Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95694
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余淑美zh_TW
dc.contributor.advisorSu-May Yuen
dc.contributor.author呂俊賢zh_TW
dc.contributor.authorChun-Hsien Luen
dc.date.accessioned2024-09-15T16:50:30Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-15-
dc.date.issued2024-
dc.date.submitted2024-08-11-
dc.identifier.citation1. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12, 98-105 (2007).
2. Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front Plant Sci 7, (2016).
3. Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant physiology 160, 1698-1709 (2012).
4. Coudert Y, Perin C, Courtois B, Khong NG, Gantet P. Genetic control of root development in rice, the model cereal. Trends Plant Sci 15, 219-226 (2010).
5. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R. Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122, 1-13 (2011).
6. Uga Y, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics 45, 1097-1102 (2013).
7. Xiong LM, Wang RG, Mao GH, Koczan JM. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant physiology 142, 1065-1074 (2006).
8. Franke RB, Dombrink I, Schreiber L. Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Front Plant Sci 3, (2012).
9. Liu QQ, Luo L, Zheng LQ. Lignins: Biosynthesis and Biological Functions in Plants. Int J Mol Sci 19, (2018).
10. Yamauchi T, Colmer TD, Pedersen O, Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant physiology 176, 1118-1130 (2018).
11. Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X. Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18, 459-467 (2013).
12. Peret B, et al. Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14, 399-408 (2009).
13. Peret B, Larrieu A, Bennett MJ. Lateral root emergence: a difficult birth. Journal of experimental botany 60, 3637-3643 (2009).
14. Enstone DE, Peterson CA, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21, 335-351 (2003).
15. Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52, 360-376 (2010).
16. Beisson F, Li-Beisson Y, Pollard M. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15, 329-337 (2012).
17. Vishwanath SJ, Delude C, Domergue F, Rowland O. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34, 573-586 (2015).
18. Cabane M, Afif D, Hawkins S. Lignins and Abiotic Stresses. Adv Bot Res 61, 219-262 (2012).
19. Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era-New interest for an old polymer. Plant Sci 180, 399-413 (2011).
20. Stasovski E, Peterson CA. The effects of drought and subsequent rehydration on the structure and vitality of Zea mays seedling roots. Can J Bot 69, 1170-1178 (1991).
21. Ohtani M, Demura T. The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. Curr Opin Biotechnol 56, 82-87 (2019).
22. Zhong R, Ye ZH. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant & cell physiology 56, 195-214 (2015).
23. Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J, (2020).
24. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61, 651-679 (2010).
25. Fuchs S, Grill E, Meskiene I, Schweighofer A. Type 2C protein phosphatases in plants. The FEBS journal 280, 681-693 (2013).
26. Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC genomics 11, 435 (2010).
27. Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & cell physiology 56, 1043-1052 (2015).
28. Robbins NE, 2nd, Dinneny JR. The divining root: moisture-driven responses of roots at the micro- and macro-scale. Journal of experimental botany 66, 2145-2154 (2015).
29. You J, Zong W, Hu H, Li X, Xiao J, Xiong L. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant physiology 166, 2100-2114 (2014).
30. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. The EMBO journal 21, 3029-3038 (2002).
31. Hsing YI, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-364 (2007).
32. Lo SF, et al. Genetic resources offer efficient tools for rice functional genomics research. Plant, cell & environment 39, 998-1013 (2016).
33. Zuo J, Hare PD, Chua NH. Applications of chemical-inducible expression systems in functional genomics and biotechnology. Methods Mol Biol 323, 329-342 (2006).
34. Yoshida K, et al. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci 4, 383 (2013).
35. Chai MF, Bellizzi M, Wan CX, Cui ZF, Li YB, Wang GL. The NAC transcription factor OsSWN1 regulates secondary cell wall development in Oryza sativa. J Plant Biol 58, 44-51 (2015).
36. Sakamoto S, Takata N, Oshima Y, Yoshida K, Taniguchi T, Mitsuda N. Wood reinforcement of poplar by rice NAC transcription factor. Sci Rep 6, 19925 (2016).
37. Seo PJ, et al. The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant physiology 151, 275-289 (2009).
38. Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM. The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in Arabidopsis. Plant Cell 23, 1138-1152 (2011).
39. Landgraf R, et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26, 3403-3415 (2014).
40. Rocha S, et al. Lignification of developing maize (Zea mays L.) endosperm transfer cells and starchy endosperm cells. Front Plant Sci 5, 102 (2014).
