請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95711完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政安 | zh_TW |
| dc.contributor.advisor | Chen-An Tsai | en |
| dc.contributor.author | 張紹晨 | zh_TW |
| dc.contributor.author | Shao-Chen Chang | en |
| dc.date.accessioned | 2024-09-15T16:55:37Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | Aalen, O., Røysland, K., and Gran, J. (2012). Causality, mediation and time: a dynamic viewpoint. Journal of the Royal Statistical Society - Series A, 175(4):831–861.
Aalen, O., Stensrud, M., Didelez, V., Daniel, R.andRøysland, K., and Strohmaier, S. (2020). Time-dependent mediators in survival analysis: Modeling direct and indirect effects with the additive hazards model. Biometrical Journal, 62:532–549. Amorim, L. D. (2022). Causal mediation for survival data: A unifying approach via glm. January, 45(1):161–191. Baron, R. M. and Kenny, D. A. (1986). The moderator mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6):1173–1182. Bender, R., Augustin, T., and Blettner, M. (2005). Generating survival times to simulate cox proportional hazards models. Statistics in Medicine, 24:1713–1723. Carson, A. P., Long, D. L., Cherrington, A. L., Dutton, G. R., Howard, V. J., Brown, T. M., Howard, G., Safford, M. M., and Cushman, M. (2021). Sex differences in factors contributing to the racial disparity in diabetes risk. American journal of preventive medicine, 64(4):e169–e177. Daniel, R., Stavola, B., Cousens, S., and Vansteelandt, S. (2015). Causal mediation analysis with multiple mediators. Biometrics, 71:13–14. DiCiccio, T. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11:189–212. Didelez, V. (2019). Defining causal mediation with a longitudinal mediator and a survival outcome. Lifetime Data Analysis, 25:593–610. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82:171–185. Fasanelli, F., Giraudo, M. and Ricceri, F., and Zugna, D., V. . (2019). Marginal time- dependent causal effects in mediation analysis with survival data. American Journal of Epidemiology, 188(5):967–974. Fulcher, I., Tchetgen Tchetgen, E., and Williams, P. (2017). Mediation analysis for censored survival data under an accelerated failure time model. Epidemiology, 28(5):660–666. Howard, G., Cushman, M., Moy, C. S., Oparil, S., Muntner, P., Lackland, D. T., Manly, J. J., Flaherty, M. L., Judd, S. E., and Wadley, V. G. (2018). Association of clinical and social factors with excess hypertension risk in black compared with white us adults. Jama, 320(13):1338–1348. Howard, V. J., Cushman, M., Pulley, L., Gomez, C. R., Go, R. C., Prineas, R. J., Graham, A., Moy, C. S., and Howard, G. (2005). The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology, 25(3):135–143. Huang, Y.-T., Jen, C.-L., Yang, H.I., Lee, M.-H., Lu, S.-N., Iloeje, U., and Chen, C.-J. (2011). Lifetime risk and sex difference of hepatocellular carcinoma among patients with chronic hepatitis b and c. Journal of Clinical Oncology, 29(27):3643–3650. Huang, Y.-T. and Yang, H. (2017). Causal mediation analysis of survival outcomes with multiple mediators. Epidemiology, 28(3):370–378. Iacobucci, D. (2012). Mediation analysis and categorical variables: the final frontier. Journal of Consumer Psychology, 22:582–594. Imai, K., Keele, L., and Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15:309–334. Jerolon, A., Baglietto, L., Birmele, E., Alarcon, F., and Perduca, V. (2021). Causal medi- ation analysis in presence of multiple mediators uncausally related. The International Journal of Biostatistics, 17(2):191–221. Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. Wiley, Hoboken, N.J., 2 edn edition. Kim, C., Daniels, M. J., Hogan, J. W., Choirat, C., and Zigler, C. M. (2019). Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls. The annals of applied statistics, 13(3):1927. Lange, T. and Hansen, J. (2011). Direct and indirect effects in a survival context. Epidemiology, 22:575–581. Lange, T., Rasmussen, M., and Thygesen, L. C. (2014). Assessing natural direct and indirect effects through multiple pathways. American journal of epidemiology, 179(4):513–518. Lange, T., Vansteelandt, S., and Bekaert, M. (2012). A simple unified approach for estimating natural direct and indirect effects. American Journal of Epidemiology, 176:190–195. Lin, S.-H., Young, J., L., and VanderWeele, T. (2017). Mediation analysis with a survival outcome with time-varying exposures, mediators and confounders. Statistics in Medicine, 36:4153–4166. Loyes, T., Moerkerke, B., De Smet, O., Byusse, A., and Vansteelandt, S. (2013). Flex- ible mediation analysis in the presence of nonlinear relations: beyond the mediation formula. Multivariate Behavioral Research, 48(6):871–894. MacKinnon, D. (2008). Introduction to Statistical Mediation Analysis. Taylor and Francis, New York. MacKinnon, D., Warsi, G., and Dwyer, J. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30:41–62. MacKinnon, D. P. and Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17:144–158. Nguyen, T. Q., Webb-Vargas, Y., Koning, I. M., and Stuart, E. A. (2016). Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention. Structural Equation Modeling: A Multidisciplinary Journal, 23(3):368–383. Pearl, J. (2001). Direct and indirect effects. In Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 411–442. Rijnhart, J. J., Lamp, S. J., Valente, M. J., MacKinnon, D. P., Twisk, J. W., and Heymans, M. W. (2021). Mediation analysis methods used in observational research: a scoping review and recommendations. BMC medical research methodology, 21:1–17. Roy, S., Daniels, M. J., and Roy, J. (2024). A bayesian nonparametric approach for multiple mediators with applications in mental health studies. Biostatistics, page page kxad038. Taguri, M., Featherstone, J., and Cheng, J. (2018). Causal mediation analysis with multiple causally non-ordered mediators. Statistical methods in medical research, 27(1):3–19. Tajeu, G. S., Safford, M. M., Howard, G., Howard, V. J., Chen, L., Long, D. L., Tanner, R. M., and Muntner, P. (2020). Black–white differences in cardiovascular disease mortality: A prospective us study, 2003–2017. Neuroepidemiology, 110(5):696–703. Tchetgen Tchetgen, E. and Shpitser, I. (2012). Semiparametric theory for causal mediation analysis: Efficiency bounds, multiple robustness and sensitivity analysis. Annals of Statistics, 40(3):1816–1845. Tchetgen Tchetgen, E. J. (2013). Inverse odds ratio-weighted estimation for causal mediation analysis. Statistics in Medicine, 32. VanderWeele, T. (2011). Causal mediation analysis with survival data. Epidemiology, 22(4):582–585. VanderWeele, T. (2015). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press, New York. VanderWeele, T. and Vansteelandt, S. (2010). Odds ratios for mediation analysis with a dichotomous outcome. American Journal of Epidemiology, 172:1339–1348. VanderWeele, T. and Vansteelandt, S. (2014). Mediation analysis with multiple mediators. Epidemiologic methods, 2(1):95–115. VanderWeele, T. (2016). Mediation analysis: a practitioner's guide. Annual Review of Public Health, 37:17–32. Vansteelandt, S., Linder, M., Vandenberghe, S., Steen, J., and Madsen, J. (2019). Mediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confounding. Statistics in Medicine, 38:4828–4840. Wang, W., Nelson, S., and Albert, J. M. (2013). Estimation of causal mediation effects for a dichotomous outcome in multiple-mediator models using the mediation formula. Statistics in Medicine, 32. Yu, Q. and Li, B. (2017). mma: an r package for mediation analysis with multiple mediators. Journal of Open Research Software, 5(1):11–11. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95711 | - |
