Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor温進德zh_TW
dc.contributor.advisorJin-Der Wenen
dc.contributor.author吳郁涵zh_TW
dc.contributor.authorYu-Han Wuen
dc.date.accessioned2024-09-15T16:40:43Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAshkin, A., & Dziedzic, J. (1971). Optical levitation by radiation pressure. Applied Physics Letters, 19(8), 283-285.
Ashkin, A., & Gordon, J. P. (1983). Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Optics letters, 8(10), 511-513.
Ashley, C. T., & Warren, S. T. (1995). Trinucleotide repeat expansion and human disease. Annual review of genetics, 29(1), 703-728.
Avellaneda, M. J., Franke, K. B., Sunderlikova, V., Bukau, B., Mogk, A., & Tans, S. J. (2020). Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 578(7794), 317-320. https://doi.org/10.1038/s41586-020-1964-y
Brierley, I., Jenner, A. J., & Inglis, S. C. (1992). Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. Journal of molecular biology, 227(2), 463-479.
Bustamante, C. (2008). In singulo biochemistry: When less is more. Annu. Rev. Biochem., 77, 45-50.
Chen, G., Chang, K.-Y., Chou, M.-Y., Bustamante, C., & Tinoco Jr, I. (2009). Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of–1 ribosomal frameshifting. Proceedings of the National Academy of Sciences, 106(31), 12706-12711.
Dumont, S., Cheng, W., Serebrov, V., Beran, R. K., Tinoco Jr, I., Pyle, A. M., & Bustamante, C. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105-108.
Farabaugh, P. J. (1996). PROGRAMMED TRANSLATIONAL FRAMESHIFTING. Annual review of genetics, 30(1), 507-528. https://doi.org/10.1146/annurev.genet.30.1.507
Green, L., Kim, C.-H., Bustamante, C., & Tinoco Jr, I. (2008). Characterization of the mechanical unfolding of RNA pseudoknots. Journal of molecular biology, 375(2), 511-528.
Hansen, T. M., Reihani, S. N. S., Oddershede, L. B., & Sørensen, M. A. (2007). Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proceedings of the National Academy of Sciences, 104(14), 5830-5835.
Hoffmann, M., Mosbauer, K., Hofmann-Winkler, H., Kaul, A., Kleine-Weber, H., Kruger, N., Gassen, N. C., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 585(7826), 588-590. https://doi.org/10.1038/s41586-020-2575-3
Hsu, C. F., Chang, K. C., Chen, Y. L., Hsieh, P. S., Lee, A. I., Tu, J. Y., Chen, Y. T., & Wen, J. D. (2021). Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Res, 49(12), 6941-6957. https://doi.org/10.1093/nar/gkab512
Hsu, H. T., Murata, A., Dohno, C., Nakatani, K., & Chang, K. (2022). Premature translation termination mediated non-ER stress induced ATF6 activation by a ligand-dependent ribosomal frameshifting circuit. Nucleic Acids Res, 50(9), 5369-5383. https://doi.org/10.1093/nar/gkac257
Huang, Y.-T. (2023). Exploring how RNA pseudoknots affect ribosomal frameshifting using optical tweezers. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Master Thesis. https://doi.org/10.6342/NTU202302146
Kim, N.-K., Zhang, Q., Zhou, J., Theimer, C. A., Peterson, R. D., & Feigon, J. (2008). Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. Journal of molecular biology, 384(5), 1249-1261.
Léger, M., Dulude, D., Steinberg, S. V., & Brakier-Gingras, L. (2007). The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed-1 ribosomal frameshift. Nucleic acids research, 35(16), 5581-5592.
McKeague, M., Wong, R. S., & Smolke, C. D. (2016). Opportunities in the design and application of RNA for gene expression control. Nucleic acids research, 44(7), 2987-2999.
Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature methods, 5(6), 491-505.
Neupane, K., Zhao, M., Lyons, A., Munshi, S., Ileperuma, S. M., Ritchie, D. B., Hoffer, N. Q., Narayan, A., & Woodside, M. T. (2021). Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat Commun, 12(1), 4749. https://doi.org/10.1038/s41467-021-25085-6
Schlick, T., Zhu, Q., Dey, A., Jain, S., Yan, S., & Laederach, A. (2021). To knot or not to knot: multiple conformations of the SARS-CoV-2 frameshifting RNA element. Journal of the American Chemical Society, 143(30), 11404-11422.
Shibata, T., Nagano, K., Ueyama, M., Ninomiya, K., Hirose, T., Nagai, Y., Ishikawa, K., Kawai, G., & Nakatani, K. (2021). Small molecule targeting r (UGGAA) n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nature Communications, 12(1), 236.
Theimer, C. A., Blois, C. A., & Feigon, J. (2005). Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Molecular cell, 17(5), 671-682.
