請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95695完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆 | zh_TW |
| dc.contributor.advisor | Kuo-Long Pan | en |
| dc.contributor.author | 黃仕豪 | zh_TW |
| dc.contributor.author | Shih-Hao Huang | en |
| dc.date.accessioned | 2024-09-15T16:50:48Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | [1] M. Smart, "Scramjets," The Aeronautical Journal, vol. 111 (1124), pp. 605-619, 2007.
[2] Z. Xiang, X. Zhixun, M. Likun, L. Chaolong, F. Chuanbo, B. Natan, and Alon, GANY, "Research progress on solid-fueled Scramjet," Chinese Journal of Aeronautics, vol. 35, no. 1, pp. 398-415, 2022. [3] 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, and 任鹏浩, "固体火箭超燃冲压发动机燃烧技术研究进展," 航空学报, vol. 44, no. 15, pp. 82-96, 2023. [4] K. Pandey and T. Sivasakthivel, "Recent advances in scramjet fuel injection-a review," International Journal of Chemical Engineering and Applications, vol. 1, no. 4, p. 294, 2010. [5] A. Techer, Y. Moule, G. Lehnasch, and A. Mura, "Mixing of fuel jet in supersonic crossflow: estimation of subgrid-scale scalar fluctuations," AIAA Journal, vol. 56, no. 2, pp. 465-481, 2018. [6] H. Zhi-wei, H. Guo-qiang, W. Shuai, Q. Fei, W. Xiang-geng, and S. Lei, "Simulations of combustion oscillation and flame dynamics in a strut-based supersonic combustor," International Journal of Hydrogen Energy, vol. 42, no. 12, pp. 8278-8287, 2017, doi: 10.1016/j.ijhydene.2016.12.142. [7] P. Li, Z. Wang, X.-S. Bai, H. Wang, M. Sun, L. Wu, and C Liu, "Three-dimensional flow structures and droplet-gas mixing process of a liquid jet in supersonic crossflow," Aerospace Science and Technology, vol. 90, pp. 140-156, 2019. [8] H. Ding, C. Zhuo, X. Chen, H. Deng, M. Li, B. Sun, and C. Li, "Numerical study on the transverse jet flow and mixing characteristics of hydrogen/metal powder fuel in powder fuel scramjet," Fuel, vol. 326, p. 125088, 2022. [9] H. Wang, Z. Wang, M. Sun, and H. Wu, "Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor," International Journal of Hydrogen Energy, vol. 38, no. 27, pp. 12078-12089, 2013. [10] Y. Yang, Z. Wang, M. Sun, and H. Wang, "Numerical simulation on ignition transients of hydrogen flame in a supersonic combustor with dual-cavity," international journal of hydrogen energy, vol. 41, no. 1, pp. 690-703, 2016. [11] L. Wang, Z. Wu, H. Chi, C. Liu, H. Tao, and Q. Wang, "Numerical and experimental study on the solid-fuel scramjet combustor," Journal of Propulsion and Power, vol. 31, no. 2, pp. 685-693, 2015. [12] P. Gerlinger, P. Stoll, M. Kindler, F. Schneider, and M. Aigner, "Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity," Aerospace Science and Technology, vol. 12, no. 2, pp. 159-168, 2008, doi: 10.1016/j.ast.2007.04.003. [13] G. Choubey, M. Solanki, O. Patel, Y. Devarajan, and W. Huang, "Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor," Fuel, vol. 351, p. 128972, 2023. [14] J. Zeng, G. Wang, H. Huang, J. Fan, and H. Wang, "Experimental Investigation of Solid Rocket Scramjet Based on Central Strut," Aerospace, vol. 11, no. 5, p. 410, 2024. [15] B. Chen, Z. Xia, L. Huang, and J. Hu, "Ignition and combustion model of a single boron particle," Fuel Processing Technology, vol. 165, pp. 34-43, 2017. [16] C. Li, Z. Xia, L. Ma, X. Zhao, and B. Chen, "Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device," Acta