Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95688Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡政達 | zh_TW |
| dc.contributor.advisor | Jeng-Da Chai | en |
| dc.contributor.author | 陳霽佑 | zh_TW |
| dc.contributor.author | Chi-Yu Chen | en |
| dc.date.accessioned | 2024-09-15T16:48:41Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] P.W.AyersandW.Yang.Legendre-transformfunctionalsforspin-density-functional theory. The Journal of Chemical Physics, 124(22):224108, 06 2006.
[2] K. Bhattacharyya, S. Karmakar, and A. Datta. External electric field control: driving the reactivity of metal-free azide–alkyne click reactions. Phys. Chem. Chem. Phys., 19:22482–22486, 2017. [3] J.-D.Chai.Densityfunctionaltheorywithfractionalorbitaloccupations.TheJournal of Chemical Physics, 136(15):154104, 04 2012. [4] J.-D. Chai. Thermally-assisted-occupation density functional theory with generalized-gradient approximations. The Journal of Chemical Physics, 140(18):18A521, 03 2014. [5] J.-D. Chai. Role of exact exchange in thermally-assisted-occupation density functional theory: A proposal of new hybrid schemes. The Journal of Chemical Physics, 146(4):044102, 01 2017. [6] J.-D. Chai and S.-P. Mao. Seeking for reliable double-hybrid density functionals without fitting parameters: The pbe0-2 functional. Chemical Physics Letters, 538:121–125, 2012. [7] K. Chen, W.-L. Li, and T. Head-Gordon. Linear combination of atomic dipoles to calculate the bond and molecular dipole moments of molecules and molecular liquids. The Journal of Physical Chemistry Letters, 12(51):12360–12369, 2021. PMID: 34936765. [8] J.-H. Chung and J.-D. Chai. Electronic properties of möbius cyclacenes studied by thermally-assisted-occupation density functional theory. Scientific Reports, 9(1):2907, Feb 2019. [9] F. Cimpoesu, C. Buta, M. Ferbinteanu, R. M. Philpott, A. Stroppa, and V. M. Putz. Electronic structure of linear polyacenes. Current Organic Chemistry, 21(27):2768–2775, 2017. [10] L. A. Cunha, J. Lee, D. Hait, C. W. McCurdy, and M. Head-Gordon. Exploring spin symmetry-breaking effects for static field ionization of atoms: Is there an analog to the Coulson–Fischer point in bond dissociation? The Journal of Chemical Physics, 155(1):014309, 07 2021. [11] R. Das, A. Chakraborty, S. Pan, and K. P. Chattaraj. Aromaticity in polyacenes and their structural analogues. Current Organic Chemistry, 17(23):2831–2844, 2013. [12] D. Ghosh, D. Kosenkov, V. Vanovschi, C. F. Williams, J. M. Herbert, M. S. Gordon, M. W. Schmidt, L. V. Slipchenko, and A. I. Krylov. Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers. The Journal of Physical Chemistry A, 114(48):12739–12754, 2010. PMID: 21067134. [13] K. N. Houk, P. S. Lee, and M. Nendel. Polyacene and cyclacene geometries and electronic structures: Bond equalization, vanishing band gaps, and triplet ground states contrast with polyacetylene. The Journal of Organic Chemistry, 66(16):5517–5521, 2001. PMID: 11485476. [14] X. Huang, C. Tang, J. Li, L.-C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen, M. Bai, H.-L. Zhang, H. Xia, J. Cheng, Z.