請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林美聆 | zh_TW |
| dc.contributor.advisor | Meei-Ling Lin | en |
| dc.contributor.author | 彭冠婷 | zh_TW |
| dc.contributor.author | KUAN-TING PENG | en |
| dc.date.accessioned | 2024-09-15T16:49:54Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | [1] Bishop, A. W., & Blight, G. E. (1963). Some aspects of effective stress in saturated and partly saturated soils. Géotechnique, 13(3), 177-262.
[2] Brand, E. W. (1981). Some thoughts on rain-induced slope failures. In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering (Vol. 3, pp. 373-376). Stockholm, Sweden. [3] Casagrande, A. (1937). Seepage through dams. Journal of the New England Water Works Association, 51(2), 101-127. [4] Childs, E. C., & Collins-George, N. (1950). The permeability of porous materials. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 201(1066), 392-405. [5] Chung, M. C., Tan, C. H., & Chen, C. H. (2017). Local rainfall thresholds for forecasting landslide occurrence: Taipingshan landslide triggered by Typhoon Saola. Landslides, 14(1), 19-33. [6] Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division, 103, 447-466. [7] Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc. [8] Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521-532. [9] Head, K. H. (1986). Manual of soil laboratory testing. Pentech Press. [10] Lin, M. L., Chen, Y. C., Tseng, Y. H., Chang, K. J., & Wang, K. L. (2021). Investigation of geological structures using UAV LiDAR and its effects on the failure mechanism of deep-seated landslide in Lantai Area, Taiwan. Applied Sciences, 11(21). [11] Misfeldt, G. A., Sauer, E. K., & Christiansen, E. A. (1991). The Hepburn landslide: an interactive slope-stability and seepage analysis. Canadian Geotechnical Journal, 28(4), 556-573. [12] Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1(4), 277-288. [13] Schroder, J. F. (1971). Landslides of Utah. Utah Geological and Mineralogical Survey. Bulletin, 90, 1-51. [14] Sitar, N., Anderson, S. A., & Johnson, K. A. (1992). Conditions leading to the initiation of rainfall-induced debris flows. In Stability and Performance of Slopes and Embankments—II (pp. 834-839). New York, NY: American Society of Civil Engineers. [15] Taylor, D. W. (1942). Research on consolidation of clays (Serial No. 82). Department of Civil and Sanitary Engineering, Massachusetts Institute of Technology, Cambridge, MA. [16] Vanapalli, S. K., Fredlund, D. D., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3), 379-392. [17] van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. [18] Varnes, D. J. (1978). Slope movement types and processes. Special Report, 176, 11-33. [19] 王金山, 鍾明劍, & 冀樹勇. (2011). 