請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95699完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余柏毅 | zh_TW |
| dc.contributor.advisor | Bor-Yih Yu | en |
| dc.contributor.author | 莊良杰 | zh_TW |
| dc.contributor.author | LIANG-JIE JHUANG | en |
| dc.date.accessioned | 2024-09-15T16:52:04Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1. Lamb, K.E., M.D. Dolan, and D.F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. International Journal of Hydrogen Energy, 2019. 44(7): p. 3580-3593.
2. Abashar, M., Y. Al-Sughair, and I. Al-Mutaz, Investigation of low temperature decomposition of ammonia using spatially patterned catalytic membrane reactors. Applied Catalysis A: General, 2002. 236(1-2): p. 35-53. 3. Chellappa, A., C. Fischer, and W. Thomson, Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Applied Catalysis A: General, 2002. 227(1-2): p. 231-240. 4. Cechetto, V., et al., H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Processing Technology, 2021. 216: p. 106772. 5. Di Carlo, A., L. Vecchione, and Z. Del Prete, Ammonia decomposition over commercial Ru/Al2O3 catalyst: An experimental evaluation at different operative pressures and temperatures. international journal of hydrogen energy, 2014. 39(2): p. 808-814. 6. Huang, C., et al., Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Applied Surface Science, 2019. 476: p. 928-936. 7. Itoh, N., et al., Kinetic enhancement of ammonia decomposition as a chemical hydrogen carrier in palladium membrane reactor. Catalysis Today, 2014. 236: p. 70-76. 8. Lucentini, I., et al., Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: Effect of metal loading and kinetic analysis. Applied Catalysis B: Environmental, 2021. 286: p. 119896. 9. Rizzuto, E., P. Palange, and Z. Del Prete, Characterization of an ammonia decomposition process by means of a multifunctional catalytic membrane reactor. International journal of hydrogen energy, 2014. 39(22): p. 11403-11410. 10. Wang, B., et al., Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor. International Journal of Hydrogen Energy, 2019. 44(49): p. 26874-26887. 11. Deshmukh, S., A. Mhadeshwar, and D. Vlachos, Microreactor modeling for hydrogen production from ammonia decomposition on ruthenium. Industrial & Engineering Chemistry Research, 2004. 43(12): p. 2986-2999. 12. Badescu, V., Optimal design and operation of ammonia decomposition reactors. International Journal of Energy Research, 2020. 44(7): p. 5360-5384. 13. Cechetto, V., et al., Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. international journal of hydrogen energy, 2022. 47(49): p. 21220-21230. 14. Makhloufi, C. and N. Kezibri, Large-scale decomposition of green ammonia for pure hydrogen production. International Journal of Hydrogen Energy, 2021. 46(70): p. 34777-34787. 15. Juangsa, F.B., P.S. Darmanto, and M. Aziz, CO2-free power generation employing integrated ammonia decomposition and hydrogen combustion-based combined cycle. Thermal Science and Engineering Progress, 2020. 19: p. 100672. 16. González-Castaño, M., B. Dorneanu, and H. Arellano-García, The reverse water gas shift reaction: a process systems engineering perspective. Reaction Chemistry & Engineering, 2021. 6(6): p. 954-976. 17. Wolf, A., A. Jess, and C. Kern, Syngas production via reverse water‐gas shift reaction over a Ni‐Al2O3 catalyst: catalyst stability, reaction kinetics, and modeling. Chemical Engineering & Technology, 2016. 