41. Kotula L, Ranathunge K, Schreiber L, Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. Journal of experimental botany 60, 2155-2167 (2009).
42. Kulichikhin K, Yamauchi T, Watanabe K, Nakazono M. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant, cell & environment 37, 2406-2420 (2014).
43. Shen Q, Uknes SJ, Ho TH. Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268, 23652-23660 (1993).
44. Shen Q, Zhang P, Ho TH. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107-1119 (1996).
45. Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112, 3570-3575 (2015).
46. Agarwal P, et al. PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana. J Plant Physiol 240, 153010 (2019).
47. Shafiq S, et al. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice. Mol Plant 10, 821-833 (2017).
48. Lucob-Agustin N, et al. WEG1, which encodes a cell wall hydroxyproline-rich glycoprotein, is essential for parental root elongation controlling lateral root formation in rice. Physiol Plant 169, 214-227 (2020).
49. Mom R, Rety S, Mocquet V, Auguin D. Plant Aquaporin Gating Is Reversed by Phosphorylation on Intracellular Loop D-Evidence from Molecular Dynamics Simulations. Int J Mol Sci 24, (2023).
50. Wu X, et al. Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites. Journal of experimental botany 70, 4919-4930 (2019).
51. Ma H, Gao Y, Wang Y, Dai Y, Ma H. Regulatory Mechanisms of Mitogen-Activated Protein Kinase Cascades in Plants: More than Sequential Phosphorylation. Int J Mol Sci 23, (2022).
52. Maszkowska J, Szymanska KP, Kasztelan A, Krzywinska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 10, (2021).
53. Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 19, 757-773 (2020).
54. Zhai K, et al. RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Mol Cell 74, 996-1009 e1007 (2019).
55. Ouyang Y, Huang X, Lu Z, Yao J. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC genomics 13, 100 (2012).
56. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28, 149-156 (2010).
57. Guerriero G, Hausman JF, Ezcurra I. WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects. Front Plant Sci 6, 1112 (2015).
58. Lee JH, et al. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20, 152-167 (2008).
59. Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61, 1029-1040 (2010).
60. Chen L, Hellmann H. Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant 6, 1388-1404 (2013).
61. Hua Z, Vierstra RD. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62, 299-334 (2011).
62. Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17, 584-593 (2012).
63. Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant Journal 54, 452-465 (2008).
64. Yokoyama R, Nishitani K. Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant & cell physiology 45, 1111-1121 (2004).
65. Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6, 288 (2015).
66. Beisson F, Li YH, Bonaventure G, Pollard M, Ohlrogge JB. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19, 351-368 (2007).
67. Barberon M, et al. Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell 164, 447-459 (2016).
68. Jeong JS, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant physiology 153, 185-197 (2010).
69. Jeong JS, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant biotechnology journal 11, 101-114 (2013).
70. Redillas MC, et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant biotechnology journal 10, 792-805 (2012).
71. Lynch JP. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant, cell & environment 38, 1775-1784 (2015).
72. Chen YS, Lo SF, Sun PK, Lu CA, Ho TH, Yu SM. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant biotechnology journal 13, 105-116 (2015).
73. Jung JK, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. Front Plant Sci 4, 186 (2013).
74. Vilches-Barro A, Maizel A. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana. Curr Opin Plant Biol 23, 31-38 (2015).
75. Hsiao AS, Wang K, Ho TD. An Intrinsically Disordered Protein Interacts with the Cytoskeleton for Adaptive Root Growth under Stress. Plant physiology 183, 570-587 (2020).
76. Tseng I-C, Hong C-Y, Kao Y-T, Yu S-M, Ho T-HD. A group of highly proline-rich glycoproteins mediate ABA/stress regulated root growth in rice. Plant physiology 163, 118-134 (2013).
77. Dietrich D, et al. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 3, 17057 (2017).
78. Shiono K, et al. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of experimental botany 65, 4795-4806 (2014).
79. Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant physiology 140, 603-612 (2006).
80. DeMarco AG, Hall MC. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates. Molecules 28, (2023).
81. Chen P-W, Lu C-A, Yu T-S, Tseng T-H, Wang C-S, Yu S-M. Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J Biol Chem 277, 13641-13649 (2002).
82. Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory manual for physiological studies of rice. 3 (edn) International Rice Research Institute, Manila, The Philippines, (1976).
83. Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ. A Simple Method for Site-Directed Mutagenesis Using the Polymerase Chain-Reaction. Nucleic Acids Res 17, 6545-6551 (1989).
84. Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771 (1997).
85. Chen PW, Chiang CM, Tseng TH, Yu SM. Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell 18, 2326-2340 (2006).
86. Lu CA, et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19, 2484-2499 (2007).
87. Stauber RH, et al. Development and applications of enhanced green fluorescent protein mutants. Biotechniques 24, 462-466, 468-471 (1998).
88. Xie K, Minkenberg B, Yang Y. Targeted Gene Mutation in Rice Using a CRISPR-Cas9 System. Bio-protocol 4, e1225 (2014).
89. Zhang Y, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011).
90. Wong MM, et al. Phosphoproteomics of Arabidopsis Highly ABA-Induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci U S A 116, 2354-2363 (2019).
91. Velez-Bermudez IC, Jain D, Ravindran A, Chen CW, Hsu CC, Schmidt W. Tandem Mass Tag-Based Phosphoproteomics in Plants. Methods Mol Biol 2581, 309-319 (2023).
92. Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. Elife 8, (2019).
93. Chen YS, et al. Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. Proc Natl Acad Sci U S A 116, 21925-21935 (2019).
94. Lin CR, et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress. Plant Cell 26, 808-827 (2014).
95. Brundrett MC, Kendrick B, Peterson CA. Efficient lipid staining in plant material with sudan red 7B or fluorol [correction of fluoral] yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66, 111-116 (1991).
96. Sharma N. Leaf Clearing Protocol to Observe Stomata and Other Cells on Leaf Surface. Bio-101 7, e2538 (2017).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95694-
dc.description.abstract在植物根系中,內皮層和外環組織中二次細胞壁的木質化和木栓質化所形成的多個防水層有利於水分和養分的運輸,維持細胞壁的機械強度,減少環境缺水時的水分流失和淹水時的氧氣流失,並為植物提供物理屏障隔絕土壤中的病原體和有毒化合物。在此研究中,我們發現了一個水稻蛋白磷酸酶PP2CABA,它通過感知 ABA 信號並調節木質素和木栓質生物合成,來調節多方面的植物結構。我們的研究顯示,PP2CABA調節的二次細胞壁提供了基本的結構和生理適應性,以應對植物生長期間在正常和乾旱逆境下土壤中不同的水分可用性。PP2CABA調控代謝資源的運用,進而改變根系結構的發育,並強化木質化和木栓質化所形成的防水層,以保護植物對抗乾旱與高滲透壓逆境。PP2CABA的表現受ABA、乾旱和鹽分誘導,其啟動子的活性在地上部與根部的延長區可被ABA活化。pp2caba突變株的二次細胞壁發育缺陷會影響氣孔發育、水分吸收和根系生長,導致光合作用和產量降低,並增加根部的徑向氧氣流失,導致不耐淹水。我們發現大量表現PP2CABA可抑制側根的延伸,在缺水條件下保存根部水分,並賦予植物對高滲透壓和乾旱逆境的耐受性。透過結合定量磷酸化蛋白質體學和基於TurboID的鄰近標記方法,我們鑑定了WD40-194是PP2CABA的一個生物受質。降低WD40-194的表現會促進 PP2CABA所調控的木質素和木栓質生物合成的基因的表現,並抑制側根的延伸,顯示WD40-194是木質素和木栓質生物合成的負向調控因子。我們的研究不僅揭示了對PP2CABA調節的訊息傳遞機制的新見解,調節根系發育的可塑性以適應土壤中不同的水分含量,而且還為提高作物的逆境耐受性提供了策略。zh_TW
dc.description.abstractIn plant roots, diffusion barriers formed by lignification and suberization of secondary cell walls in endodermal and peripheral tissues facilitate water and nutrient transport, sustain the mechanical strength of cell walls, reduce water loss during dehydration, prevent oxygen loss under waterlogging conditions, and provide physical barrier against pathogens and toxic compounds in the soil. In the present study, we discovered a rice protein phosphatase PP2CABA that regulates multifaceted plant structures by sensing the ABA signal and regulating lignin and suberin biosynthesis. We showed that the PP2CABA-regulated secondary cell walls offers basic structural and physiological fitness to cope with varying water availability in soil during plant growth under normal and drought stress conditions. PP2CABA regulates the relocation of metabolic resources, reprograms root architecture development, and reinforces lignified and suberized diffusion barriers to protect plants against drought and osmotic stresses. The expression of PP2CABA is induced by ABA, drought and salt, and its promoter is specifically activated by ABA in elongation zones of shoots and roots. Defective development of secondary cell walls in pp2caba mutant impairs stomatal development, water uptake, and root growth, leading to reduced photosynthesis and grain yield in fields, as well as increased radial oxygen loss to the anaerobic root rhizosphere, leading to submergence intolerance. We