請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒 | zh_TW |
| dc.contributor.advisor | Chih-Hsuan Chen | en |
| dc.contributor.author | 劉柏均 | zh_TW |
| dc.contributor.author | Po-Chun Liou | en |
| dc.date.accessioned | 2024-09-15T16:55:54Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] K. Otsuka, & Wayman, C. M., Shape Memory Materials., Cambridge University, 1998.
[2] T. Tadaki, Shimizu, K., Otsuka, K., & Suzuki, Y., Shape memory alloys, Annual Review of Materials Science 16(1) (1986) 25-48. [3] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273-275 (1999) 134-148. [4] T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications, Materials Science and Engineering: A 273-275 (1999) 149-160. [5] A. Pelton, J. Dicello, S. Miyazaki, Optimization of processing of medical grade Nitinol wire, Minimally Invasive Therapy & Allied Technologies 9 (2009) 107-118. [6] L. Tian, J. Zhou, P. Jia, Z. Zhong, Thermomechanical response and elastocaloric effect of shape memory alloy wires, Mechanics of Materials 193 (2024) 104985. [7] S. Wang, Y. Shi, K. Fan, Q. Wang, Y. Li, X. Teng, Microstructure and elastocaloric effect of NiTi shape memory alloy in-situ synthesized by laser directed energy deposition additive manufacturing, Materials Characterization 210 (2024) 113831. [8] H.C. Lin, K.M. Lin, Y.C. Chen, A study on the machining characteristics of TiNi shape memory alloys, Journal of Materials Processing Technology 105(3) (2000) 327-332. [9] R. Karelin, V. Komarov, I. Khmelevskaya, V. Andreev, V. Yusupov, S. Prokoshkin, Structure and properties of TiNi shape memory alloy after low-temperature ECAP in shells, Materials Science and Engineering: A 872 (2023) 144960. [10] C.H. Park, S.H. Han, S.-W. Kim, J.-K. Hong, T.-h. Nam, J.-T. Yeom, An effective approach to produce a nanocrystalline Ni–Ti shape memory alloy without severe plastic deformation, Journal of Alloys and Compounds 654 (2016) 379-383. [11] Y. Cheng, C.-H. Chen, Healing effect of electric current treatment on superelasticity and elastocaloric effect of TiNi shape memory wire, Journal of Alloys and Compounds 968 (2023) 171990. [12] S.K. Wu, H.C. Lin, Y.C. Yen, J.C. Chen, Wire drawing conducted in the R-phase of TiNi shape memory alloys, Materials Letters 46(2) (2000) 175-180. [13] S.K. Wu, H.C. Lin, Y.C. Yen, A study on the wire drawing of TiNi shape memory alloys, Materials Science and Engineering: A 215(1) (1996) 113-119. [14] Z.G. Wang, X.T. Zu, Y.Q. Fu, J.H. Wu, H.J. Du, Effects of proton irradiation on transformation behavior of TiNi shape memory alloy thin films, Thin Solid Films 474(1) (2005) 322-325. [15] P. Surbled, C. Clerc, B. Le Pioufle, M. Ataka, H. Fujita, Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films, Thin Solid Films 401(1) (2001) 52-59. [16] J.A. Walker, K.J. Gabriel, M. Mehregany, Thin-film processing of TiNi shape memory alloy, Sensors and Actuators A: Physical 21(1) (1990) 243-246. [17] S. Miyazaki, A. Ishida, Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Materials Science and Engineering: A 273-275 (1999) 106-133. [18] S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, Journal of Vacuum Science & Technology A 21(5) (2003) S74-S87. [19] P. Varlamov, A. Semisalova, A.D. Nguyen, M. Farle, Y. Laplace, M. Raynaud, O. Noel, P. Vavassori, V. Temnov, Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films, Magnetochemistry 9(7) (2023) 186. [20] A. Ölander, An Electrochemical Investigation of Solid Cadmium-Gold Alloys, Journal of the American Chemical Society 54(10) (1932) 3819-3833. [21] L.B. Vernon, H.M. Vernon. 