39(6): p. 1040-1048. 18. Pastor-Pérez, L., et al., CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. Journal of CO2 utilization, 2017. 21: p. 423-428. 19. Chen, X., et al., Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction. Frontiers in Chemistry, 2020. 8: p. 709. 20. Panzone, C., et al., Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 2020. 38: p. 314-347. 21. Le Saché, E., et al., Switchable catalysts for chemical CO2 recycling: A step forward in the methanation and reverse water–Gas shift reactions. ACS sustainable chemistry & engineering, 2020. 8(11): p. 4614-4622. 22. Vidal Vázquez, F., et al., Catalyst screening and kinetic modeling for CO production by high pressure and temperature reverse water gas shift for Fischer–Tropsch applications. Industrial & Engineering Chemistry Research, 2017. 56(45): p. 13262-13272. 23. Xu, J. and G.F. Froment, Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AIChE journal, 1989. 35(1): p. 88-96. 24. Wealer, B., The economic organization of nuclear power construction projects: Organizational models for production and financing. Journal of Mega Infrastructure & Sustainable Development, 2020. 2(2): p. 206-219. 25. Gnanakumar, E.S., et al., Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane. Chemical Engineering Science, 2019. 194: p. 2-9. 26. Marlin, D.S., E. Sarron, and Ó. Sigurbjörnsson, Process advantages of direct CO2 to methanol synthesis. Frontiers in chemistry, 2018. 6: p. 446. 27. Ojelade, O.A. and S.F. Zaman, A review on CO2 hydrogenation to lower olefins: Understanding the structure-property relationships in heterogeneous catalytic systems. Journal of CO2 Utilization, 2021. 47: p. 101506. 28. Echterhof, T., Review on the use of alternative carbon sources in EAF steelmaking. Metals, 2021. 11(2): p. 222. 29. Xu, Y., et al., Selective conversion of syngas to olefins-rich liquid fuels over core-shell FeMn@ SiO2 catalysts. Fuel, 2020. 275: p. 117884. 30. Zhang, Q., et al., Fischer–Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem, 2014. 7(5): p. 1251-1264. 31. Teimouri, Z., N. Abatzoglou, and A.K. Dalai, Kinetics and selectivity study of Fischer–Tropsch synthesis to C5+ hydrocarbons: a review. Catalysts, 2021. 11(3): p. 330. 32. Mena Subiranas, A. and G. Schaub, Combining Fischer-Tropsch (FT) and Hydrocarbon Reactions under FT Reaction Conditions--Catalyst and Reactor Studies with Co or Fe and Pt/ZSM-5. International Journal of Chemical Reactor Engineering, 2007. 5(1). 33. van Santen, R.A., M. Ghouri, and E.M. Hensen, Microkinetics of oxygenate formation in the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2014. 16(21): p. 10041-10058. 34. Cheng, J., et al., A first-principles study of oxygenates on co surfaces in Fischer− Tropsch synthesis. The Journal of Physical Chemistry C, 2008. 112(25): p. 9464-9473. 35. Gnanamani, M.K., et al., Fischer–Tropsch synthesis: Metal–support interfacial contact governs oxygenates selectivity over CeO2 supported Pt–Co catalysts. Applied Catalysis A: General, 2011. 393(1-2): p. 17-23. 36. Krausser, L., Q. Yang, and E.V. Kondratenko, CO2 Hydrogenation to Hydrocarbons over Fe‐Based Catalysts: Status and Recent Developments. ChemCatChem, 2024: p. e202301716. 37. Reinikainen, M., et al., Two-Step Conversion of CO2 to Light Olefins: Laboratory-Scale Demonstration and Scale-Up Considerations. ChemEngineering, 2022. 