降雨誘發崩塌地滑動之監測回饋分析與預警應用探討. 中興工程, (110), 27-40. [20] 王國隆, 林美聆, 倪春發, 陳建志, 陳柔妃, 陳宏宇, 陳昭維, 郭志禹, 張國楨, 許雅儒, 黃信樺, & 謝佑明. (2018). 蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書. 行政院農業委員會水土保持局. [21] 王國隆, 林美聆, 倪春發, 陳建志, 陳柔妃, 陳宏宇, 陳昭維, 郭志禹, 張國楨, 許雅儒, 黃信樺, & 謝佑明. (2020). 蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書. 行政院農業委員會水土保持局. [22] 王國隆, 林美聆, 倪春發, 陳建志, 陳柔妃, 陳宏宇, 陳昭維, 郭志禹, 張國楨, 許雅儒, 黃信樺, & 謝佑明. (2022). 110年蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書. 行政院農業委員會水土保持局. [23] 王國隆, 林美聆, 倪春發, 陳建志, 陳柔妃, 陳宏宇, 陳昭維, 郭志禹, 張國楨, 許雅儒, 黃信樺, & 謝佑明. (2023). 111年蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書. 行政院農業委員會水土保持局. [24] 林德貴, 陳啟天, 徐森彥, & 蘇苗彬. (2007). 梨山地滑區降雨滲流及穩定性分析. 水土保持學報, 39(4), 419-451. [25] 吳奕廷. (2017). 藉由微機電系統觀測蘭台地區邊坡之滑動情形. 國立臺灣大學土木工程學研究所碩士論文. [26] 李明熹. (2006). 土石流發生降雨警戒分析及其應用 國立成功大學水利及海洋工程研究所博士論文. [27] 邱勝煜. (2022). 利用震動訊號特徵偵測邊坡深層滑動行為. 國立臺灣大學土木工程學研究所碩士論文. [28] 曾耀賢. (2019). 蘭台地區之演化與破壞機制分析. 國立臺灣大學土木工程學研究所碩士論文. [29] 鄭順隆. (2006). 崩塌地降雨-入滲-滲流機制之數值模擬及穩定性分析 國立中興大學水土保持學研究所碩士論文. [30] 黃智昭, 林榮潤, & 許世孟. (2013). 濁水溪流域山區岩層水文地質特性與地下水資源潛勢之研究. 經濟部中央地質調查所彙刊, 27-54. [31] 劉冠麟, 盧之偉, & 林宏明. (2019). 板岩邊坡在極端降雨下之邊坡穩定分析. 中華防災學刊, 11(1), 1-14. [32] 羅鴻傑, 許世孟, 鄭道隆, 柯建仲, 蘇泰維, & 李錦發. (2009). 降雨入滲對崩塌地邊坡穩定之耦合分析. Proceedings of the 13th Conference on Current Researches in Geotechnical Engineering in Taiwan, August 26-28, 2009, I-Lan. [33] 中央氣象署. 地震測報中心. [34] 中央氣象署. 氣候觀測資料查詢服務. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95692 | - |
| dc.description.abstract | 臺灣之地理位置特殊,山脈高聳而降雨豐沛,每逢夏季總有颱風頻繁侵擾,颱風挾帶之強降雨常導致山坡地發生崩塌與土石流等災害,危及生命和財產之安全。
本研究以蘭台大規模崩塌潛勢區為研究區域,整理2019至2022年之降雨資料,並根據中央氣象局有發布警報之颱風紀錄,篩選出於此區域帶來明顯降雨之颱風事件,以回歸方式探討降雨量對蘭台地區地下水位變化之關係,同時蒐集彙整現地之地表及地中監測資料,比對颱風事件時間,選定有造成邊坡滑動之三筆颱風案例,結合蒐集之材料參數及實驗室室內試驗結果,利用數值分析程式SEEP/W及SLOPE/W模擬三個颱風案例於蘭台地區主崩區之降雨造成之地下水位變化以及對邊坡穩定之影響。 研究結果顯示,依據李明熹 (2006) 土石流降雨警戒指標中之降雨參數-總有效累積雨量與此區域之地下水位變化呈現高度正相關,滲流分析結果雖無法完整反應不飽和區域之滲流情形,但經過扣除地下水位延遲之時間調整後,亦可推測出邊坡安全係數接近1之時刻,將上述之時刻與現地監測資料比對,驗證數值分析結果之合理與代表性;將邊坡穩定分析得到之滑動面與鑽孔破碎帶位置進行比對,可對應到相對破碎之區段。根據三筆案例之分析結果,此區域之臨界滑動地下水位約位於地下20.22m至地下20.04m間。 | zh_TW |
| dc.description.abstract | Taiwan's unique geographical features, characterized by high mountain ranges and abundant rainfall, make it highly susceptible to typhoons, particularly during the summer months. The intense rainfall brought by these typhoons frequently triggers landslides and debris flows, posing significant risks to lives and properties.