1941. Process of manufacturing articles of thermoplastic synthetic resins. U.S. Patent No. 2234993. [22] W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics 34(5) (1963) 1475-1477. [23] G.B. Kauffman, I. Mayo, The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2(2) (1997) 1-21. [24] P. Motzki, S. Seelecke, Industrial Applications for Shape Memory Alloys, 2021, pp. 254-266. [25] R.B. Zider, J.F. Krumme.1988. Eyeglass frame including shape-memory elements. U.S. Patent No. 4772112. [26] E.A. Hautcoeur A.1997. Eyeglass frame with very high recoverable deformability. U.S. Patent No. 5640217. [27] D. Stoeckel, Shape memory actuators for automotive applications, Materials & Design 11(6) (1990) 302-307. [28] W.C. Leo DJ, Naganathan G, Buckley SJ, Vehicular applications of smart material systems, 1998, pp. 106-116. [29] F. Butero, Shape memory actuators for automotive applications, 166 (2008) 37-40. [30] C. Bil, K. Massey, E.J. Abdullah, Wing morphing control with shape memory alloy actuators, Journal of Intelligent Material Systems and Structures 24(7) (2013) 879-898. [31] D. Hartl, D. Lagoudas, Aerospace applications of shape memory alloys, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221(4) (2007) 535-546. [32] E.T.F. Chau, C.M. Friend, D.M. Allen, J. Hora, J.R. Webster, A technical and economic appraisal of shape memory alloys for aerospace applications, Materials Science and Engineering: A 438-440 (2006) 589-552. [33] L. McDonald Schetky, Shape memory alloy applications in space systems, Materials & Design 12(1) (1991) 29-32. [34] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: A review, Materials & Design 33 (2012) 577-640. [35] M. Kohl, Shape memory microactuators, Springer Science & Business Media2013. [36] H. Kahn, M. Huff, A. Heuer, The TiNi shape-memory alloy and its applications for MEMS, Journal of Micromechanics and Microengineering 8(3) (1998) 213. [37] H. Fujita, H. Toshiyoshi, Micro actuators and their applications, Microelectronics Journal 29(9) (1998) 637-640. [38] L. Petrini, F. Migliavacca, Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy 2011(1) (2011) 501483. [39] C. Song, History and Current Situation of Shape Memory Alloys Devices for Minimally Invasive Surgery, Open Med Dev J 2 (2010) 24-31. [40] N.B. Morgan, Medical shape memory alloy applications—the market and its products, Materials Science and Engineering: A 378(1) (2004) 16-23. [41] L.G. Machado, M.A. Savi, Medical applications of shape memory alloys, Brazilian Journal of Medical and Biological Research 36(6) (2003) 683-691. [42] D. Mantovani, Shape memory alloys: Properties and biomedical applications, JOM 52(10) (2000) 36-44. [43] W. Ronan, D.J. McGrath, R.N. Shirazi, M. Clancy, R.C. Dickenson, P.E. McHugh, Computational modelling of the mechanical performance of nitinol guidewires in an idealised tortuous path for medical device applications, European Journal of Mechanics - A/Solids 102 (2023) 105101. [44] M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A Review of Shape Memory Alloy Actuators in Robotics, in: J. Ruiz-del-Solar, E. Chown, P.G. Plöger (Eds.) RoboCup 2010: Robot Soccer World Cup XIV, Springer Berlin Heidelberg, Berlin, Heidelberg, (2011) 206-217. [45] M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Industrial Robot: An International Journal 