6(6): p. 96. 38. Dai, X.P., et al., Fischer–Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor: Simulation and enhancement in conversion and diesel selectivity. Chemical Engineering Science, 2014. 105: p. 1-11. 39. Lee, T.S. and J. Chung, Mathematical modeling and numerical simulation of a Fischer–Tropsch packed bed reactor and its thermal management for liquid hydrocarbon fuel production using biomass syngas. Energy & Fuels, 2012. 26(2): p. 1363-1379. 40. Lopez Luna, M., et al., Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO2. ACS Catalysis, 2021. 11(10): p. 6175-6185. 41. Skrypnik, A.S., et al., Understanding reaction-induced restructuring of well-defined FexOyCz compositions and its effect on CO2 hydrogenation. Applied Catalysis B: Environmental, 2021. 291: p. 120121. 42. Xie, J., et al., Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nature Communications, 2019. 10(1): p. 167. 43. Numpilai, T., et al., Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Process Safety and Environmental Protection, 2021. 151: p. 401-427. 44. Zafari, R., et al., An Efficient Catalyst for Light Olefins Production from CO Hydrogenation: Synergistic Effect of Zn and Ce Promoters on Performance of Co–Mn/SiO 2 Catalyst. Catalysis Letters, 2017. 147: p. 2475-2486. 45. Prieto, G., Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis. ChemSusChem, 2017. 10(6): p. 1056-1070. 46. Tavakoli, A., M. Sohrabi, and A. Kargari, Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts. Chemical Engineering Journal, 2008. 136(2-3): p. 358-363. 47. Ma, W.-P., et al., An investigation of chain growth probability in Fischer-Tropsch synthesis over an industrial Fe− Cu− K catalyst. Reaction Kinetics and Catalysis Letters, 1999. 66: p. 217-223. 48. Wang, Y.-N., et al., Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst. Fuel, 2003. 82(2): p. 195-213. 49. Van Der Laan, G.P. and A. Beenackers, Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catalysis Reviews, 1999. 41(3-4): p. 255-318. 50. Lox, E.S. and G.F. Froment, Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results. Industrial & Engineering Chemistry Research, 1993. 32(1): p. 61-70. 51. Moazami, N., et al., A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017. 171: p. 32-60. 52. Najari, S., et al., Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms. International Journal of Hydrogen Energy, 2019. 44(10): p. 4630-4649. 53. Bao, B., M.M. El-Halwagi, and N.O. Elbashir, Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Processing Technology, 2010. 91(7): p. 703-713. 54. Wei, J., et al., Directly converting CO2 into a gasoline fuel. Nature communications, 2017. 8(1): p. 15174. 55. Filip, L., P. Zámostný, and R. Rauch, Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution. Fuel, 2019. 243: p. 603-609. 56. Do, T.N. and J. Kim, Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy conversion and Management, 2020. 214: p. 112866. 57. Liu, Q.-Y., et al., An optimal Fe–C coordination ensemble for hydrocarbon chain growth: a full Fischer–Tropsch synthesis mechanism from machine learning. Chemical Science, 2023. 14(35): p. 9461-9475. 58. Chiu, H.-H. and B.-Y. Yu, Synthesis of green light olefins from direct hydrogenation of CO2. Part I: Techno-economic, decarbonization, and sustainability analyses based on rigorous simulation. Journal of the Taiwan Institute of Chemical Engineers, 2024. 