請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95714完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森 | zh_TW |
| dc.contributor.advisor | Yu-Sen Chang | en |
| dc.contributor.author | 吳安娜 | zh_TW |
| dc.contributor.author | An-Na Wu | en |
| dc.date.accessioned | 2024-09-15T16:56:29Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 1.王心彥、井上宏. 1992. 梅的開花與溫度條件的關系. 仲愷農業技術學院學報 5: 18-23.
2.尤崇魁。2007。櫻花栽培與欣賞。園藝世界出版社。臺北。臺灣。pp.128. 3.交通部中央氣象局。2022。臺灣氣候特徵簡介-臺灣的溫度。 https://web.archive.org/web/20160130223249/http://www.cwb.gov.tw/V7/climate/climate_info/statistics/statistics_1_3.html. 2022.6.16. 4.李窓明、洪立. 1982. 草莓之育種. 中國園藝28(3):116-131. 5.吳安娜、李阿嬌、傅仰人及廖乾華. 2014。台灣常見的櫻花與複瓣觀賞桃花栽培品種與花期調節之研究。中正基金會專題研究報告 No.26。財團法人中正農業科技社會公益基金會,台北市發行。pp.105。 6.吳安娜、鄭隨和. 2018. 櫻花新品種桃園1號-報春及桃園2號-紅梅之育成. 桃園區農業改良場研究彙報 83:1-14. 7.林金和、林重宏. 1990. 容器栽培'premier'桃開花之低溫需求. 中國園藝 36: 172-176. 8.林德勳. 2006. 臺灣李亞科(薔薇科)植物之分類研究. 國立嘉義大學碩士論文. pp.76. 9.邱祈榮、劉恩妤. 2018. 不同的物候模式應用於阿里山公路沿線地區山櫻花開花時間之預測. 中華林學季刊 51(4):331-346. 10.柳雨德 2018. 臺灣山櫻花遺傳多樣性分析. 國立宜蘭大學森林暨自然資源學系碩士論文。pp.80. 11.凌千里. 1992. 臺灣的原生櫻花. 臺灣省農業試驗所技術服務. 12:13-16. 12.孫中帥、陳超、黄升、單方權、柳新红. 2022. 樱亞屬野生種資源分布及分類研究。浙江林業科技 5:66-75. 13.陸明德、歐錫坤、宋家瑋. 2011. 臺灣李育種。臺灣果樹育種研討會專刊. 國立屏東科技大學出版. pp.167-176。 14.陳岱吟、陳錦木. 2019. 華八仙與繡球花之種間雜交. 興大園藝 44(3):81-91。 15.陳越予. 2023. 種間雜交五倍體藍莓親緣鑑定及形態與物候分析. 國立臺灣大學園藝暨景觀學系碩士論文 pp.76 16.張哲嘉、許怡萱. 2015. 臺灣西部平地溫帶果樹發展。氣候變遷下台灣溫帶果樹產業之危機與轉機:產業優勢及發展策略. 農業試驗所特刊第189號:66-88。 17.溫英杰. 1995. 柿品種評估暨改良. 中華農業研究 44(1):49-58. 18.溫英杰、張靜誼、劉玉花. 2009. 台農花梅1 號-'純香'的選育. 臺灣農業研究 58(4):316-320. 19.黃玉瑋. 2011. 臺灣櫻花景點開花模式之建立. 國立臺灣大學森林環境暨資源學系碩士論文. pp.103. 20.臺灣植物誌編輯委員會. 1993. Prunus L.梅屬.臺灣植物誌 第三卷被子植物群:96-104.台北市. 臺灣. https://tai2.ntu.edu.tw/ebooks/FlTaiwan2nd/3. (accessed 3 April 2023) 21.潘富俊、呂勝由. 1996-1997. 省產薔薇科櫻屬之系統分類及遺傳變異研究. 行政原農業委員會林業試驗所森林生物系研究報告. 行政院國家科學委員會補助計畫. pp.19. 22.歐錫坤、陳琦玲. 2000. 臺灣本地桃樹的需冷量評估與模式開發. 中國園藝 46: 337-350. 23.歐錫坤、陳綺玲. 2002. 臺灣原生山櫻花的需冷量評估。中華農業研究51(1):25-32. 24.應紹舜. 1981. 山櫻花. 觀賞樹木. 羅盤出版事業有限公司出版. pp.23. 25.應紹舜. 1991. 屬99. 野櫻桃屬-自生種. 台灣高等植物彩色圖誌. 六景彩色印刷有限公司印刷. 應紹舜出版發行. p.524-561. 26.謝東佑、邱祈榮. 2013.植物物候在氣候變遷研究之回顧與展望. 中華林學季刊46(3):391-410. 27.Asano, S. And Okuno, T. 1990. Period of breaking the rest and the quality of chilling requirement of ‘Kousui’ and ‘Housui’ Japanese pear. Bull. Saitama Hort. Exp. Sta.17:41-46. 28.Arora, R., L. J. Rowland, K. Tanino. 2003. Induction and release of bud dormancy in woody perennials: a science comes of age. HortSci. 38:911-921. https://doi.org/ 10.21273/HORTSCI.38.5.911 29.Alburquerque, N., F. García-Montiel, A. Carrillo and L. Burgos. 2008. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ. and Exp. Bot. 64: 162-170. https://doi.org/10.1016/j.envexpbot.2008.01.003. 30.Bonhomme, M., R. Rageau, A. Lacointe, and M. Gendraud. 2005. Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci. Hortic. (Amsterdam) 105: 223-240. https://doi.org/10.1016/j.scienta.2005.01.015. 31.Bruckner, C.H., A. Wagner Júnior, L.D. Pimentel, J.O.C. Silva, C.E.M. dos Santos and M.A.D.O. Morgado. 2010. Chilling Requirement Evaluation of Peach Hybrids Obtained among Cultivars with High and Low Chilling Requirements. Acta Hort. 872:177-180. https://doi.org/10.17660/ActaHortic.2010.872.22. 