also found that PP2CABA overexpression inhibits later root elongation, conserves water in roots under dehydration, and confers plant tolerance to osmotic and drought stresses. By combining quantitative phosphoproteomics and TurboID-based proximity labeling approaches, we identified WD40-194 as a biological substrate of PP2CABA. Reduced expression of WD40-194 induces the expression of PP2CABA-regulated genes involved in lignin and suberin biosynthesis, and suppresses lateral root elongation, indicating WD40-194 is a negative regulator of lignin and suberin biosynthesis. Our studies reveal new insights into not only the mechanism of PP2CABA-regulated signaling network for programing root developmental plasticity in adaption to fluctuating water regimes in soil but also provide strategies for improving stress tolerance in crops.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:50:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:50:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iv
Abstract v
目次 vii
圖次 ix
表次 xi
1. Introduction 1
1.1 Root Architecture and Adaptation to Environmental Stresses 1
1.2 Root System Architecture and Stress Adaptation in Cereals 1
1.3 Complexity of Lateral Root Emergence in Rice and Arabidopsis 2
1.4 Role of Suberin and Lignin in Root Structural Integrity and Stress Response 2
1.5 Transcriptional Regulation of Secondary Wall Biosynthesis 3
1.6 Role of Abscisic Acid and PP2Cs in Stress Response Signaling 4
1.7 PP2CABA: A Key Regulator of Root Adaptation to Water Availability in Rice 5
2. Results 6
2.1 PP2CABA is a protein phosphatase induced by ABA and abiotic stress in root elongating zone 6
2.2 ABA and PP2CABA overexpression suppress LR elongation 7
2.3 PP2CABA Presents Two Sites of Translation Initiation 8
2.4 PP2CABA induces genes essential for lignin and suberin/surface lipid biosynthesis in roots 9
2.5 PP2CABA induces the deposition of lignin and surface lipid in root and leaf 10
2.6 PP2CABA is necessary for water uptake for sustaining plant growth and productivity 11
2.7 PP2CABA is necessary for root development under submergence 12
2.8 PP2CABA priming enhances osmotic and dehydration stress tolerance 13
2.9 Breeding high-yield rice through genome editing of the PP2CABA promoter 14
2.10 PP2CABA-Affected phosphorylation sites of proteins involved in LR development and stress signaling 16
2.11 TurboID-based identification of PP2CABA-proximal proteins 17
2.12 WD40-194 Interacts with and Is Dephosphorylated by PP2CABA 19
2.13 Reduced WD40-194 Expression suppresses LR elongation, induces the formation of diffusion barriers in roots, and improves drought tolerance in rice 21
3. Discussion 23
3.1 PP2CABA transmits ABA signal and regulates genes essential for distinct lignin and suberin biosynthesis pathways 23
3.2 PP2CABA regulates the homeostatic and stress-induced secondary cell wall development 24
3.3 PP2CABA mediates the ABA-dependent suppression of LR elongation via cell wall modification 26
3.4 PP2CABA-regulated secondary cell wall development is necessary for normal growth and protection against submergence and drought stresses 28
3.5 PP2CABA-mediated phosphorylation dynamics in LR development and stress signaling pathways 30
4. Materials and Methods 33
5. References 44
-
dc.language.isoen-
dc.title一個蛋白質磷酸酶調控水稻根系發育的可塑性以適應水分過少和過多的情況zh_TW
dc.titleA protein phosphatase regulates plastic and inducible root architectures necessary for coping with too little or too much water in riceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭石通;賀端華;洪傳揚;林盈仲zh_TW
dc.contributor.oralexamcommitteeShih-Tong Jeng;Tuan-Hua David Ho;Chwan-Yang HONG;Ying-Chung Jimmy Linen
dc.subject.keywordPP2CABA,蛋白磷酸酶,防水層,側根的延伸,淹水,乾旱,WD40-194,zh_TW
dc.subject.keywordPP2CABA,protein phosphatase,diffusion barriers,later root elongation,submergence,drought,WD40-194,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202403968-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
7.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved