請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95701完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | zh_TW |
| dc.contributor.advisor | Jaw-Lin Wang | en |
| dc.contributor.author | 薛尚怡 | zh_TW |
| dc.contributor.author | Shang-Yi Hsueh | en |
| dc.date.accessioned | 2024-09-15T16:52:40Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | 1. Perlmutter, J.S. and J.W. Mink, DEEP BRAIN STIMULATION. Annual Review of Neuroscience, 2006. 29(Volume 29, 2006): p. 229-257.
2. Benabid, A.L., Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology, 2003. 13(6): p. 696-706. 3. Reed, T. and R. Cohen Kadosh, Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. Journal of Inherited Metabolic Disease, 2018. 41(6): p. 1123-1130. 4. Yavari, F., et al., Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neuroscience & Biobehavioral Reviews, 2018. 85: p. 81-92. 5. Kobayashi, M. and A. Pascual-Leone, Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2003. 2(3): p. 145-156. 6. Hallett, M., Transcranial Magnetic Stimulation: A Primer. Neuron, 2007. 55(2): p. 187-199. 7. Rossi, S., et al., Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 2009. 120(12): p. 2008-2039. 8. Blackmore, J., et al., Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety. Ultrasound in Medicine & Biology, 2019. 45(7): p. 1509-1536. 9. Zhang, T., et al., Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Frontiers in Human Neuroscience, 2021. 15. 10. Legon, W., et al., Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Scientific Reports, 2018. 8(1): p. 10007. 11. Liu, Y., et al., Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer's disease. Nanoscale, 2020. 12(11): p. 6498-6511. 12. McMahon, D., W. Oakden, and K. Hynynen, Investigating the effects of dexamethasone on blood-brain barrier permeability and inflammatory response following focused ultrasound and microbubble exposure. Theranostics, 2020. 10(4): p. 1604-1618. 13. Fan, C.-H., et al., Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson’s Disease. Nano Letters, 2021. 21(14): p. 5967-5976. 14. Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. eLife, 2021. 10: p. e61660. 15. Liao, W.-H., et al., Enhancing glymphatic function with very low-intensity ultrasound via the transient receptor potential vanilloid-4-aquaporin-4 pathway. bioRxiv, 2023: p. 2023.01.13.523878. 16. Lee, Y., et al., Improvement of glymphatic–lymphatic drainage of beta-amyloid by focused ultrasound in Alzheimer’s disease model. Scientific Reports, 2020. 10(1): p. 16144. 17. Peterson, D.C., et al., Neuroanatomy, Auditory Pathway, in StatPearls. 2024: Treasure Island (FL). 18. Muniak, M.A., et al., Central Projections of Spiral Ganglion Neurons, in The Primary Auditory Neurons of the Mammalian Cochlea, A. Dabdoub, et al., Editors. 2016, Springer New York: New York, NY. p. 157-190. 19. Middlebrooks, J.C., Auditory System: Central Pathways, in Encyclopedia of Neuroscience, L.R. Squire, Editor. 2009, Academic Press: Oxford. p. 745-752. 20. Shepard, A.R., J.L. Scheffel, and W.-M. Yu, Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. Journal of Comparative Neurology, 2019. 527(5): p. 999-1011. 21. Muniak, M.A., et al., 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol, 2013. 521(7): p. 1510-32. 22. David, A. and L. Pierre, 37Hippocampal Neuroanatomy, in The Hippocampus Book, P. Andersen, et al., Editors. 2006, Oxford University Press. p. 0. 23. Bartsch, T. and P. Wulff, The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, 2015. 309: p. 1-16. 24. Nelson, S. and M. Chris, 133Structural and Functional Properties of Hippocampal Neurons, in The Hippocampus Book. 2006, Oxford University Press. p. 0. 25. Lin, Z., et al., On-Chip Ultrasound Modulation of Pyramidal Neuronal Activity in Hippocampal Slices. Advanced Biosystems, 2018. 2(8): p. 1800041. 26. Huang, X., et al., Transcranial Low-Intensity Pulsed Ultrasound Modulates Structural and Functional Synaptic Plasticity in Rat Hippocampus. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019. 66(5): p. 930-938. 27. Guo, J., et al., Stratum Lacunosum-moleculare Interneurons of the Hippocampus Coordinate Memory Encoding and Retrieval. bioRxiv, 2021: p. 2021.06.11.448103. 28. Martinac, B. and A. Kloda, 6.5 Mechanosensory Transduction, in Comprehensive Biophysics, E.H. Egelman, Editor. 2012, Elsevier: Amsterdam. p. 108-141. 29. Chu, Y.C., et al., Activation of Mechanosensitive Ion Channels by Ultrasound. Ultrasound Med Biol, 2022. 