32.Beauvieux, R., B. Wenden, P. Ballias, H. Christmann, Y. Gibon and E. Dirlewanger. 2019. Dynamics of bud metabolites during dormancy in sweet cherry genotypes with contrasted chilling requirements. Acta Hortic. 1235. https://doi.org/10.17660/ ActaHortic.2019.1235.56. 33.Cannell, M. G. R. and R. I. Smith. 1983. Thermal time, chill days and prediction of budburst in Picea sithchensis. J. Appl. Ecol. 20:951-963. 34.Chuine. I. P. Cour and D. D. Rousseau 2002. Selecting models to predict the timing of flowering of temperature tree: implications for tree phenology modeling. Plant cell Environ. 22:1-13. ttps://doi.org/10.1046/j.1365-3040.1999.00395.x. 35.Campoy, J. A., D. Ruiza, N. Cook, L. Allderman, J. Egea. 2011. High temperatures and time to budbreak in low chill apricot ‘Palsteyn’. Towardsa better understanding of chill and heat requirements fulfilment. Sci. Hortic. (Amsterdam) 129: 649-655. https://doi.org/10.1016/j.scienta.2011.05.008. 36.Chuine. I. P. Cour and D. D. Rousseau 1999. Selecting models to predict the timing of flowering of temperature tree: implications for tree phenology modeling. Plant cell Environ. 22:1-13. 37.Chung, U., L. Mack, J. I Yun, S.H. Kim. 2011. Predicting the timing of cherry blossoms in Washington, DC and Mid-Atlantic States in response to climate change. PloS one, 6 (11) p.e.27439. ttps://doi.org/10.1371/journal.pone.0027439 38.Campoy, J. A., D. Ruiz, L. Allderman, N. Cook, J. Egea. 2012. The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: An approach in Murcia (Spain) and the Western Cape (South Africa).Europ. J. Agronomy 37: 43– 55. https://doi.org/10.1016/j.eja.2011.10.004. 39.Citadin, I., R. H. Pertille, E. M. S. Loss, T. L. C. Oldoni,·M. A. Danner, A. W. Junior, P. E. Lauri. 2022. Do low chill peach cultivars in mild winter regions undergo endodormancy? Trees 36:1273-1284. https://doi.org/10.1007/s00468-022- 02287-z. 40.De-Hertogh, A. 1974. Principles for forcing tulips, hyacinths, daffodils, easter lilies and dutch irises. Sci. Hortic. (Amsterdam). 2:313-355. 41.Erez, A., S Lavee, R. M. Samish. 1971. Improved Methods for Breaking Rest in the Peach and Other Deciduous Fruit Species. J. Amer. Soc. Hort. Sci. 96(4):519-522. 42.Erez, A., G. A. Couvillon and C. H. Hendershott 1979. Quantitative Chilling Enhancement and Negation in Peach Buds by High Temperatures in a Daily Cycle1. J. Amer. Soc. Hort. Sci. 104(4):536-540. https://doi.org/10.21273/JASHS.104.4.573. 43.Erez, A and G. A. Couillon. 1982. The effect of climate conditions on breaking the rest in peach buds: A reassessment of chilling requirement. In Abstr. 21st intern. Hort. Congr. Vol. 1. Hamburg. p.1152. 44.Erez, A. and G.A. Couvillon. 1987. Characterization of the influence of moderate temperatures on rest completion in peach. J. Amer. Soc. Hort. Sci. 112: 677-680. https://doi.org/10.21273/JASHS.112.4.677. 45.Fishman, S., A. Erez, G.A. Couvillon. 1987a. The temperature dependence of dormancy breaking in plants- computer simulation of processes studied under controlled temperatures. J. Theor. Biol., 126:309-321. 46.Fishman S., A. Erez, G.A. Couvillon 1987b. The temperature dependence of dormancy breaking in plants- mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol., 126:473-483.Faust, M., Erez, A., Rowland, L.J., Wang, S.Y., Norman, H.A., 1997. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortSci. 32, 623-629. 47.Fadón, E., M. Herrero and J. Rodrigo. 2017. Flower bud development and chilling requirements in sweet cherry cv ‘Bing’. Acta Hortic. 1161: 361‐366. https://doi.org/ 10.17660/ActaHortic.2017.1161.58. 48.Fadón, E., S. Herrera, M. Herrero and J. Rodrigo. 2021. Male meiosis in sweet cherry is constrained by the chilling and forcing phases of dormancy. Tree Physiology 41, 619-630. https://3/treephys/tpaa063. 49.Ferlito, F.; M. Di Guardo; M. Allegra; E. Nicolosi; A. Continella, S. La Malfa, A. Gentile and G. Distefano.2021. Assessment of chilling requirement and threshold temperature of a low chill pear (Pyrus communis L.) germplasm in the mediterranean area. Horticulturae 7, 45. https://doi.org/10.3390/horticulturae 7030045. 50.Fang, Z. Z., K. L. Wang, H. Dai, D. R. Zhou, C. C. Jiang, R. V. Espley, C. Deng, Y. J. Lin, S. L. Pan, X. F. Ye. 2022. The genome of low-chill Chinese plum “Sanyueli” (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Mol Ecol Resour. 22(5):1919-1938. https://doi.org/ 10.1111/1755-0998.13585. 51.Gilreath, P. R. and D. W. Buchanan. 1981. Rest prediction model for low chilling 'Sungold' nectarine. J. Amer. Soc. Hort. Sci. 106(4):426-429. 52.Ghrab, M., M. Ben-Mimoun, M. M. Masmoudi, N. B. Mechlia. 2014. Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci. hortic. (Amsterdam) 178:87-94. http://dx.doi.org/10.1016/j.scienta.2014.08.008. 53.Hideaki, O., T. Kawasaki and H. Tanake, 2007. Flowering Cherries of Japan. YAMA-KEI publishers Co. Ltd 1-9-3 Akasaka, Minato, Tokyo, Japan. 54.Hayashi, Y. ; Ishii, S. ; Hirano, T. ; Ichinose, K. ; Kazama, Y. ; Abe, T. 2019. New ornamental cherry cultivars induced by heavy-ion beam irradiation. Acta hortic. 1235:99-104. https://doi.org/10.17660/ActaHortic.2019.1235.13 55.Hsiang, T. F., Y. J. Lin, H.Yamane and R. Tao. 2022. Characterization of Japanese apricot(Prunus mume) floral bud development using a modified BBCH scale and analysis of the relationship between BBCH stage and floral primordium development and dormancy phase transition. Horticulturae 7(142): 131-144. https://doi.org/ 10.3390/horticulturae7060142. 56.Julian, C. J. Rodrigo and M. Herrero. 2011. Part of a special issue on sexual plant reproduction–Stamen development and winter dormancy in apricot (Prunus armeniaca). Annals of Botany 108: 617-625, 2011 doi:10.1093/aob/mcr056, available online at www.aob.oxfordjournals.org. 57.Kaufmann, H. and M. Blanke. 2017. Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry. J. Plant Physiol. 218:1-5. https://doi.org/10.1016/j.jplph.2017.07.004 58.Linsley-Noakes, G. C. and P. Allan. 1994. Comparison of two models for the prediction of rest completion in peaches. Sci. hortic. (Amsterdam) 59:107-113. https://doi.org/ 10.1016/0304-4238(94)90077-9. 59.Liu, Z., H. Zhu and A. Abbott. 