156: p. 105340. 59. Chiu, H.-H. and B.-Y. Yu, Synthesis of green light olefins from direct hydrogenation of CO2. Part II: detailed process design and optimization. Journal of the Taiwan Institute of Chemical Engineers, 2024. 155: p. 105287. 60. Medrano-García, J.D., M.A. Charalambous, and G. Guillén-Gosálbez, Economic and environmental barriers of CO2-based fischer–tropsch electro-diesel. ACS Sustainable Chemistry & Engineering, 2022. 10(36): p. 11751-11759. 61. Zang, G., et al., Life cycle analysis of electrofuels: Fischer–Tropsch fuel production from hydrogen and corn ethanol byproduct CO2. Environmental Science & Technology, 2021. 55(6): p. 3888-3897. 62. Yu, B.Y. and I.L. Chien, Design and Optimization of the Methanol‐to‐Olefin Process. Part I: Steady‐State Design and Optimization. Chemical Engineering & Technology, 2016. 39(12): p. 2293-2303. 63. Yu, B.Y. and I.L. Chien, Design and Optimization of the Methanol‐to‐Olefin Process. Part II: Comparison of Different Methods for Propylene/Propane Separation. Chemical Engineering & Technology, 2016. 39(12): p. 2304-2311. 64. Devkota, S., et al., Process design and optimization of onsite hydrogen production from ammonia: Reactor design, energy saving and NOX control. Fuel, 2023. 342: p. 127879. 65. Torres Galvis, H.M., et al., Iron particle size effects for direct production of lower olefins from synthesis gas. Journal of the American Chemical Society, 2012. 134(39): p. 16207-16215. 66. Leva, M., et al., Cooling of gases through packed tubes. Industrial & Engineering Chemistry, 1948. 40(4): p. 747-752. 67. Chang, Y., Z. Bouzarkouna, and D. Devegowda, Multi-objective optimization for rapid and robust optimal oilfield development under geological uncertainty. Computational Geosciences, 2015. 19: p. 933-950. 68. Asthagiri, D., et al., Electrostatic and induction effects in the solubility of water in alkanes. The Journal of Chemical Physics, 2017. 147(7). 69. Góral, M. and P. Oracz, Predicted Mutual Solubilities in Water+ C5-C12 Hydrocarbon Systems. Results at 298 K. ChemEngineering, 2021. 5(4): p. 89. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95699 | - |
| dc.description.abstract | 本研究利用氨裂解反應製綠氫與碳捕捉二氧化碳,通過費托(FT)反應將二氧化碳轉化為碳氫化合物(烷類、烃類)後進入分離程序,序列式的分離出各種燃料(如輕烴、汽油、航空燃料、柴油),在未來的去碳化經濟中是一個有前景的選擇。
整個製程一共分成三個部分,第一部分為ammonia decomposition 產氫,本研究探討了不同的反應器架構(恆溫反應器、絕熱反應器、非恆溫反應器)以及不同的換熱物質(氨氣燃燒、熱熔鹽)去做比較 ,盡可能使實際反應器狀況貼近恆溫反應器。。經過初步之設計,得知使用非絕熱式反應器(換熱物質為熱熔鹽)之轉化效能較貼近恆溫反應器。在氨分解製程之後我們提出了一個使用物理吸附的PSA使氫氣與氮氣分離的建議,而此PSA使用了zeolite 5A 的吸附劑並且使用了4個床8個步驟使氫氣純化高達99.99%而回收率達80%。接著第二部分我們利用經PSA產出的氫氣與二氧化碳進行 One-step RWGS及FT反應,開發了四種由Anderson-Schultz-Flory(ASF)分布描述的不同鏈傳播概率(ɑ)特徵的情景,分別對應於生產輕烴(ɑ=0.3)、汽油(ɑ=0.65)、航空燃料(ɑ=0.75)和柴油(ɑ=0.85)。針對每種情景,通過詳細的數學建模研究了利用不同反應器數量、採用各種熱傳遞方法和填充不同催化劑的替代配置。為了確定最佳設計和操作條件,進行了多目標優化,旨在最大化轉化率和最小化生產成本。最後第三部分,提出了一種統一的系統,適用於從不同的產品分布中分離汽油、航空燃料和柴油。該分離系統旨在提高效率並降低成本,為行業提供更加經濟和實用的解決方案。 | zh_TW |
| dc.description.abstract | This study utilizes ammonia decomposition to produce green hydrogen and captures carbon dioxide, converting it into hydrocarbons (alkanes and hydrocarbons) through the Fischer-Tropsch (FT) reaction. These hydrocarbons then undergo separation processes to sequentially extract various fuels (such as light hydrocarbons, gasoline, jet fuel, and diesel). This approach is a promising option in a future decarbonized economy.