34 (2007) 285-294. [46] Y. Furuya, H. Shimada, Shape memory actuators for robotic applications, Materials & Design 12(1) (1991) 21-28. [47] X. Yang, L. Cheng, H. Peng, B. Qian, L. Yang, Y. Shi, A. Chen, Z. Zhang, L. Zhao, N. Hu, C. Yan, Y. Shi, Development of Fe-Mn-Si-Cr-Ni shape memory alloy with ultrahigh mechanical properties and large recovery strain by laser powder bed fusion, Journal of Materials Science & Technology 150 (2023) 201-216. [48] W. Khalil, L. Saint-Sulpice, S. Arbab Chirani, C. Bouby, A. Mikolajczak, T. Ben Zineb, Experimental analysis of Fe-based shape memory alloy behavior under thermomechanical cyclic loading, Mechanics of Materials 63 (2013) 1-11. [49] I. Ferretto, D. Kim, W.J. Lee, E. Hosseini, N.M. della Ventura, A. Sharma, C. Sofras, J. Capek, E. Polatidis, C. Leinenbach, Shape memory and mechanical properties of a Fe-Mn-Si-based shape memory alloy: Effect of crystallographic texture generated during additive manufacturing, Materials & Design 229 (2023) 111928. [50] J. Malarría, F.C. Lovey, M. Sade, Two way shape memory effect in CuZnAl single crystals after pseudoelastic cycling at low temperatures, Materials Science and Engineering: A 517(1) (2009) 118-124. [51] I. López-Ferreño, J.F. Gómez-Cortés, T. Breczewski, I. Ruiz-Larrea, M.L. Nó, J.M. San Juan, High-temperature shape memory alloys based on the Cu-Al-Ni system: design and thermomechanical characterization, Journal of Materials Research and Technology 9(5) (2020) 9972-9984. [52] K.K. Alaneme, J.U. Anaele, E.A. Okotete, Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review, Scientific African 12 (2021) e00760. [53] L. Sun, W.M. Huang, Nature of the multistage transformation in shape memory alloys upon heating, Metal Science and Heat Treatment 51(11) (2009) 573-578. [54] I. Mihálcz, Fundamental characteristics and design method for nickel-titanium shape memory alloy, Periodica Polytechnica, Mechanical Engineering 45 (2001) 75-86. [55] W.J. Buehler, F.E. Wang, A summary of recent research on the nitinol alloys and their potential application in ocean engineering, Ocean Engineering 1(1) (1968) 105-120. [56] Y. Liu, Some factors affecting the transformation hysteresis in shape memory alloys, 2010, pp. pp. 361-369. [57] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50(5) (2005) 511-678. [58] S.-y. Jiang, Y.-n. Zhao, Y.-q. Zhang, L. Hu, Y.-l. Liang, Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy, Transactions of Nonferrous Metals Society of China 23(12) (2013) 3658-3667. [59] P.F. Rodrigues, F.M.B. Fernandes, E.N. Texeira, S. Baptista, A.S. Paula, J.P. Oliveira, Influence of ageing treatment on the thermophysical characteristics and mechanical properties of forging wire Ni-rich NiTi alloy for superelastic applications, Ciência & Tecnologia dos Materiais 29(1) (2017) e23-e26. [60] J. Parr, G.R. Purdy, Trans Metal Soc AIME 221 (1961) 636. [61] F.E. Wang, W.J. Buehler, S.J. Pickart, Crystal structure and a unique "martensitic" transition of TiNi, Journal of Applied Physics 36(10) (1965) 3232-3239. [62] S.R. Butler, J.E. Hanlon, R.J. Wasilewski, Trans Metal Soc AIME 239 (1967) 1323. [63] R.J. Wasilewski, S.R. Butler, J.E. Hanlon, On the Martensitic Transformation in TiNi, Met. Sci J. 1(1) (1967) 104-110. [64] W. Tang, B. Sundman, R. Sandström, C. Qiu, New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system, Acta Mater 47(12) (1999) 3457-3468. [65] C. Jackson, H. Wagner, R. Wasilewski, The