Astronautica, vol. 162, pp. 145-154, 2019. [17] 鄭伃均, "超音速燃燒引擎燃燒室加入多孔性圓柱燃燒器之模擬與分析," 碩士論文, 國立台灣大學, 機械工程研究所, 2016. [18] C. Li, C. Hu, X. Xin, Y. Li, and H. Sun, "Experimental study on the operation characteristics of aluminum powder fueled ramjet," Acta Astronautica, vol. 129, pp. 74-81, 2016. [19] J. M. Bergthorson, "Recyclable metal fuels for clean and compact zero-carbon power," Progress in Energy and Combustion Science, vol. 68, pp. 169-196, 2018. [20] 杨鹏年, 夏智勋, 陈斌斌, 马立坤, 冯运超, 段一凡, 李潮隆, and 赵李北, "凹腔对固体超燃冲压发动机燃烧性能影响研究," 推进技术, vol. 44, no. 04, pp. 106-118, 2023. [21] Y. Feng, S. Luo, J. Song, K. Xia, and D. Xu, "Numerical investigation on the combustion characteristics of aluminum powder fuel in a supersonic cavity-based combustor," Applied Thermal Engineering, vol. 221, p. 119842, 2023. [22] 林文昌, "多孔性圓柱預混燃燒器尾流火焰之穩定性分析研究," 碩士論文, 機械工程研究所, 國立台灣大學, 2010. [23] W.-S. Lee and K.-L. Pan, "Computational investigation of an ethylene-fueled supersonic combustor assisted by a porous cylindrical burner," Aerospace Science and Technology, vol. 107, p. 106350, 2020. [24] 李維陞, "超音速燃燒衝壓引擎燃燒室噴柱乙烯並加入多孔性圓柱燃燒器之模擬與分析," 碩士論文, 機械工程研究所, 國立台灣大學, 2017. [25] 張永淇, "超音速燃燒室噴注癸烷加入充滿乙烯多孔性圓柱燃燒器之數值模擬與分析," 碩士論文, 機械工程研究所, 國立台灣大學, 2020. [26] M. K. King, "Ignition and combustion of boron particles and clouds," Journal of spacecraft and Rockets, vol. 19, no. 4, pp. 294-306, 1982. [27] H. Ding, C. Zhuo, W. Hu, H. Deng, and X. Chen, "Numerical study on the effect of jet on the operation of powder fuel scramjet," Journal of Applied Fluid Mechanics, vol. 15, no. 1, pp. 117-127, 2021. [28] L. Ma, "Computational modeling of turbulent spray combustion," 2016. [29] Z. Wang, Z. Cai, M. Sun, H. Wang, and Y. Zhang, "Large Eddy Simulation of the flame stabilization process in a scramjet combustor with rearwall-expansion cavity," International Journal of Hydrogen Energy, vol. 41, no. 42, pp. 19278-19288, 2016, doi: 10.1016/j.ijhydene.2016.09.012. [30] A. Yoshizawa, "Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling," Physics of Fluids, vol. 29, no. 7, 1986, doi: 10.1063/1.865552. [31] F. R. Menter, M. Kuntz, and R. Langtry, "Ten years of industrial experience with the SST turbulence model," Turbulence, heat and mass transfer, vol. 4, no. 1, pp. 625-632, 2003. [32] J. S. Shirolkar, F. M. Coimbra, and M. Q. Mcquay, "Fundamental aspects of modeling turbulent particle dispersion in dilute flows," Progress in Energy and Combustion Science vol. 22, p. 363, 1996. [33] F. OpenFOAM. "OpenFOAM Extended Code Guide." OpenCFD Ltd. https://www.openfoam.com/documentation/guides/latest/api/ (accessed 04/26, 2024). [34] J. Zhang, O. T. Stein, A. SHAMOONI, X. Zhixun, L. Zhenbing, M. Likun, F. Yunchao, and A. KRONENBURG, "Detailed modeling of aluminum particle combustion–from single particles to cloud combustion in bunsen flames," Chinese Journal of Aeronautics, vol. 35, no. 5, pp. 319-332, 2022. [35] B. L. Alex, M. Daniel, and D. R. Rolf, "Modeling the Effects of Drop Drag and Breakup on Fuel Sprays," SAE Technical Paper, vol. 930072, 1993. [36] W. E. Ranz, "Evaporation from Drops-I and-II," Chem. Eng. Progr, vol. 48, pp. 141-146,173-180, 1952. [37] M. Gurevich, G. Ozerova, and A. Stepanov, "Heterogeneous ignition of an aluminum particle in oxygen and water vapor," Combustion, Explosion and Shock Waves, vol. 6, no. 3, pp. 291-297, 1970. [38] D.