| dc.description.abstract | 本文探討事件發生時間(time-to-event)結果的中介效應分析,在模擬實驗 中考慮了四種不同的中介因子分佈,透過調整樣本數、設限比例、時間基線風 險,以相對偏差比較在參數模型間的差異,並使用拔靴法 (bootstrapping) 來估計 信賴區間以評估模型效果。當中介變量以廣義線性模型(generalized linear models, GLM)建模時,本文針對事件發生時間結果,採用了加速失效(accelerated failure time, AFT)模型、Cox 比例風險(Cox proportion hazard)模型和 Aalen 加性風 險(Aalen additive hazard)模型,考慮二元暴露的自然直接效應(Natural Direct Effect)並使用中介變量的自然間接效應(Natural Indirect Effect)之一般表達式。 本研究的重點在於中介分佈與模擬設定對模型估計效果的敏感性分析,以及方法 在實際數據(Melanoma 資料集 &HCC 資料集)中的應用。存活模型提供了在不 同尺度中的解釋,解決涉及醫學與可能涵蓋領域中的中因果中介分析問題,提供 相關政策制定者及未來研究建議與指引。 | zh_TW |
| dc.description.abstract | This study examines the mediation effect analysis of time-to-event outcomes. In sim- ulation experiments, we consider four different distributions of mediating variables and compare the differences among parametric models using relative bias by adjusting sample size, censoring proportion, and baseline hazard. Bootstrapping is used to estimate confi- dence intervals to evaluate model performance. When the mediating variable is modeled using generalized linear models (GLMs), this study employs the accelerated failure time (AFT) model, the Cox proportional hazards model, and the Aalen additive hazards model for time-to-event outcomes. We consider the natural direct effect of binary exposure and use the general expression of the natural indirect effect of the mediating variable. The focus of this study is on the sensitivity analysis of the effect estimates to the distribution of the mediators and simulation settings, as well as the application of these methods to real datasets (Melanoma and HCC datasets). Survival models provide an appropriate frame- work at different scales to address issues related to causal mediation analysis in medical research, offering recommendations and guidance for policymakers and future research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:55:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:55:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter1 緒論 1 Chapter2 文獻回顧 5 2.1 中介分析 5 2.2 反事實架構 7 2.3 因果效應 8 Chapter3 研究方法 13 3.1 存活資料中的中介效應 13 3.2 廣義線性模型(GLM)下的中介因子 16 3.2.1 廣義線性模型(GLM) 16 3.2.2 Causal Effects in the Accelerated Failure Time Model 16 3.2.3 Causal Effects in the Additive Aalen Model 17 3.2.4 Causal Effects in the Cox Proportional Hazard Model 18 Chapter4 統計模擬 21 4.1 模擬一:constant baseline hazard 21 4.1.1 Natural Indirect Effect(NIE) 22 4.1.2 Natural Direct Effect(NDE) 25 4.2 模擬二:Time-dependent baseline hazard 28 4.2.1 Natural Indirect Effect(NIE) 29 4.2.2 Natural Direct Effect(NDE) 29 4.3 Bootstrapping confidence interval 32 Chapter5 實證分析 35 5.1 Melanoma資料集 35 5.1.1 資料來源與說明 35 5.1.2 Cox迴歸分析 36 5.1.3 中介效果分析 37 5.2 Hepatocellular carcinoma(HCC) 資料集 39 5.2.1 資料來源與說明 39 5.2.2 Cox 迴歸分析 40 5.2.3 中介效果分析 41 Chapter 6 結論與建議 45 References 49 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 使用Cox proportion, AFT, Aalen Additive模型對於事件發生時間資料的中介效應估計的比較性研究 | zh_TW |
| dc.title | Comparing the estimation of mediation effects for time-to-event data using Cox proportion, Accelerated failure time and Aalen additive hazards model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 薛慧敏;陳琬萍 | zh_TW |
| dc.contributor.oralexamcommittee | Huey-Miin Hsueh;Wan-Ping Chen | en |
| dc.subject.keyword | 中介效應分析,模型比較,存活結果變量,迴歸方法, | zh_TW |
| dc.subject.keyword | mediation analysis,method comparison,survival outcome,regression method, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202404120 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 902.52 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