48(10): p. 1981-1994. 30. Kubanek, J., et al., Ultrasound modulates ion channel currents. Scientific Reports, 2016. 6(1): p. 24170. 31. Mano, I. and M. Driscoll, DEG/ENaC channels: a touchy superfamily that watches its salt. Bioessays, 1999. 21(7): p. 568-78. 32. Fomenko, A., et al., Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain Stimulation, 2018. 11(6): p. 1209-1217. 33. Heffner, H.E. and R.S. Heffner, Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci, 2007. 46(1): p. 20-2. 34. Nelson, T.R., et al., Ultrasound Biosafety Considerations for the Practicing Sonographer and Sonologist. Journal of Ultrasound in Medicine, 2009. 28(2): p. 139-150. 35. Tyler, W.J., S.W. Lani, and G.M. Hwang, Ultrasonic modulation of neural circuit activity. Current Opinion in Neurobiology, 2018. 50: p. 222-231. 36. Jiang, X., et al., A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Transactions on Biomedical Engineering, 2019. 66(10): p. 2704-2718. 37. Edwards, M.J., et al., Hyperthermia and birth defects. Reproductive Toxicology, 1995. 9(5): p. 411-425. 38. Sheng, M. and M.E. Greenberg, The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 1990. 4(4): p. 477-485. 39. Herrera, D.G. and H.A. Robertson, Activation of c-fos in the brain. Progress in Neurobiology, 1996. 50(2): p. 83-107. 40. Kovács, K.J., Invited review c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochemistry International, 1998. 33(4): p. 287-297. 41. Dragunow, M. and R. Faull, The use of c-fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods, 1989. 29(3): p. 261-265. 42. Fulop, D.B., et al., Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep, 2019. 9(1): p. 14598. 43. Guenthner, C.J., et al., Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 2013. 78(5): p. 773-84. 44. Muniak, M.A. and D.K. Ryugo, Tonotopic organization of vertical cells in the dorsal cochlear nucleus of the CBA/J mouse. J Comp Neurol, 2014. 522(4): p. 937-49. 45. Yong, W., et al., Activation of N-Methyl-D-aspartate receptor contributed to the ultrasonic modulation of neurons in vitro. Biochem Biophys Res Commun, 2023. 676: p. 42-47. 46. Blackmore, D.G., et al., Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol Psychiatry, 2021. 26(11): p. 6975-6991. 47. Paoletti, P. and J. Neyton, NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol, 2007. 7(1): p. 39-47. 48. Johnson, L.R., A.R. Battle, and B. Martinac, Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci, 2019. 13: p. 533. 49. Singh, P., et al., N-methyl-D-aspartate receptor mechanosensitivity is governed by C terminus of NR2B subunit. J Biol Chem, 2012. 287(6): p. 4348-59. 50. 戴小芯, 腦神經細胞對微能量超音波刺激之反應, in 醫學工程學研究所. 2021, 國立臺灣大學. p. 1-71. 51. DeNardo, L.A., et al., Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci, 2019. 22(3): p. 460-469. 52. Josselyn, S.A. and S. Tonegawa, Memory engrams: Recalling the past and imagining the future. Science, 2020. 367(6473): p. eaaw4325. 53. Kim, S.O., et al., Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. Nano Converg, 2017. 4(1): p. 5. 54. Gage, G.J., D.R. Kipke, and W. Shain, Whole animal perfusion fixation for rodents. J Vis Exp, 2012(65). 55. Kiernan, J., Formaldehyde, Formalin, Paraformaldehyde And Glutaraldehyde: What They Are And What They Do. Microscopy Today, 2000. 8: p. 8-12. 56. Im, K., et al., An Introduction to Performing Immunofluorescence Staining. Methods Mol Biol, 2019. 1897: p. 299-311. 57. Po, K.T., et al., Repeated, high-dose dextromethorphan treatment decreases neurogenesis and results in depression-like behavior in rats. Experimental Brain Research, 2015. 233(7): p. 2205-2214. 58. Taylor, C.P., et al., Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacology & Therapeutics, 2016. 164: p. 170-182. 59. Qi, X., et al., Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast, 2021. 2021: p. 8855055. 60. Lin, Z., et al., Modulation of Neuronal Excitability by Low- Intensity Ultrasound in Two Principal Neurons of Rat Anteroventral Cochlear Nucleus. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021. 68(5): p. 1752-1761. 61. Han, S., et al., Ketamine Inhibits Ultrasound Stimulation-Induced Neuromodulation by Blocking Cortical Neuron Activity. Ultrasound in Medicine & Biology, 2018. 44(3): p. 635-646. 62. Kosenko, P.O., et al., Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med, 2020. 70(6): p. 492-498. 63. Clennell, B., et al., Transient ultrasound stimulation has lasting effects on neuronal excitability. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 2021. 14(2): p. 217-225. 64. Guo, H., et al., Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron, 2018. 98(5): p. 1020-1030.e4. 65. Sato, T., M.G. Shapiro, and D.Y. Tsao, Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron, 2018. 98(5): p. 1031-1041.e5. 66. Lim, J., et al., Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochemical and Biophysical Research Communications, 2022. 613: p. 113-119. 67. Zhang, L., et al., Interactions between the hippocampus and the auditory pathway. Neurobiology of Learning and Memory, 2022. 189: p. 107589. 68. Kurioka, T., S. Mogi, and T. Yamashita, Decreasing auditory input induces neurogenesis impairment in the hippocampus. Scientific Reports, 2021. 11(1): p. 423. 69. Chen, B.S. and K.W. Roche, Regulation of NMDA receptors by phosphorylation. Neuropharmacology, 2007. 53(3): p. 362-8. 70. Tullis, J.E., et al., GluN2B S1303 phosphorylation by CaMKII or DAPK1: no indication for involvement in ischemia or LTP. iScience, 2021. 24(10): p. 103214. 71. Wu, Y., et al., Endocytosis of GluN2B-containing NMDA receptors mediates NMDA-induced excitotoxicity. Mol Pain, 2017. 13: p. 1744806917701921. 72. Shi, X., et al., Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell Reports, 2021. 36(8): p. 109612. 73. Zhou, X., et al., NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death & Disease, 2013. 4(3): p. e560-e560. 74. Chen, D.-Y., et al., Dextromethorphan Exhibits Anti-inflammatory and Immunomodulatory Effects in a Murine Model of Collagen-Induced Arthritis and in Human Rheumatoid Arthritis. Scientific Reports, 2017. 7(1): p. 11353. 75. Stahl, S.M., Dextromethorphan/Bupropion: A Novel Oral NMDA (N-methyl-d-aspartate) Receptor Antagonist with Multimodal Activity. CNS Spectrums, 2019. 24(5): p. 461-466. 76. Song, X., et al., Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature, 2018. 556(7702): p. 515-519. 77. Zhu, S., et al., Mechanism of NMDA Receptor Inhibition and Activation. Cell, 2016. 165(3): p. 704-14. 78. Davis, S., S.P. Butcher, and R.G. Morris, The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci, 1992. 12(1): p. 21-34. 79. Tomlinson, S.E., et al., Clinical, genetic, neurophysiological and functional study of new mutations in episodic ataxia type 1. Journal of Neurology, Neurosurgery & Psychiatry, 2013. 84(10): p. 1107-1112. 80. Karcz, A., et al., Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing impairment. Hear Res, 2015. 321: p. 45-51 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95701 | - |
| dc.description.abstract | 近年來,許多研究團隊開始將低強度超音波作為一種非侵入性的腦刺激工具,有許多研究指出低強度超音波具有神經調節特性,並且已經開始應用於治療腦部疾病上,而神經性聽力損失目前並無有效治療方法。既然低強度超音波能夠調節神經活性,或許具有成為治療神經性聽力損失方法的潛力,因此本研究試圖探討低強度超音波對於聽覺系統的影響,特別是中樞聽覺路徑。研究對象其一為中樞聽覺路徑起始的耳蝸核,而由於多項證據顯示超音波能夠影響海馬迴的神經活性,並且過往實驗室也針對海馬迴進行了許多研究,因此研究對象其二為海馬迴。超音波調節神經的機制被認為是透過機械力敏感通道調控,根據過往實驗室研究結果,我們認為N-甲基-D-天門冬胺酸受體(NMDAR)具有受超音波調控的潛力,因此本研究還會針對海馬迴中的NMDAR進行探討。
本研究使用c-Fos作為神經活性標記,並且利用c-Fos TRAP2小鼠來探討活體內神經活化的現象。研究結果顯示,低強度超音波會促進耳蝸核與海馬迴的c-Fos表現量上升,影響其神經活化,也會影響耳蝸核的音調排列結構,但不會使耳蝸核與海馬迴在兩次同樣刺激下產生的神經網路重疊率提升,推斷沒有長期影響;針對超音波與NMDAR的關係性,研究結果指出低強度超音波會促進海馬迴NMDAR磷酸化,並且超音波促進的神經活化會受NMDAR抑制而降低。綜上所述,本研究結果顯示低強度超音波可影響神經活性,且具備對NMDAR潛在的調節性。 | zh_TW |
| dc.description.abstract | In recent years, many research teams have explored using low-intensity ultrasound as a non-invasive brain stimulation tool. Numerous studies have investigated its applications in treating brain diseases. Sensorineural hearing loss (SNHL), which may result from central nervous system (CNS) damage, currently lack effective treatments. Given that low-intensity ultrasound can regulate neuronal activity, it may have the potential to treat SNHL. Therefore, this study aims to investigate the effects of low-intensity ultrasound on CNS, especially on the central auditory pathway. One focus of this study is the cochlear nucleus, the starting point of the central auditory pathway. Additionally, previous laboratory studies have extensively examined the ultrasound effects on the hippocampus, thus another focus will be the hippocampus. The mechanism by which ultrasound modulates neuronal activity is believed to involve regulating mechanosensitive channels. Based on previous laboratory findings, we hypothesize that N-Methyl-D-Aspartate Receptors (NMDAR) may be regulated by ultrasound. Thus, this study also investigates the response of NMDAR under ultrasound stimulation.