2015. Chapter 4: Dormancy Behaviors and Underlying Regulatory Mechanisms: From Perspective of Pathways to Epigenetic Regulation. Advances in Plant Dormancy (eBook). Editor by James V. Anderson. Sunflower and Plant Biology Research. USDA-Agricultural Research Service Fargo, North Dakota, USA. 60.Li, Y., L. R. Wang, G.G. Zhu, W. C. Fang, K. Cao, C. W. Chen, X. W. Wang, X. L. Wang. 2016. Phenological response of peach to climate change exhibits a relativelydramatic trend in China, 1983-2012. Sci. hortic. (Amsterdam) 209:192–200. https://doi.org/10.1016/j.scienta.2016.06.019 61.Mahmood, K., J. H. Carew, P. Hadley and N. H. Battey. 2000. The effect of chilling and post-chilling temperatures on growth and flowering of sweet cherry(Prunus avium L.). J. Hort. Sci. and Biotech. 75: 598-601. https://doi.org/10.1080/ 14620316.2000. 11511292. 62.MaClellan A. 2005. The Cherry Blossom Festival Sakura Celebretion. Published by Bunker Hill Publishing Inc.26 Adams Street, Charlestown, MA 02129 USA. 63.Melke, A. 2015. The physiology of chilling temperature requirements for dormancy release and bud-break in temperate fruit trees grown at mild winter tropical climate. J. Plant Stud. 4(2):110-156. https://doi.org/10.5539/jps.v4n2p110. 64.Petri, J. L., G. B. Leite and Y. Yasunobu. 2002. Studies on the causes of floral bud abortion of Japanese Pear (Pyrus pyrifolia) in southern Brazil. Acta Hort. 587:375-380. https://doi.org 10.17660/ActaHortic.2002.587.50. 65.Petri, J.L. and G.B. Leite. 2004. Consequences of Insufficient Winter Chilling on Apple Tree Bud-break. Acta Hort. 662:53-60. https://doi.org/10.17660/ActaHortic. 2004.662.4 66.Richardson, E. A., S. D. Seeley and D. R. Walker. 1974. A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortSci.9(4):331-332. 67.Richard, B. P., H. Higuchi, A. J. Miller-Rushing. 2009. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142:1943–1949. https://doi.org/10.1016/j.biocon.2009.03.016. 68.Saure, M.C. 1985. Dormancy release in deciduous fruit trees. Hort. Rev. 7:239-289. 69.Sedgley, M. 1990. Flowering of deciduous perennial fruit crop. Hort. Rev. 12:223-264. 70.Sherman, W. B. and P.M. Lyrene. 1998. Bloom time in low-chill peaches. Fruit Varieties J. 52: 226-228.Shi, P., Z. Chen, G. V. P. Reddy, C. Hui, J. Huang and M. Xiao. 2017.Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures. Agric. For. Meteorol. 240-241:78–89. https://doi.org/10.1016/j. agrformet. 2017.04.001 71.Shi, P., Z. Chen, G. V. P. Reddy, C. Hui, J. Huang and M. Xiao. 2017.Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures. Agric. For. Meteorol. 240-241:78–89. https://doi.org/10.1016/j. agrformet. 2017.04.001 72.Salama, A. M., A. Ezzat, H. El-Ramady, S.M. Alam-Eldein, S. Okba, H.M. Elmenofy, I.F. Hassan, A. Illés and Holb, I.J. 2021.Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. Horticulturae, 7(4), 86. https://doi.org/10.3390/horticulturae 7040086. 73.Shirasawa, K., T. Esumi, A. Itai, S. Isobe. 2022. Cherry blossom forecast based on transcriptome of floral organs approaching blooming in the flowering cherry (Cerasus×yedoensis) cultivar 'Somei-Yoshino'. Front. Plant Sci. 13:802203. https://doi.org/10.3389/fpls.2022.802203. 74.Visser, T. 1965. On the inheritance of the juvenile period in apple. Euphytica 14:125-134. 75.Wang, S.P., C.J. Yuan, Y. T. Dai, H. Shu, T. Y. Yang and C. X. Zhang. 2004. Development of flower organs in sweet cherry in Shanghai area. Acta Hortic Sinica 31:357-359. 