 Simpson, J. (1961). Nest Climate Regulation in Honey Bee Colonies: Honey bees control their domestic environment by methods based on their habit of clustering together. Science, 133(3461), 1327-1333. https://doi.org/10.1126/science.133.3461.1327 St. Clair, A. L., Beach, N. J., & Dolezal, A. G. (2022). Honey bee hive covers reduce food consumption and colony mortality during overwintering. PloS one, 17(4), e0266219. https://doi.org/10.1371/journal.pone.0266219 Tashakkori, R., Hamza, A. S., & Crawford, M. B. (2021). Beemon: An IoT-based beehive monitoring system. Computers and electronics in agriculture, 190, 106427. https://doi.org/10.1016/j.compag.2021.106427 Terenzi, A., Cecchi, S., & Spinsante, S. (2020). On the importance of the sound emitted by honey bee hives. Veterinary Sciences, 7(4), 168. https://doi.org/10.3390/vetsci7040168 Terenzi, A., Cecchi, S., Spinsante, S., Orcioni, S., & Piazza, F. (2019). Real-time system implementation for bee hives weight measurement. 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), VanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., & Chen, Y. (2009). Colony collapse disorder: a descriptive study. PloS one, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481 Watkins de Jong, E., DeGrandi-Hoffman, G., Chen, Y., Graham, H., & Ziolkowski, N. (2019). Effects of diets containing different concentrations of pollen and pollen substitutes on physiology, Nosema burden, and virus titers in the honey bee (Apis mellifera L.). Apidologie, 50, 845-858. https://doi.org/10.1007/s13592-019-00695-8 Woyke, J., Wilde, J., & Wilde, M. (2003). Flight activity reaction to temperature changes in Apis dorsata, Apis laboriosa and Apis mellifera. Journal of Apicultural Science, 47(2), 73-80. https://doi.org/10.1079/cabicompendium.119922 Zaman, A., & Dorin, A. (2023). A framework for better sensor-based beehive health monitoring. Computers and electronics in agriculture, 210, 107906. Zee, R. v. d., Brodschneider, R., Brusbardis, V., Charrière, J.-D., Chlebo, R., Coffey, M. F., Dahle, B., Drazic, M. M., Kauko, L., & Kretavicius, J. (2014). Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. Journal of apicultural research, 53(1), 19-34. https://doi.org/10.3896/IBRA.1.53.1.02 Zgank, A. (2021). IoT-based bee swarm activity acoustic classification using deep neural networks. Sensors, 21(3), 676. https://doi.org/10.3390/s21030676 Ziegler, C., Ueda, R. M., Sinigaglia, T., Kreimeier, F., & Souza, A. M. (2022). Correlation of Climatic Factors with the Weight of an Apis mellifera Beehive. Sustainability, 14(9), 5302. https://doi.org/10.3390/su14095302 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95719 | - |
| dc.description.abstract | 本研究探討一套智慧蜂箱監測系統的創建與應用,目的在提升養蜂管理。該系統使用多種感測器收集有關蜂箱重量、溫度、濕度、聲音和蜜蜂進出量的資料。數據通過Wi-Fi傳輸到AWS,使用Amazon Quicksight進行實時監控和歷史資料分析。主成分分析(PCA)和其他機器學習方法被用來將每日重量變化分成六個常見圖形和一個額外其他圖形。比較不同分類結果顯示,SVC模型可以在使用九個特徵時達到0.908的F1-score。這個分類模型運用在該系統在監測和分類蜂箱重量圖形上,可使其成為最佳蜂箱管理的工具。另外在長期音訊頻譜與強度分析中發現,巢內音訊強度取決於蜂群旺盛程度與環境溫度。這個發現補足在蜂群密度上的監測。研究也加入溫度變化、季候條件和蜜蜂進出量對重量圖形的影響,提供有關理想蜂箱位置和管理策略的資訊。研究結果提供一種科學方法與物聯網技術來監測蜂群健康和生產力,提高現代養蜂技術的水平。 | zh_TW |
| dc.description.abstract | This research explores the creation and application of a smart beehive monitoring system aimed at improving beekeeping management. The system uses multiple sensors to collect data on hive weight, temperature, humidity, sound, and bee traffic. The data is transmitted to AWS via Wi-Fi, enabling real-time monitoring and historical data analysis using Amazon QuickSight. Principal component analysis (PCA) and other machine learning methods were employed to categorize daily weight changes into six common groups and an additional "Other" category. Comparison