-H. Han and H.-G. Sung, "A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction," Combustion and Flame, vol. 206, pp. 112-122, 2019. [39] J. Glorian, S. Gallier, and L. Catoire, "On the role of heterogeneous reactions in aluminum combustion," Combustion and Flame, vol. 168, pp. 378-392, 2016. [40] Z. Huang, M. Zhao, and H. Zhang, "Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen," Fuel, vol. 264, p. 116809, 2020. [41] J. Harrison and M. Brewster, "Simple model of thermal emission from burning aluminum in solid propellants," Journal of thermophysics and heat transfer, vol. 23, no. 3, pp. 630-634, 2009. [42] M. F. Modest and S. Mazumder, Radiative heat transfer. Academic press, 2021. [43] S. M. Correa, "Turbulence-Chemistry Interactions in the Intermediate Regime of Premixed Combustion," Combustion and Flame, vol. 93, pp. 41-60, 1993. [44] Z. Li, M. Ferrarotti, A. Cuoci, and A. Parente, "Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details," Applied Energy, vol. 225, pp. 637-655, 2018, doi: 10.1016/j.apenergy.2018.04.085. [45] F. Karrholm, "Numerical modelling of diesel spray injection, turbulence interaction," Ph.D. Phd thesis, Chalmers University of Technology, 2008. [46] N. M. Marinov, C. K. Westbrook, and W. J. Pitz, "Detailed and global chemical kinetics model for hydrogen," Transport phenomena in combustion, vol. 1, p. 118, 1996. [47] Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, "Effect of particle size on combustion of aluminum particle dust in air," Combustion and Flame, vol. 156, no. 1, pp. 5-13, 2009. [48] J. Zhang, Z. Xia, L. Ma, L. Huang, Y. Feng, and D. Yang, "Experimental study on aluminum particles combustion in a turbulent jet," Energy, vol. 214, p. 118889, 2021. [49] P. K. Sweby, "High resolution schemes using flux limiters for hyperbolic conservation laws," SIAM journal on numerical analysis, vol. 21, no. 5, pp. 995-1011, 1984. [50] H. Jasak, "Finite volume discretisation with polyhedral cell support," Predavanja, NUMAPFOAM Summer School, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, Rujan, 2009. [51] H. A. Van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM Journal on scientific and Statistical Computing, vol. 13, no. 2, pp. 631-644, 1992. [52] A. Fluent, "Ansys fluent theory guide," Ansys Inc., USA, vol. 15317, pp. 724-746, 2011. [53] M. W. Beckstead, "Correlating aluminum burning times," Combustion, Explosion and Shock Waves, vol. 41, pp. 533-546, 2005. [54] J. Fan, H. Li, J. Wang, and C. Wang, "A study of the flow characteristics in micro-abrasive jets," Experimental Thermal and Fluid Science, vol. 35, no. 6, pp. 1097-1106, 2011. [55] 黃仕豪, 宋浩維, and 潘國隆, "硼富燃料推進劑之二次燃燒流場特性研究(中科院基礎型)," presented at the 第 32 屆國防科技學術研討會, NOV, 2023. [56] R. Guerra, W. Waidmann, and C. Laible, "An experimental investigation of the combustion of a hydrogen jet injected parallel in a supersonic air stream," in 3rd International Aerospace Planes Conference, 1991, p. 5102. [57] M. Oevermann, "Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling," Aerospace science and technology, vol. 4, no. 7, pp. 463-480, 2000. [58] P. J. Linstrom and W. G. Mallard, "The NIST Chemistry WebBook: A chemical data resource on the internet," Journal of Chemical & Engineering Data, vol. 46, no. 5, pp. 1059-1063, 