alloy with a memory, 55-Nitinol: its physical metallurgy, properties, and applications, NASA, 1972. [66] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater 58(9) (2010) 3444-3458. [67] B. Karbakhsh Ravari, S. Farjami, M. Nishida, Effects of Ni concentration and aging conditions on multistage martensitic transformation in aged Ni-rich Ti–Ni alloys, Acta Mater 69 (2014) 17-29. [68] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater 50 (2002) 4255-4274. [69] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys - An in-situ transmission electron microscopy investigation, Philosophical Magazine 83 (2003) 339-363. [70] M. Nishida, C.M. Wayman, T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metallurgical Transactions A 17(9) (1986) 1505-1515. [71] G.S. Pandolfi, S.C. Martins, V.T.L. Buono, L.A. Santos, Precipitation kinetics of Ti3Ni4 and multistage martensitic transformation in an aged Ni–rich Ni–Ti shape memory alloy, Journal of Materials Research and Technology 9(4) (2020) 9162-9173. [72] J. Khalil Allafi, X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta Mater 50(4) (2002) 793-803. [73] M. Nishida, T. Hara, T. Ohba, K. Yamaguchi, K. Tanaka, K. Yamauchi, Experimental Consideration of Multistage Martensitic Transformation and Precipitation Behavior in Aged Ni-Rich Ti-Ni Shape Memory Alloys, Materials Transactions 44(12) (2003) 2631-2636. [74] J.I. Kim, Y. Liu, S. Miyazaki, Ageing-induced two-stage R-phase transformation in Ti–50.9at.%Ni, Acta Mater 52(2) (2004) 487-499. [75] G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, K. Otsuka, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys, Acta Mater 52(14) (2004) 4351-4362. [76] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Precipitation kinetics of Ti3Ni4 in polycrystalline Ni-rich TiNi alloys and its relation to abnormal multi-stage transformation behavior, Materials Science and Engineering: A 438-440 (2006) 622-626. [77] D. Treppmann, E. Hornbogen, The Effect of Dislocation Substructure and Decomposition on the Course of Diffusionless Transformations, Journal De Physique Iv 05 (1995). [78] D. Treppmann, E. Hornbogen, D. Wurzel, The Effect of Combined Recrystallization and Precipitation Processes on the Functional and Structural Properties in NiTi Alloys, Journal De Physique Iv 5 (1995). [79] K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I.V. Kireeva, H.J. Maier, The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part I—aged microstructure and micro-mechanical modeling, J. Eng. Mater. Technol. 121(1) (1999) 19-27. [80] K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I.V. Kireeva, H.J. Maier, The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part II—discussion of experimental results, J. Eng. Mater. Technol. 121(1) (1999) 28-37. [81] C.M. Laursen, N.J. Peter, G. Gerstein, H.J. Maier, G. Dehm, C.P. Frick, Influence of Ti3Ni4 precipitates on the indentation-induced two-way shape-memory effect in Nickel-Titanium, Materials Science and Engineering: A 792 (2020) 139373. [82] K.M. Knowles, D.A. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 29(1) (1981) 101-110. [83] K. Otsuka, X. Ren, Martensitic transformations in nonferrous shape memory alloys, Materials Science and Engineering: A 273-275 (1999) 89-105. [84] T. Hara, T. Ohba, E. Okunishi, K. Otsuka, Structural Study of R-Phase in Ti-50.23 at.%Ni and Ti-47.75 at.%Ni-1.50 at.%Fe Alloys, Materials Transactions 38 (1997) 11-17. [85] W. Cai, Y. Murakami, K. Otsuka, Study of R-phase transformation in a Ti–50.7at%Ni alloy by in-situ transmission electron microscopy observations, Materials Science and Engineering: A 273-275 (1999) 186-189. [86] S. Miyazaki, K. Otsuka, Deformation and transition behavior associated with theR-phase in Ti-Ni alloys, Metallurgical Transactions A 17(1) (1986) 53-63. [87] T. Saburi, S. Nenno, T. Fukuda, Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys, Journal of the Less Common Metals 125 (1986) 157-166. [88] T. Tadaki, Y. Nakata, K. Shimizu, rsquo, ichi, K. Otsuka, Crystal Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at%Ni Shape Memory Alloy, Transactions of the Japan Institute of Metals 27(10) (1986) 731-740. [89] 簡甄, 富鎳 Ti49Ni51 形狀記憶合金時效後之相變態與性能最佳化之研究, 國立臺灣大學材料科學與工程學系學位論文 2012 (2012) 1-154. [90] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys, Le Journal de Physique Colloques 43(C4) (1982) 255-260. [91] S. Miyazaki, K. Otsuka, Development of shape memory alloys, ISIJ International 29 (1989) 353-377. [92] S.-W. Kim, Y.M. Jeon, C.H. Park, J.H. Kim, D.-H. Kim, J.-T. Yeom, Martensitic phase transformation of TiNi thin films fabricated by co-sputtering deposition, Journal of Alloys and Compounds 580 (2013) 5-9. [93] S. Miyazaki, Thermal and Stress Cycling Effects and Fatigue Properties of Ni-Ti Alloys, Engineering Aspects of Shape Memory Alloys (1990) 394-413. [94] H.H. Liebermann, C.D. Graham, Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions, IEEE Transactions on Magnetics 12 (1976) 921-923. [95] T. Egami, Magnetic amorphous alloys: physics and technological applications, Reports on Progress in Physics 47 (1984) 1601-1725. [96] J. Carpenter, P. Steen, Planar-flow spin-casting of molten metals: Process behaviour, Journal of Materials Science 27 (1992) 215-225. [97] R. Seino, Y. Sato, Observation of melt puddle behavior in planar flow casting in air, Journal of Alloys and Compounds 586 (2014) S150-S152. [98] R.N. Wright, G.E. Korth, C.H. Sellers, A containerless‐melting twin‐roller melt‐spinning system, Review of Scientific Instruments 61(12) (1990) 3924-3926. [99] Z.P. Pei, D.-H. Ju, Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses, Materials 10 (2017). [100] A.A. Shirzadi, T. Kozieł, G. Cios, P. Bała, Development of Auto Ejection Melt Spinning (AEMS) and its application in fabrication of cobalt-based ribbons, Journal of Materials Processing Technology 264 (2019) 377-381. [101] R.C. Budhani, T.C. Goel, K.L. Chopra, Melt-spinning technique for preparation of metallic glasses, Bulletin of Materials Science 4(5) (1982) 549-561. [102] V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, S.G. Rassolov, The effect of the melt-spinning processing parameters on the rate of cooling, Materials Science and Engineering: A 323(1) (2002) 91-96. [103] P. Steen, Fluid Mechanics of spin casting of metals, Annual Review of Fluid Mechanics 29 (2003) 373-397. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95712 | - |
| dc.description.abstract | 本研究使用熔旋噴鑄製程製備Ti50-xNi50+x(x=0.5、1、1.5、2)形狀記憶合金箔帶,結果顯示轉速、石英管開口口徑與噴出壓力影響箔帶的巨觀形貌與微觀結構。富鎳鈦鎳塊材由熔旋噴鑄製成箔帶後,無相變態行為發生,進行500 °C時效後產生B2→R→B19'與B19'→R→B2之二階相變態行為,且隨著時效時間增加,Ti3Ni4相的析出導致相變態溫度上升。500°C時效1小時的富鎳鈦鎳箔帶中,最大可回復應變在Ni50.5到Ni51.5從4.3%成長至4.5%,到Ni52時降低到3.0%,而Ni50.5到Ni51.5的理論彈熱溫降值從9.6°C成長至16.3°C,到Ni52時降低至8.8°C,其中Ni52的最大可回復應變與理論彈熱溫降值顯著降低是因為相變態溫度過低,在形狀記憶效應實驗可承受的最大應力下不足以產生完全的麻田散體相變態。四者之不可回復應變皆小於0.1%,擁有很好的形狀記憶效應。500°C時效1小時的富鎳鈦鎳箔帶中出現盤狀與透鏡狀之Ti3Ni4析出物,四種鎳含量下的析出物尺寸皆相近,約為100 nm,而隨著鎳含量上升,析出物的面積分率從20.3%增加到36.6%。此外,500 °C時效1小時的富鎳鈦鎳箔帶都有良好的熱循環穩定性,100次熱循環過程中,相變態溫度的變化皆在0.5~0.7°C以內。 | zh_TW |