We use c-Fos as a neuronal activity marker, and utilize c-Fos TRAP2 mice to study neural activation in vivo. The results showed a significant immediate increase in c-Fos expression in both the cochlear nucleus and the hippocampus under ultrasound stimulation; however, no significant difference was observed in the overlap ratio of neural networks generated by the same stimulus. This indicates that ultrasound stimulation can immediately increase neuronal activity but with limitations in repeatedly activating the same group of neurons. Moreover, the 12kHz band pattern labeled by c-Fos in the cochlear nucleus was consistently wider under ultrasound stimulation. Regarding the relationship between ultrasound and NMDAR, the results showed that low-intensity ultrasound could promote NMDAR phosphorylation in the hippocampus, and the neuronal activation induced by ultrasound was reduced by NMDAR inhibition. In conclusion, these findings suggest that low-intensity ultrasound may affect neuronal activation and demonstrate the potential regulatory effect of ultrasound on NMDAR. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:52:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:52:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 參與計畫 V 目次 VI 圖次 VIII 表次 X 第一章 緒論 1 1.1 為甚麼要用超音波刺激腦 1 1.2 腦與神經細胞 2 1.3 腦區介紹 2 1.3.1 聽覺與耳蝸核 2 1.3.2 海馬迴 5 1.4 機械力敏感通道 6 1.5 超音波參數定義 8 1.6 研究目的 10 1.7 研究中檢測的蛋白質與通道 11 1.7.1 c-Fos 11 1.7.2 NMDAR 12 第二章 材料與方法 14 2.1 研究方法介紹 14 2.2 成鼠超音波腦刺激實驗 15 2.2.1 刺激系統 15 2.2.2 超音波探頭聲強度與升溫量測 18 2.2.3 c-Fos TRAP2機制 20 2.2.4 實驗設計 21 2.2.5 腦切片樣本製備 23 2.2.6 生物檢測法1:免疫螢光染色 (Immunofluorescence) 28 2.3 通道刺激/抑制實驗-組織 31 2.3.1 刺激系統 31 2.3.2 刺激裝置聲強度及升溫量測 32 2.3.3 蛋白質樣本製備 34 2.3.4 生物檢測法2:西方墨點法 (Western blot) 34 2.4 通道刺激/抑制實驗-動物 38 2.4.1 實驗設計 38 2.4.2 刺激系統與樣本製備 38 2.4.3 免疫螢光染色與分析方法 38 第三章 實驗結果 39 3.1 成鼠超音波腦刺激實驗-短期 39 3.1.1 耳蝸核短期影響 40 3.1.2 海馬迴短期影響 40 3.1.3耳蝸核音調排列結構 41 3.2 成鼠超音波腦刺激實驗-長期 45 3.2.1 耳蝸核長期影響 45 3.2.2 海馬迴長期影響 47 3.3 通道刺激/抑制實驗 48 3.3.1 NMDAR磷酸化對超音波的反應(組織) 48 3.3.2超音波刺激下神經活性受NMDAR抑制影響(動物) 49 第四章 討論 52 第五章 結論與未來展望 58 5.1結論 58 5.2未來展望 58 第六章 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 海馬迴 | zh_TW |
| dc.subject | NMDAR | zh_TW |
| dc.subject | 耳蝸核 | zh_TW |
| dc.subject | 神經調節 | zh_TW |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | NMDAR | en |
| dc.subject | low-intensity ultrasound | en |
| dc.subject | neuromodulation | en |
| dc.subject | cochlear nucleus | en |
| dc.subject | hippocampus | en |
| dc.title | 耳蝸核與海馬迴的神經細胞對低強度超音波之反應 | zh_TW |
| dc.title | The Response of Neurons in Cochlear Nucleus and Hippocampus under the Low-Intensity Ultrasound Stimulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳玉威;楊世斌;吳振吉 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Wei Wu;Shi-Bing Yang;Chen-Chi Wu | en |
| dc.subject.keyword | 低強度超音波,神經調節,耳蝸核,海馬迴,NMDAR, | zh_TW |
| dc.subject.keyword | low-intensity ultrasound,neuromodulation,cochlear nucleus,hippocampus,NMDAR, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202403808 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