2001. [59] Z. Ren, B. Wang, Q. Xie, and D. Wang, "Thermal auto-ignition in high-speed droplet-laden mixing layers," Fuel, vol. 191, pp. 176-189, 2017. [60] H. E. Hafsteinsson, "Porous media in OpenFOAM," Chalmers University of Technology, Gothenburg, p. 14, 2009. [61] O. R. Kummitha, L. Suneetha, and K. Pandey, "Numerical analysis of scramjet combustor with innovative strut and fuel injection techniques," International journal of hydrogen energy, vol. 42, no. 15, pp. 10524-10535, 2017. [62] O. R. Kummitha, K. M. Pandey, and R. Gupta, "CFD analysis of a scramjet combustor with cavity based flame holders," Acta Astronautica, vol. 144, pp. 244-253, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95695 | - |
| dc.description.abstract | 本研究由免費開源CFD軟體OpenFOAM進行超音速燃燒衝壓引擎添加鋁顆粒燃料。鋁是體積能量密度極高的燃料,然而鋁顆粒的點火需要較長時間且高溫的受熱環境,在文獻上大多以火箭藥裝或二次燃燒之方式來燃燒鋁顆粒,且為了增加其停留時間,會以凹腔或增長燃燒室來使其完全燃燒,但這樣的方式容易腐蝕燃燒室壁面使材料耗損,少有人探討以支架式的超音速燃燒室的鋁顆粒燃燒,因此本文對相關物理模型進行開發與驗證,參考了前人文獻之算法、物理模型來對此問題進行研究。
而通過裝入多孔性圓柱燃燒器於超音速流場中,能使原本因減少氫氣而無法燃燒的鋁/氫燃料能有效燃燒,這是因為多孔性圓柱燃燒器的加入改變了流場許多物理上的限制,對於氫氣來說,加入多孔性圓柱燃燒器使其在圓柱內或表層預混,降低其燃燒極限門檻,使點火延遲簡短,進一步使鋁顆粒能提早進行預熱,並且在支架與圓柱燃燒器間的高溫回流區進行多次碰撞彈跳,鋁顆粒在下游將能更有效、更快地進行化學反應。 由研究結果表明,加入多孔性圓柱燃燒器能在添加鋁顆粒減少氫氣使用量的情況下讓燃燒室產生推力,並提升鋁的消耗速度來提升燃燒效率;同時也發現由支架後的燃料注入口控制較多氫氣質量流率而不是多孔性圓柱燃燒器,能夠使鋁有較好的燃燒效率;在加入多孔性圓柱燃燒器的情況下,以支架後方注入燃料能比支架側向注入燃料有更好的鋁顆粒燃燒效率;在壁面加入凹腔能夠讓圓柱燃燒器後方的回流區進行橫向擴張,使氫氣燃燒效率提升。 | zh_TW |
| dc.description.abstract | This study utilizes the open-source CFD software OpenFOAM to investigate the addition of aluminum particles as fuel in a supersonic combustion ramjet engine. Aluminum has a very high volumetric energy density, but igniting aluminum particles requires a prolonged period and a high-temperature heating environment. In the literature, aluminum particles are often burned using rocket propellants or secondary combustion methods. To increase their residence time, cavities or extended combustion chambers are employed to ensure complete combustion. However, such methods tend to corrode the combustion chamber walls, leading to material loss. There is limited research on the combustion of aluminum particles in a strut-based supersonic combustor. Therefore, this study develops and validates relevant physical models, referencing previous literature on algorithms and physical models to explore this issue.
By installing a porous cylindrical burner in the supersonic flow field, aluminum/hydrogen fuel, which could not be burned due to reduced hydrogen, can be effectively combusted. The introduction of the porous cylindrical burner changes many physical constraints of the flow field. For hydrogen, the porous cylindrical burner allows premixing inside or on the surface of the cylinder, lowering the combustion limit threshold, shortening the ignition delay, and further enabling the aluminum particles to preheat earlier. Additionally, in the high-temperature recirculation zone between the strut and the cylindrical burner, multiple collisions and rebounds occur, allowing the aluminum particles to react more effectively and quickly downstream. The results indicate that the addition of a porous cylindrical burner enables the combustor to generate thrust even with reduced hydrogen usage and increases the aluminum consumption rate to improve combustion efficiency. It was also found that controlling a higher hydrogen mass flow rate