76.Wang, L., L. Zhang, C. Ma, W. P. Xu, Z. Z. Liu, C.X. Zhang, W. D. Matthew, S. P. Wang. 2014. Impact of chilling accumulation and hydrogen cyanamide on floral organ development of sweet cherry in a warm region. J. Integr. Agric..15(11): 2529-2538. https://doi.org/10.1016/S2095-3119(16)61341-2. 77.Wang, L., Z. Lu, Chao M., W.P, Xu., Z.R. Liu, C.X. Zhang, W.D. Matthew and S.P. Wang. 2016. The effect of hydrogen cyanamide on floral organ development of sweet cherry in a warm region. J. Integr. Agric.15(11):2529-2538. https://doi.org/ 10.1016/s2095-3119(16)61341-2. 78.Wang H, H. Wang, Q. Ge and J. Dai. 2020. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants. Front. Plant Sci. 11:443. https://doi.org/10.3389/fpls.2020.00443. 79.Yamane H, T. Ooka, H. Jotatsu, R. Sasaki, R. Tao. 2011. Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic (Amsterdam) 129:844-848. https://doi.org/10.1016/j.scienta.2011.05.013. 80.Yamane, H, T. Ooka, H. Jotatsu, Y. Hosaka, R. Sasaki and R. Tao. 2011. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J. Exp. Bot. 62(10):3481-3488. https://doi.org/10.1093/jxb/err028. 81.Zimmerman, R.H. 1972. Juvenility and flowering of fruit trees. Acta Hort. 34:139-143. 82.Zhang, Y. Q., L. Guan, Z. Y. Zhong, M. Chang, D. K. Zhang, H. Li and W. Lai. 2014. The anti-inflammatory effect of cherry blossom extract (Prunus yedoensis) used in soothing skincare product. Int. J. Cosmet. Sci. 2014, 36, 527-530. https://doi.org/ 10.1111/ ics.12149. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95714 | - |
| dc.description.abstract | 櫻花為薔薇科(Rosaceae)梅李屬(Prunus L.)櫻亞屬(Cerasus)落葉花木,主要分布在北半球溫帶地區,而臺灣位處亞熱帶地區,有原生種–臺灣山櫻花(Prunus campanulata Maxim)的分佈。本論文旨在利用原生種開發適應亞熱帶氣候景觀櫻花新品種,探討暖冬氣候下景觀櫻花開花萌芽之影響性,以及低需冷性櫻花解除休眠之感溫範圍,以作為景觀櫻花在臺灣調適管理及應用研究時之基礎。
臺灣原生山櫻花族群因雜交及自交演化而有花色、花型及耐熱、耐寒性之單株。為能選育出適合亞熱帶地區景觀利用之櫻花品種,本研究蒐集臺灣中部以北低海拔地區、開花表現佳之地方種共596份種原單株,以枝條嫁接與單株定植於桃園區農業改良場樹林分場之試驗圃,進行開花生育觀察及開花優良單株選拔。經品系繁殖及比較試驗,選育出開花期早、花量多、樹型半直立和開花低需冷特性之櫻花新品種桃園1號–報春、桃園2號–紅梅、桃園3號–春緋及桃園4號–紅華,適合亞熱帶氣候區低海拔地區景觀利用之品種,亦可提供亞熱帶地區櫻花開花低需冷性遺傳資源之學術研究利用。 為探討積冷程度對臺灣景觀櫻花休眠解除萌芽之影響,在2012–2013年冬季自然條件下之不同積冷階段,切取枝條瓶插於保鮮液,並置於觀測環境下觀測後續枝條萌芽情形。結果顯示,‘桃園1號–報春’和‘大島’在自然條件下積冷量較低時,其花芽和葉芽萌時間有延遲情形,且休眠芽萌芽率較低;‘桃園1號–報春’在本試驗不同積冷期處理,葉芽萌芽開始時間均在花芽萌發後期開始,而‘大島’在低溫累積不足時,花芽開始萌芽後數日,葉芽即接續發生萌芽,花芽葉芽有交錯萌芽直至枝條全數萌芽結束。2013–2014年冬季期間,以8℃連續積冷處理探討‘桃園1號–報春’解除休眠之需冷量,結果顯示需6度天,以低需冷性桃完成休眠期需冷量評估模式計算該品種積冷量為144.0度小時,在自然條件下田間植株到5%始花期前一週估算其積冷量為248.5度小時;‘八重’以8℃處理需10天,積冷量為240.0度小時,而自然條件植株之積冷量為325.0度小時;‘富士’以8℃處理需18天,積冷量為432.0需冷單位,惟自然條件植株積冷量僅為443.0需冷單位。‘桃園1號–報春’及‘八重’以低需冷桃完成休眠期需冷性評估模式積算之冷量有高估的情形。 為探討亞熱帶氣候冬季氣溫對低需冷性櫻花‘桃園1號–報春’解除休眠萌芽與開之影響,以8–18℃處理盆栽植株8天,結果得知8–18℃均可使植株達到50%萌芽解除休眠條件,其中14℃處理植株萌芽時間較快而花芽率最高,顯示其對‘桃園1號–報春’促進花芽開花、解除休眠期強度最強。18℃處理植株萌芽速度最慢,且花芽率最低僅有2.3%,顯示其僅能促進葉芽之萌發,促進休眠花芽的強度極低。而8℃、10℃、12℃與16℃處理花芽率22.7%–26.9%結果相近,解除休眠有效強度間雖略有差異,但處理間差異小。針對國內低海拔地區,景觀櫻花品種解除休眠開花冷量需求,2013–2014年冬季期間,相較Subtropical model 15模式之高估積冷量,RCD模式(低需冷桃完成休眠期需冷量評估模式)較適用於臺灣,惟Subtropical model 15模式將8.1–14.0℃的積冷權值提高則與本試驗結果符合,顯示櫻花需冷量評估模式仍有待精進探討。 全球氣候暖化影響物種生態的調適,具低需冷性櫻花或其他經濟作物品種的開發,需朝精準育種加速發展,而未來有機會為溫帶地區引種利用。針對亞熱帶的臺灣氣候探討不同溫度對櫻花開花影響及花期預測之評估的模式,仍需進一步研究並驗證植物感應溫度範圍。 | zh_TW |