-Q. Tian, and W. Hong. Electric field–induced selective catalysis of single-molecule reaction. Science Advances, 5(6):eaaw3072, 2019. [15] J. Joy, T. Stuyver, and S. Shaik. Oriented external electric fields and ionic additives elicit catalysis and mechanistic crossover in oxidative addition reactions. Journal of the American Chemical Society, 142(8):3836–3850, 2020. PMID: 31994390. [16] R. Mathies and A. C. Albrecht. Experimental and theoretical studies on the excited state polarizabilities of benzene, naphthalene, and anthracene. The Journal of Chemical Physics, 60(6):2500–2508, 08 2003. [17] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137:A1441–A1443, Mar 1965. [18] D. Rai, H. Joshi, A. D. Kulkarni, S. P. Gejji, and R. K. Pathak. Electric field effects on aromatic and aliphatic hydrocarbons: A density-functional study. The Journal of Physical Chemistry A, 111(37):9111–9121, 2007. PMID: 17722897. [19] T. Scheele and T. Neudecker. Investigating the accuracy of density functional methods for molecules in electric fields. The Journal of Chemical Physics, 159(12):124111, 09 2023. [20] T. Scheele and T. Neudecker. Using oriented external electric fields to manipulate rupture forces of mechanophores. Phys. Chem. Chem. Phys., 25:28070–28077, 2023. [21] S. Seenithurai and J.-D. Chai. Tao-dft investigation of electronic properties of linear and cyclic carbon chains. Scientific Reports, 10(1):13133, Aug 2020. [22] R. F. Service. Organic leds look forward to a bright, white future. Science, 310(5755):1762–1763, 2005. [23] S. Shaik, D. Mandal, and R. Ramanan. Oriented electric fields as future smart reagents in chemistry. Nature Chemistry, 8(12):1091–1098, Dec 2016. [24] S. Shaik, R. Ramanan, D. Danovich, and D. Mandal. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev., 47:5125–5145, 2018. [25] Y. Shao et al. Advances in molecular quantum chemistry contained in the q-chem 4 program package. Molecular Physics, 113(2):184–215, 2015. [26] S.A.Siddiqui,A.Al-Hajry,andM.S.Al-Assiri.Abinitioinvestigationof2,2′-bis(4- trifluoromethylphenyl)-5,5′-bithiazole for the design of efficient organic field-effect transistors. International Journal of Quantum Chemistry, 116(5):339–345, 2016. [27] H.Sirringhaus.Devicephysicsofsolution-processedorganicfield-effecttransistors. Advanced Materials, 17(20):2411–2425, 2005. [28] J.STARK.Observationoftheseparationofspectrallinesbyanelectricfield.Nature, 92(2301):401–401, Dec 1913. [29] J. Toulouse, K. Sharkas, E. Brémond, and C. Adamo. Communication: Rationale for a new class of double-hybrid approximations in density-functional theory. The Journal of Chemical Physics, 135(10):101102, 09 2011. [30] A. Tsumura, H. Koezuka, and T. Ando. Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 49(18):1210– 1212, 11 1986. [31] C. Tönshoff and H. F. Bettinger. Pushing the limits of acene chemistry: The recent surge of large acenes. Chemistry–A European Journal, 27(10):3193–3212, 2021. [32] U. von Barth and L. Hedin. A local exchange-correlation potential for the spin polarized case. i. Journal of Physics C: Solid State Physics, 5(13):1629, jul 1972. [33] C.-S.WuandJ.-D.Chai. Electronic properties of zigzag graphene nanoribbons studied by tao-dft. Journal of Chemical Theory and Computation, 11(5):2003–2011, 2015. [34] C.-S.Wu,P.-Y.Lee,andJ.-D.Chai. Electronic properties of cyclacenes from tao-dft. Scientific Reports, 6(1):37249, Nov 2016. [35] C.-N. Yeh and J.-D. Chai. Role of kekulé and non-kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons: A tao-dft study. Scientific Reports, 6(1):30562, Jul 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95688 | - |