from the fuel injection port behind the strut, rather than the porous cylindrical burner, results in better combustion efficiency for aluminum. With the addition of a porous cylindrical burner, injecting fuel behind the strut achieves better aluminum particle combustion efficiency compared to lateral injection. Adding a cavity to the wall can laterally expand the recirculation zone behind the cylindrical burner, improving hydrogen combustion efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:50:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:50:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目次 v 圖次 viii 表次 x 第一章 緒論 1 1.1 前言 1 1.1.1 火箭與進氣式引擎 2 1.1.2 超音速燃燒衝壓引擎 3 1.2 文獻回顧 5 1.2.1 燃料噴注結構設計 5 1.2.2 固體顆粒燃料與鋁顆粒燃料 9 1.2.3 多孔性圓柱燃燒器 10 1.3 研究動機與目的 11 第二章 理論基礎 12 2.1 過濾函數 12 2.2 連續相統御方程式 13 2.3 紊流模型 15 2.3.1 線性渦流黏度模型 15 2.3.2 k-ω SST 紊流模型 16 2.4 離散相統御方程式 17 2.4.1 對流熱傳與融化模型 18 2.4.2 表面化學反應模型 18 2.4.3 蒸發模型 19 2.4.4 輻射模型 20 2.5 燃燒模型 21 2.5.1 PaSR燃燒模型 21 2.6 化學反應動力學 23 2.6.1 化學反應機制 23 2.7 可壓縮流之氣體動力學 26 第三章 數值方法 28 3.1 OpenFOAM 28 3.2 有限體積法 29 3.3 數值方案 29 3.3.1 時間導數項 29 3.3.2 插值方案 30 3.3.3 對流項的Divergence方案 31 3.3.4 擴散項的Laplacian方案 31 3.3.5 源項的方案 32 3.4 線性求解器 33 3.4.1 收斂控制 33 3.5 求解器演算法 34 3.5.1 顯式 Time-advance Approach 34 3.5.2 壓力-速度耦合演算法 34 3.5.3 ReactingFOAM的PIMPLE演算法 35 第四章 計算模型驗證 39 4.1 鋁顆粒燃燒模型驗證 39 4.2 顆粒噴注驗證 42 4.3 DLR超音速燃燒室驗證 44 4.3.1 冷流場模擬驗證 46 4.3.2 燃燒流場驗證與網格收斂性 48 第五章 結果與討論 51 5.0 案例介紹 51 5.1 鋁燃燒模型於OpenFOAM的建立 53 5.2 鋁顆粒加入氫氣燃料DLR超音速燃燒室 55 5.2.1 邊界條件設置與改變 55 5.2.2 鋁顆粒加入燃燒室(案例A0) 56 5.2.3 鋁顆粒取代部分氫氣(案例A1) 58 5.3 鋁/氫DLR超音速燃燒室加入多孔性圓柱燃燒器 60 5.3.1 多孔性圓柱燃燒器性質與邊界條件 60 5.3.2 減少氫氣並加入多孔性圓柱燃燒器(案例B) 62 5.4 燃料注入方向改變(案例C) 65 5.4.1 新構型簡介與邊界條件 65 5.4.2 DLR燃燒室支架側向注入與多孔性圓柱燃燒器 66 5.5 燃燒室加入凹腔(案例D) 68 5.5.1 新構型簡介與邊界條件 68 5.5.2 DLR燃燒室加入多孔性圓柱燃燒器與凹腔 69 5.6 推力與比衝 71 5.6.1 推力計算 71 5.6.2 比衝計算 72 第六章 結論與展望 73 6.1 結論 73 6.2 未來展望 74 參考文獻 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 大渦模擬 | zh_TW |
| dc.subject | 氫氣 | zh_TW |
| dc.subject | 固體燃料 | zh_TW |
| dc.subject | 多相流 | zh_TW |
| dc.subject | 鋁顆粒 | zh_TW |
| dc.subject | 歐拉拉格朗日方法 | zh_TW |
| dc.subject | 多孔性圓柱燃燒器 | zh_TW |
| dc.subject | OpenFOAM | zh_TW |
| dc.subject | 超音速燃燒衝壓引擎 | zh_TW |
| dc.subject | LES | en |
| dc.subject | Scramjet engine | en |
| dc.subject | CFD | en |
| dc.subject | OpenFOAM | en |
| dc.subject | porous burner | en |
| dc.subject | Eulerian-Lagrangian method | en |
| dc.subject | aluminum particle | en |
| dc.subject | multiphase flow | en |
| dc.subject | hydrogen | en |
| dc.subject | Large Eddy Simulation | en |
| dc.title | 超音速燃燒室噴注氫氣與鋁顆粒加入多孔性圓柱燃燒器之數值模擬與分析 | zh_TW |
| dc.title | Numerical Simulation of Hydrogen and Aluminum Particles Combustion in a Scramjet Combustor Assisted by a Porous Cylindrical Burner | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 牛仰堯;吳明勳;林洸銓 | zh_TW |
| dc.contributor.oralexamcommittee | Yang-Yao Niu;Ming-Hsun Wu;Kuang-Chuan Lin | en |
| dc.subject.keyword | 超音速燃燒衝壓引擎,計算流體力學,OpenFOAM,多孔性圓柱燃燒器,歐拉拉格朗日方法,鋁顆粒,多相流,固體燃料,氫氣,大渦模擬, | zh_TW |
| dc.subject.keyword | Scramjet engine,CFD,OpenFOAM,porous burner,Eulerian-Lagrangian method,aluminum particle,multiphase flow,hydrogen,Large Eddy Simulation,LES, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202403958 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-08-08 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