of different classification results showed that the SVC model achieved an F1-score of 0.908 when using nine pattern features. This classification model applied in the system for monitoring and classifying beehive weight patterns can make it an essential tool for optimal hive management. Additionally, long-term analysis of audio spectrum and intensity revealed that the intensity of the hive's internal sound depends on the vigor of the bee colony and the ambient temperature. This discovery complements the monitoring of bee colony density. The study also incorporated the effects of temperature variation, seasonal conditions, and bee traffic on weight patterns, providing insights into ideal hive location and management strategies. The findings offer a scientific approach and IoT technology to monitor hive health and productivity, enhancing the level of modern beekeeping techniques. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:57:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:57:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘要 ii ABSTRACT iii Tables of Contents iv List of Figures vii List of Tables xii CHAPTER 1 Introduction 1 CHAPTER 2 Literature Review 5 2.1 Bee Colony Activity Behavior 6 2.1.1 Differences Between Western and Eastern Bees 6 2.1.2 Impact of Climate on Bee Colonies 8 2.1.3 Ingredients of Bee Bread 10 2.2 Beehive Status Monitoring Equipment 11 2.2.1 The Development of Hive Monitoring 11 2.2.2 Weight Analysis 12 2.2.3 Temperature and Humidity Analysis 13 2.2.4 Audio Analysis 13 CHAPTER 3 Methodology 16 3.1 System Overview 16 3.1.1 Hardware Design 16 3.1.2 Bee Traffic Observation Box 17 3.1.3 Microphone Support 20 3.1.4 Equipment Circuit 21 3.1.5 Data Streaming Method 22 3.2 Data Collection 24 3.2.1 Experimental field 24 3.2.2 Weight Data 26 3.2.3 Internal Hive Temperature and Humidity Data 26 3.2.4 Bee Traffic Data 27 3.2.5 Audio Data 28 3.2.6 Weather Data 28 3.3 Weight Pattern Analysis 30 3.3.1 Weight Signal Slicing and Extracting 33 3.3.2 Weight Fluctuation Feature Selection 37 3.3.3 Model for Weight Pattern Classification 39 3.4 Audio Analysis 40 3.4.1 Short-time Fourier transform spectrum 42 3.4.2 Fourier transform spectrum 44 CHAPTER 4 Results and Discussions 45 4.1 Daily beehive weight pattern classification 45 4.1.1 The Dimensionality Reduction Results from Annotated Patterns 45 4.1.2 Importance of Each Feature in Segmented weight 46 4.1.3 The Best Model for Weight Pattern Classification 51 4.2 Comparison of Weight Patterns and Climate 58 4.2.1 The impact of rainfall on weight variation 58 4.2.2 The impact of temperature on weight variation 59 4.2.3 The relation between seasons and weight patterns 62 4.3 Comparison of Weight Patterns and Bee In-and-out 64 4.3.1 Daily bee in-and-out and weight variation 64 4.3.2 The relationship between different weight patterns and bee traffic 66 4.4 Comparison of Weight Patterns and Bee Sound 68 4.4.1 Sound intensity and frequency variations 70 4.4.2 Reasons of sound intensity variations 71 4.5 Reasons for Various Weight Patterns 73 CHAPTER 5 Conclusions 77 References 80 | - |
| dc.language.iso | en | - |
| dc.title | 智慧蜂箱監測系統之巢重變化模型與音訊分析 | zh_TW |
| dc.title | Beehive Weight Variation Modeling and Acoustic Analysis for Intelligent Beehive Monitoring System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡耀全;楊恩誠 | zh_TW |
| dc.contributor.oralexamcommittee | Yao-Chuan Tsai;En-Cheng Yang | en |
| dc.subject.keyword | 智慧蜂箱,機器學習,智慧農業,頻譜分析, | zh_TW |
| dc.subject.keyword | smart beehives,machine learning,smart agriculture,spectrum analysis, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202404224 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