| dc.description.abstract | Cherry blossoms, the deciduous woody plants belong to the subgenus Cerasus of the genus Prunus L. in the Rosaceae family, mainly distributed in temperate regions of the Northern Hemisphere. Taiwan, located in a subtropical region, has native species such as the Prunus campanulata Maxim. This paper was conducted to develop the subtropical new cherry blossom cultivars from native species for landscape utilization, exploring the effects of warm winter climates on the sprout and flowering, and identifying the chilling requirements for breaking dormancy in low-chill cultivars. The results could serve as a foundation for the management and application of landscape cherry blossoms in Taiwan.
The native species of Prunus campanulata Maxim population, due to hybridization and self-breeding, exhibits variations in flower color, flower shape, heat tolerance, and cold tolerance. To select cherry blossom cultivars adaptive to subtropical landscapes, the study collected 596 single plants from low-altitude areas in central and northern Taiwan that performed excellent flowering characteristics. The grafted plants or seedlings were planted at the Shulin Branch station of Taoyuan District Agricultural Research and Extension for flowering observation and selection of superior plants. Through line propagation and comparative trials, new cherry blossom cultivars were selected, including ‘Taoyuan No. 1-Spring’, ‘Taoyuan No. 2-Red Plum’, ‘Taoyuan No. 3-Spring Red’, and ‘Taoyuan No. 4-Red Glory’, which have early flowering, abundant blossoms, semi-upright tree shape, and low chilling requirements, making them applicable to low-altitude areas in subtropical climates. These cultivars also provide genetic resources for academic research on low-chill cherry blossoms in subtropical regions. To study the effect of chilling accumulation on the dormancy release and sprout of landscape cherry blossoms in 2012-2013 winter, the shoots were collected at different chilling stages under natural conditions, standing in preservative solution, and observed for sprout in the controlled environment. The results showed that ‘Taoyuan No. 1-Spring’ and ‘Oshima’ experienced delayed flower and leaf budburst and lower sprout rates under low chilling accumulation. In different chilling stages, ‘Taoyuan No. 1-Spring’ started leaf budburst at the end of flower, while ‘Oshima’ began leaf budburst a few days after flower under insufficient chilling, with flower and leaf buds alternating until all buds had burst. Under different forcing chilling treatments in 2013-2014 winter, ‘Taoyuan No. 1-Spring’ required six days at 8°C, with a chilling requirement of 144.0 chill units, by the chilling evaluation model of domestic low chilling peach completing rest, the value under the natural field observation by the same evaluation model was 248.5 chilling unit. ‘Double’ required ten days at 8°C, with 240.0 chill units, and 325.0 chill units in natural conditions. ‘Taiwan Fuji’ required eighteen days at 8°C, with 432.0 chill units, and 433.0 chill units in natural conditions. The chilling requirement of ‘Taoyuan No. 1-Spring’ and ‘Double’ estimated by the domestically developed low-chill peach model of complete rest, the value of dormancy release under natural field