| dc.description.abstract | 在定向外加電場中,透過傳統的密度泛函理論預測線性駢苯(linear acene) 的電子性質並不是一個精確的方法。由於強關聯作用的影響,傳統的分析方 法會有較大的誤差。因此,為了預測的精準性,我們採用熱輔助密度泛函理論 (Thermally-assisted-occupation density functional theory) 來分析線性駢苯在定向外加 電場中的性質。在我們的研究結果中,我們發現隨著電場的增強,單重態三重態 能量差(singlet-triplet energy gap)、基本能隙 (fundamental gap) 會輕微的下降,而 對稱性馮諾伊曼熵(symmetrized von Neumann entropy)則有較明顯的上升。相較 於前面的結果,垂直游離能和垂直電子親和力則表現出不一樣的變化。游離能和 電子親和力的變動會因為環數的奇偶性而有所不同。當環數為奇數時,兩者皆會 隨著電場強度增加而有明顯的提升;然而,當環數為偶數時,兩者對電場的變化 較不敏感。此外,透過軌道電子佔有數(orbital occupation number),我們可以發 現當電場增加時,電子分布也會隨之由低能量的軌域遷移至高能量的軌域。 | zh_TW |
| dc.description.abstract | The electronic properties of linear acene in an oriented external electric field (OEEF) are difficult to predict precisely through conventional Kohn-Sham (KS) density functional theory (DFT) owing to the strong static correlation error. We investigate the molecu- lar properties based on thermally-assisted-occupation (TAO) DFT for accuracy. In our results, the singlet-triplet energy gaps and fundamental gaps decrease slightly when the electric field strength increases. However, the symmetrized von Neumann entropy in- creases obviously. Unlike the former, the variation of vertical ionization potentials and vertical electron affinities depends on the parity of the ring number. When the number is odd, the ionization potential and electron affinity increase noticeably with the increas- ing electric field. Conversely, they change little when the number is even. In addition, we observe that the electron transitions from low-energy orbitals to high-energy orbitals according to active orbital occupation numbers when we apply the external electric field. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:48:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:48:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Linear Acenes.............................. 1 1.2 The Molecular Properties in OEEF................... 1 1.3 TAO-DFT................................ 2 Chapter 2 Computational Details 5 Chapter 3 Theory 7 3.1 TAO-DFT in Oriented External Electric Field...7 3.1.1 Self-Consistent Equation ....................... 7 3.1.2 Spin-Polarized Formalism ...................... 11 Chapter 4 Results 15 4.1 Singlet-Triplet Energy...15 4.2 Vertical Ionization Potential...19 4.3 Vertical electron affinity...20 4.4 Fundamental Gap...21 4.5 Symmetrized von Neumann Entropy...22 4.6 Active Orbital Occupation Numbers...23 4.7 Real-Space Representation of Active Orbitals...24 Chapter 5 Conclusion 35 References 37 Appendix A — ST gap of TAO-DFT 43 Appendix B — ST gap of KS-DFT 45 Appendix C — S2 47 Appendix D — Difference of UR and US 51 Appendix E — Vertical ionization potential 55 Appendix F — Vertical electron affinity 57 Appendix G — Fundamental gap 59 Appendix H — Symmetrized von Neumann entropy 61 | - |
| dc.language.iso | en | - |
| dc.subject | 熱輔助密度泛函理論 | zh_TW |
| dc.subject | 定向外加電場 | zh_TW |
| dc.subject | 線性駢苯 | zh_TW |
| dc.subject | Oriented external electric field | en |
| dc.subject | Linear acenes | en |
| dc.subject | Thermally-assisted-occupation density functional theory | en |
| dc.title | 透過熱輔助密度泛函理論分析線性駢苯在定向外加電場下的電子性質 | zh_TW |
| dc.title | The electronic properties of linear acenes in the oriented external electric field with TAO-DFT calculation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林倫年;趙聖德 | zh_TW |
| dc.contributor.oralexamcommittee | Michitoshi Hayashi;Sheng-Der Chao | en |
| dc.subject.keyword | 線性駢苯,熱輔助密度泛函理論,定向外加電場, | zh_TW |
| dc.subject.keyword | Linear acenes,Thermally-assisted-occupation density functional theory,Oriented external electric field, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202404230 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 15.4 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