The entire process is divided into three parts. The first part involves hydrogen production through ammonia decomposition. This study explores different reactor configurations (isothermal, adiabatic, and non-isothermal reactors) and different heat exchange substances (ammonia combustion, molten salt) to compare and closely match the actual reactor conditions to those of an isothermal reactor. Preliminary design indicates that using a non-adiabatic reactor (with molten salt as the heat exchange substance) achieves conversion efficiency close to that of an isothermal reactor. Following the ammonia decomposition process, we propose using PSA (Pressure Swing Adsorption) for separating hydrogen and nitrogen. This PSA system uses zeolite 5A adsorbent and employs four beds with eight steps to achieve hydrogen purification up to 99.99% with an 80% recovery rate. In the second part, we utilize the hydrogen produced by the PSA system and carbon dioxide for one-step RWGS and FT reactions. Four scenarios characterized by different chain propagation probabilities (ɑ) described by the Anderson-Schultz-Flory (ASF) distribution were developed, corresponding to the production of light hydrocarbons (ɑ=0.3), gasoline (ɑ=0.65), jet fuel (ɑ=0.75), and diesel (ɑ=0.85). For each scenario, alternative configurations utilizing different reactor numbers, employing various heat transfer methods, and packing different catalysts were investigated through detailed mathematical modeling. Multi-objective optimization, aiming to maximize conversion and minimize production costs, was conducted to determine the optimal design and operating conditions. The third part proposes a unified system applicable for the separation of gasoline, jet fuel, and diesel from different product distributions. This separation system aims to enhance efficiency and reduce costs, providing a more economical and practical solution for the industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:52:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:52:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Research Objectives 1 1.2 Ammonia Decomposition For Hydrogen Production 2 1.3 Reverse Water Gas Shift Reaction (RWGS) 7 1.4 Ficher – Tropsch (FT) Reaction 9 1.5 Products Separation 15 Chapter 2 Process of Ammonia Decomposition 16 2.1 Process Overview 16 2.1.1 Reaction Kinetic model 16 2.2 Process Development 17 2.2.1 Ammonia Decomposition With Ammonia Combustion. 17 2.2.2 Ammonia Decomposition With Molten Salt 25 Chapter 3 Process of Ficher – Tropsch Reaction. 29 3.1 Process Overview 29 3.1.1 Components and physical properties 29 3.1.2 Reaction Kinetic model 29 3.1.3 Reactor Design 33 3.2 Process Development 39 3.2.1 Single-stage configurations 39 3.2.2 Dual-stage configurations (using the same catalyst) 43 3.2.3 Dual-stage configurations (using different catalyst) 48 Chapter 4 Products Separation 53 Chapter 5 Conclusion 60 REFERENCE 62 APPENDIX 72 | - |
| dc.language.iso | en | - |
| dc.subject | 熔鹽 | zh_TW |
| dc.subject | 數學建模 | zh_TW |
| dc.subject | 液體燃料 | zh_TW |
| dc.subject | 多目標優化 | zh_TW |
| dc.subject | 反應器配置 | zh_TW |
| dc.subject | 費-托合成(FT)反應 | zh_TW |
| dc.subject | 二氧化碳轉化 | zh_TW |
| dc.subject | 氨分解 | zh_TW |
| dc.subject | mathematical modeling | en |
| dc.subject | ammonia decomposition | en |
| dc.subject | molten salt | en |
| dc.subject | CO2 conversion | en |
| dc.subject | Fischer-Tropsch (FT) reaction | en |
| dc.subject | reactor configurations | en |
| dc.subject | multi-objective optimization | en |
| dc.subject | liquid fuels | en |
| dc.title | 氨裂解產氫與二氧化碳直接氫化費托反應之整合製程 設計分析 | zh_TW |
| dc.title | Rigorous design and analysis of an integrated process of hydrogen production through ammonia decomposition and the Fischer-Torpsch reaction of CO2 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝依芸;陳誠亮;李瑞元;林育正 | zh_TW |
| dc.contributor.oralexamcommittee | I-Yun Lisa Hsieh;Cheng-Liang Chen;Jui-Yuan Lee;Yu-Jeng Lin | en |
| dc.subject.keyword | 氨分解,熔鹽,二氧化碳轉化,費-托合成(FT)反應,反應器配置,多目標優化,液體燃料,數學建模, | zh_TW |
| dc.subject.keyword | ammonia decomposition,molten salt,CO2 conversion,Fischer-Tropsch (FT) reaction,reactor configurations,multi-objective optimization,liquid fuels,mathematical modeling, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202403242 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