conditions was higher than the forcing low temperature treatment at 8°C. To investigate the impact of winter temperatures in subtropical climates on the dormancy release and sprout of the low-chill ‘Taoyuan No. 1-Spring’, potted plants were treated at 8–18°C for eight days. Results showed that all temperatures induced 50% budburst, with 14°C resulting in the fastest budburst and highest flower bud rate, indicating the strongest effect on promoting flower budburst and dormancy release. Plants treated at 18°C had the slowest budburst and lowest flower bud rate (2.3%), indicating it primarily promoted leaf budburst with minimal effect on dormancy flower buds. Treatments at 8°C, 10°C, 12°C, and 16°C resulted in similar flower bud rates (22.7%–26.9%), with minor differences in dormancy release effectiveness. For landscape utilization of landscape cherry blossom, determining the chilling requirements evaluation of sprouting and flowering of the cultivars was necessary. Compare with Subtropical model 15, which tended to overestimate the chilling requirements in 2013-2014 winter. The evaluation model of low-chill peach complete rest was more applicable for low-altitude areas in Taiwan. However, the chilling value range to 8.1-14.0℃when the Subtropical Model 15 increases, the result was aligned with the experiment, and indicated that the chilling requirement evaluation model for cherry blossoms still requires further investigation. The impact of global warming on species adaptation necessitates precise breeding and rapid development of low-chill cherry blossoms and other economic crops, potentially introducing them to temperate regions. Further research and validation of temperature response models for predicting flowering and assessing the effects of different temperatures on cherry blossoms in Taiwan's subtropical climate are required. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:56:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:56:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv 圖次 ix 表次 xi 第一章 前言 1 參考文獻 3 第二章 前人研究 5 一、臺灣原生種櫻花與流通品種 5 二、溫度效應與累積量對梅李屬植物休眠解除的關係 6 三、低溫不足對春季梅李屬植株生育的影響 7 四、低溫累積後溫度對芽體生理之變化 8 結論 9 參考文獻 11 第三章 低需冷性櫻花品種之選育 16 摘要 16 Abstract 17 前言 18 材料與方法 19 結果 20 討論 25 參考文獻 41 第四章 自然低溫累積量對櫻花萌芽之影響 43 摘要 43 Abstract 44 前言 45 材料與方法 46 結果 47 討論 48 參考文獻 55 第五章 人工低溫處理量對櫻花萌芽之影響 58 摘要 58 Abstract 59 前言 60 材料與方法 61 結果 62 討論 65 參考文獻 73 第六章 低溫程度對休眠期櫻花萌芽的影響 76 摘要 76 Abstract 77 前言 78 材料與方法 79 結果 79 討論 81 參考文獻 88 第七章 總合討論與結論 92 參考文獻 95 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 臺灣低需冷性櫻花品種選拔及低溫對其萌芽及開花之影響 | zh_TW |
| dc.title | Selection of Low Chilling Requirement Cultivars and Effects of Low Temperature on the Sprouting and Flowering of Cherry Blossom in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林冠宏;李哖;張祖亮;陳右人;傅仰人 | zh_TW |
| dc.contributor.oralexamcommittee | Kuan-Hung Lin;Nean Lee;Tsu-Liang Chang;Iou-Zen Chen;Yang-Ren Fu | en |
| dc.subject.keyword | 品種選拔,低溫需求,解除休眠,開花,氣候暖化, | zh_TW |
| dc.subject.keyword | Cultivar selection,Chilling requirement,Dormancy release,Flowering,Climate warming, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202403606 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