| dc.description.abstract | In this study, the melt-spinning technique was employed to fabricate Ti50-xNi50+x(x=0.5、1、1.5、2)shape memory alloy ribbons. Results showed that the spinning speed, quartz tube diameter, and ejection pressure affect the macroscopic morphology and microstructure of the ribbons. Ni-rich TiNi bulk materials made into ribbons showed no phase transformation behavior until aged at 500°C, producing two-stage phase transformations: B2→R→B19' and B19'→R→B2. Increased aging time led to Ti3Ni4 precipitation, raising phase transformation temperatures. At 500°C for 1 hour, the maximum recoverable strain increased from 4.3% for Ni50.5 to 4.5% for Ni51.5, then decreased to 3.0% for Ni52. The theoretical elastocaloric temperature drop increased from 9.6°C for Ni50.5 to 16.3°C for Ni51.5, then decreased to 8.8°C for Ni52. The significant reduction in the maximum recoverable strain and theoretical elastocaloric temperature drop of Ni52 is due to the excessively low phase transformation temperature. At the maximum stress that can be sustained during the shape memory effect experiment, a complete martensitic transformation cannot occur. All four compositions had less than 0.1% irrecoverable strain. Disc- and lens-shaped Ti3Ni4 precipitates were about 100 nm in size, with area fractions increasing from 20.3% to 36.6% with higher Ni content. Additionally, ribbons aged at 500°C for 1 hour showed good thermal cycling stability, with phase transformation temperature variations within 0.5–0.7°C. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:55:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:55:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目次 v 圖次 viii 表次 xiii 第一章 前言 1 第二章 文獻回顧 3 2.1 形狀記憶合金 3 2.1.1 麻田散體相變態 3 2.1.2 形狀記憶效應與超彈性 6 2.1.3 彈熱效應 7 2.2 鈦鎳二元形狀記憶合金 8 2.2.1 Ni-rich TiNi形狀記憶合金塊材 10 2.2.2 Ni-rich TiNi形狀記憶合金箔帶與薄膜 17 2.3 快速凝固製程 21 2.3.1 熔旋噴鑄製程 22 2.3.2 熔旋噴鑄製程參數影響 22 第三章 實驗方法 27 3.1 試片製備 27 3.1.1 合金塊製備 27 3.1.2 石英管製備 28 3.1.3 熔旋噴鑄製程 29 3.2 熱處理 30 3.2.1 真空封管 30 3.2.2 鹽浴爐加熱 31 3.3 相變態溫度量測 31 3.4 形狀記憶效應 32 3.5 微結構觀察 33 3.6 成分分析 34 3.7 熱循環穩定性量測 35 第四章 結果與討論 36 4.1 熔旋噴鑄製程研究 36 4.1.1 轉速 36 4.1.2 石英管開口口徑 39 4.1.3 噴出壓力 43 4.1.4 其他參數 46 4.1.5 小結 47 4.2 塊材與as-spun試片 49 4.2.1 相變態溫度量測結果 49 4.2.2 成分分析 53 4.3 500°C時效之箔帶 53 4.3.1 相變態溫度量測結果 53 4.3.2 相變態溫度量測結果討論 60 4.4 500°C時效1小時箔帶之性能研究 65 4.4.1 Ti49.5Ni50.5之形狀記憶效應實驗 65 4.4.2 Ti49Ni51之形狀記憶效應實驗 70 4.4.3 Ti48.5Ni51.5之形狀記憶效應實驗 76 4.4.4 Ti48Ni52之形狀記憶效應實驗 81 4.4.5 形狀記憶效應比較 87 4.4.6 微結構觀察 90 4.4.7 熱循環穩定性 96 第五章 結論 100 第六章 參考文獻 102 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 富鎳鈦鎳形狀記憶合金箔帶之成分與時效處理對相變態溫度與機械性能之影響 | zh_TW |
| dc.title | Effect of Composition and Aging Treatment on Transformation Temperature and Mechanical Property of Ni-rich TiNi Shape Memory Alloy Ribbons | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林新智;林哲宇 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Chih Lin;Jhe-Yu Lin | en |
| dc.subject.keyword | 熔旋噴鑄製程,富鎳鈦鎳形狀記憶合金箔帶,麻田散體相變態,時效處理,Ti3Ni4 析出物, | zh_TW |
| dc.subject.keyword | Melt-spinning process,Ni-rich TiNi shape memory alloy ribbons,Martensitic transformation,Aging treatment,Ti3Ni4 precipitates, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202403010 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 10.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