This study focuses on the Lantai area, a region prone to large-scale landslides. Rainfall data from 2019 to 2022 were compiled and significant typhoon events were identified using records from the Central Weather Bureau (CWB). Through regression analysis, the correlation between rainfall and groundwater level fluctuations in Lantai was examined. Additionally, ground surface monitoring data were gathered and three typhoon cases that displayed landslides movement were selected. The numerical analysis programs SEEP/W and SLOPE/W were used to simulate the changes in groundwater level caused by rainfall and the effects on slope stability in the Lantai study area for the identified events. The analysis incorporated collected material properties and parameters from laboratory tests. The results indicate a strong correlation between the total effective cumulative rainfall, as defined by Ming-Hsi Lee (2006), and groundwater level changes. Although seepage analysis could not fully capture the conditions in the unsaturated zone, the time variation in the factor of safety reduction was deduced by accounting for groundwater response delays. These findings were validated against on-site monitoring data. The sliding surfaces were compared to the borehole logging to validate the simulation results. The threshold groundwater levels for the Lantai area were found to range between 20.22m and 20.04m below ground surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:49:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:49:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究方法與內容 2 第二章 文獻回顧 5 2.1 邊坡破壞 5 2.1.1 邊坡破壞定義 5 2.1.2 邊坡破壞模式 5 2.1.3 潛在大規模崩塌 7 2.2 不飽和土壤特性及剪力強度理論 8 2.2.1 不飽和土壤之組成 8 2.2.2 不飽和土壤特性 8 2.2.3 不飽和土壤剪力強度理論 9 2.3 不飽和邊坡之穩定分析 10 第三章 研究區概述及監測資料彙整 17 3.1 研究區概況 17 3.1.1 研究區地質背景與災害歷史 17 3.1.2 研究區地層分布 18 3.2 研究區監測儀器分佈與介紹 19 3.2.1 監測儀器分佈 19 3.2.2 監測儀器介紹 19 3.3 研究區監測資料彙整 20 3.3.1 研究區地下水位面推估 20 3.3.2 研究區監測資料整理 22 第四章 二維邊坡數值模式 39 4.1 滲流分析模式SEEP/W 39 4.1.1 流動法則(Flow law) 39 4.1.2 控制方程式 39 4.1.3 體積含水量函數 40 4.1.4 水力傳導係數函數 41 4.1.5 邊界條件 42 4.1.6 地下水位面設定 43 4.2 邊坡穩定分析模式SLOPE/W 44 4.2.1 極限平衡法 44 4.2.2 不飽和土壤剪力強度 44 4.3 數值分析流程與邊界設定 45 第五章 研究區材料參數及水文資料 52 5.1 試驗規劃 52 5.2 三軸透水試驗與多階段三軸試驗 52 5.2.1 試驗儀器與設備 52 5.2.2 試驗步驟 53 5.3 試驗結果及討論 55 5.3.1 試驗結果 55 5.3.2 討論 56 5.4 水文資料蒐集及整理 57 5.4.1 雨場分割方法 57 5.4.2 降雨量與地下水位變化相關性 58 5.5 小結 58 第六章 數值分析成果及討論 74 6.1 數值模式之建立 74 6.1.1 SEEP/W滲流分析 74 6.1.2 SLOPE/W穩定分析 76 6.2 案例分析結果 77 6.2.1 圓規颱風 (2021/10/11) 77 6.2.2 尼莎颱風 (2022/10/14) 77 6.3 綜合討論 78 6.3.1 材料參數 78 6.3.2 分析結果討論 78 6.4 小結 81 第七章 結論與建議 99 7.1 結論 99 7.2 建議 100 參考文獻 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 降雨入滲 | zh_TW |
| dc.subject | 地下水位 | zh_TW |
| dc.subject | 大規模崩塌 | zh_TW |
| dc.subject | 極限平衡法 | zh_TW |
| dc.subject | 邊坡穩定 | zh_TW |
| dc.subject | 滲流數值模擬 | zh_TW |
| dc.subject | Slope stability | en |
| dc.subject | Deep-seated landslide | en |
| dc.subject | Rainfall infiltration | en |
| dc.subject | Groundwater level | en |
| dc.subject | Numerical simulation of seepage | en |
| dc.subject | Limit equilibrium method | en |
| dc.title | 蘭台地區降雨引致地下水位上升對邊坡穩定之影響 | zh_TW |
| dc.title | The Impact of Rainfall-Induced Groundwater Level Rise on Slope Stability in the Lantai Area | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王國隆;陳天健 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Lung Wang;Tien-Chien Chen | en |
| dc.subject.keyword | 大規模崩塌,降雨入滲,地下水位,滲流數值模擬,極限平衡法,邊坡穩定, | zh_TW |
| dc.subject.keyword | Deep-seated landslide,Rainfall infiltration,Groundwater level,Numerical simulation of seepage,Limit equilibrium method,Slope stability, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202403955 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2029-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