Tu, J.-Y. (2020). Exploring How the Ribosome Affects Frameshift-Stimulating Pseudoknots by Using Optical Tweezers. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Master Thesis. https://doi.org/10.6342/NTU202003117
Varricchio, C., Mathez, G., Pillonel, T., Bertelli, C., Kaiser, L., Tapparel, C., Brancale, A., & Cagno, V. (2022). Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. Antiviral Res, 208, 105452. https://doi.org/10.1016/j.antiviral.2022.105452
Wong, R. S., Chen, Y. Y., & Smolke, C. D. (2018). Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic acids research, 46(3), 1541-1552.
Yamada, T., Furuita, K., Sakurabayashi, S., Nomura, M., Kojima, C., & Nakatani, K. (2022). NMR determination of the 2: 1 binding complex of naphthyridine carbamate dimer (NCD) and CGG/CGG triad in double-stranded DNA. Nucleic acids research, 50(17), 9621-9631.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95662-
dc.description.abstract當核醣體在轉譯過程中遇到mRNA上的滑動序列(slippery sequence)和下游刺激子(stimulator) RNA 偽結,會有一定機率往上游移動一個核苷酸而改變閱讀框架,稱為 -1計畫性核醣體框架位移(-1 programmed ribosomal frameshifting, -1 PRF),造成後續轉譯出的蛋白質序列不同,-1 PRF對於合成生物學的應用及許多病毒基因表達至關重要。在眾多-1 PRF刺激子中,DU177偽結具有較高的效率與清楚的結構資訊,所以我們選用DU177作為模板,研究如何利用小分子藥物為配體來調控-1 PRF,而且前人的研究也成功利用DU177的突變體搭配特定的小分子配體來調控-1 PRF的效率,但其調控的分子機制並不清楚。在此論文中,我們運用相同的設計將DU177的stem突變成帶有5'-CGG-3'/3'-GGC-5'的序列而破壞其結構(-1 PRF效率下降),但小分子藥物NCT8可與該區域的GG mismatch結合而回復結構穩定性(效率回升),我們利用單分子光鉗技術探討NCT8與RNA結構的結合機制。實驗的結果發現NCT8對於stem 1上帶有5'-CGG-3'/3'-GGC-5'的construct有影響,藥物讓低穩定偽結回復到與原生型DU177相似的高穩定偽結,在對照組帶有5'-CGG-3'/3'-GGC-5'的髮夾結構中,藥物有增加結構穩定性的趨勢。
另一方面,一種稱為Merafloxacin的氟喹諾酮類抗菌化合物,對於SARS-CoV-2冠狀病毒有抑制其-1 PRF的特性,SARS-CoV-2的-1 PRF刺激子是由三個莖(依序稱為stem 1,stem 2,和stem 3)摺疊的偽結結構,因此推論藥物抑制-1 PRF的作用機制可能與這些二級結構的摺疊有關。我們透過光鉗觀察一系列相關小分子藥物對於SARS-CoV-2 RNA偽結摺疊過程的影響,探討藥物抑制病毒-1 PRF效率的機制,實驗結果顯示藥物對SARS-CoV-2偽結的stem 2和stem 3摺疊有影響,藥物與stem 2和stem 3結合,結構處於不穩定狀態無法摺疊成穩定偽結,及改變構形間轉換的比例,進而影響到-1 PRF的效率。
zh_TW
dc.description.abstractDuring the translation process, when the ribosome encounters the slippery sequence and downstream stimulator RNA pseudoknot on the mRNA, there is a probability of shifting one nucleotide upstream, altering the reading frame. This phenomenon is known as -1 programmed ribosomal frameshifting (-1 PRF), leading to a different protein sequence being translated. -1 PRF is crucial for synthetic biology applications and the gene expression of many viruses. Among numerous -1 PRF stimulators, the DU177 pseudoknot exhibits high efficiency and clear structural information, making it an ideal template for studying how small molecule ligands can modulate -1 PRF. Previous research successfully utilized mutants of DU177 along with specific small molecule ligands to modulate -1 PRF efficiency. However, the molecular mechanism underlying this regulation remains unclear. In this study, we designed DU177 mutants where the stem was partially disrupted by introducing a 5'-CGG-3'/3'-GGC-5' sequence, leading to decreased -1 PRF efficiency. The NCT8 ligands can target the GG mismatch motif, restoring structural stability and thereby restoring -1 PRF efficiency. Subsequently, we employed optical tweezers to investigate the binding mechanism between NCT8 and the RNA structure. Our data showed that NCT8 affects constructs containing the 5'-CGG-3'/3'-GGC-5' sequence on stem 1, restoring low-stability pseudoknots to a high-stability state similar to the native DU177. Additionally, in control hairpin structures with the 5'-CGG-3'/3'-GGC-5' sequence, the drug showed a trend of increased structural stability.
On the other hand, a fluoroquinolone antibiotic compound called Merafloxacin exhibits properties of inhibiting -1 PRF in SARS-CoV-2. The -1 PRF stimulator of SARS-CoV-2 a pseudoknot formed by three stems (termed stem 1, stem 2, and stem 3), suggesting that the mechanism of action of Merafloxacin in inhibiting -1 PRF may be related to the folding of these secondary structures. We investigated a series of related small-molecule drugs using optical tweezers to observe their effects on the folding of SARS-CoV-2 RNA pseudoknots, aiming to elucidate the mechanism by which these drugs inhibit viral -1 PRF efficiency. Our data showed that the drugs affect the folding of stem 2 and stem 3 of the SARS-CoV-2 pseudoknot structure. By binding to stem 2 and stem 3, the drugs destabilize their structures and prevente them from folding into a highly stable pseudoknot. This alteration affects the ratio of conformational transitions, thereby influencing the efficiency of -1 PRF.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:40:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:40:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
論文口試委員審定書 i
謝辭 ii
中文摘要 iii
Abstract v
目次 vii
圖次 xii
表次 xiv
第一章 導論 1
1.1偽結與計畫性框架位移的關係 1
1.2 人類端粒酶RNA 1
1.2.1 簡介 1
1.2.2 結構分析 2
1.2.3 DU177摺疊機制 2
1. 3 合成生物學 3
1.3.1 簡介 3
1.3.2 萘啶氨基甲酸酯二聚體衍生物 3
1.4嚴重急性呼吸道傳染病毒(SARS-CoV-2) 4
1.4.1簡介 4
1.4.2氟喹諾酮類藥物對SARS-CoV-2的作用 4
1.5單分子技術 4
1.5.1 簡介 4
1.5.2應用 5
1.5.3雷射光鉗 5
1.6研究動機 6
1.6.1 探討高效能與NCT8結合的偽結摺疊機制 6
1.6.2 NCT8影響僞結摺疊動態變化的重要性 6
1.6.3探討不同藥物對SARS-CoV-2 RNA偽結的重要性 7
第二章 材料與方法 8
2.1 材料 8
2.1.1勝任細胞品系 8
2.1.2 質體 8

2.1.3 載體DNA序列及引子設計 8
2.1.4溶液 10
2.1.5小分子藥物 11
2.2方法 11
2.2.1 質體建構 11
2.2.2 細胞外轉譯作用 13
2.2.3 聚合酶連鎖反應製作 DNA handle 14
2.2.4 DNA handle 的修飾 15
2.2.5 DNA handle 與 RNA 的黏合反應 15
2.2.6 單分子技術光鉗 16
第三章 DU177相關偽結與NCT8之交互作用 18
3.1 DU177力的遞增實驗結果 18
3.1.1 DU177偽結 18
3.2 D4力的遞增實驗結果 18
3.2.1 D4偽結及NCT8的影響 18
3.2.2 D4偽結中的hairpin 1 與hairpin 2及NCT8的影響 20
3.2.3 區分D4中的髮夾結構 21
3.2.4 D4偽結摺疊順序 21
3.3 D4定力實驗結果 21
3.3.1 D4偽結的摺疊模式及NCT8的影響 21
3.3.2 D4髮夾結構的摺疊模式及NCT8的影響 22
3.4 D1力的遞增實驗結果 22
3.4.1 D1偽結及NCT8的影響 22
3.4.2 D1偽結中的hairpin 1 與hairpin 2及NCT8的影響 23
第四章 SARS-CoV-2 RNA偽結與小分子藥物之交互作用 24
4.1 SARS-CoV-2 RNA力的遞增實驗結果 24
4.1.1 SARS-CoV-2 RNA偽結 24
4.1.2 Merafloxacin 對SARS-CoV-2 RNA的影響 24
4.1.3 Rufloxacin 對SARS-CoV-2 RNA的影響 24
4.1.4 Grazoprevir對SARS-CoV-2 RNA的影響 25
4.1.5 Dihydroergotoxine對SARS-CoV-2 RNA的影響 25
4.2 SARS-CoV-2 RNA定力實驗結果 26
4.2.1 SARS-CoV-2 RNA的摺疊 26
4.2.2 Merafloxacin 對SARS-CoV-2 RNA摺疊的影響 26
4.2.3 Rufloxacin 對SARS-CoV-2 RNA摺疊的影響 27
4.2.4 Grazoprevir對SARS-CoV-2 RNA摺疊的影響 28
4.2.5 Dihydroergotoxine對SARS-CoV-2 RNA摺疊的影響 28
第五章 討論 30
5.1 NCT8對於DU177相關結構的影響 30
5.1.1 上游突變序列對D4偽結摺疊的順序及藥物的效應 30
5.1.2 下游突變序列對D1偽結摺疊的順序及藥物的效應 31
5.2 不同藥物對SARS-CoV-2 RNA的影響 32
參考文獻 33
-
dc.language.isozh_TW-
dc.title利用光鉗探討小分子藥物對於框架位移刺激子RNA偽結的效應zh_TW
dc.titleEffects of Small-Molecule Drugs on Frameshift-Stimulating RNA Pseudoknots Measured by Optical Tweezersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張功耀;楊立威zh_TW
dc.contributor.oralexamcommitteeKung-Yao Chang;Lee-Wei Yangen
dc.subject.keywordGG mismatch,NCT8,SARS-CoV-2,氟喹諾酮類藥物,-1 PRF,光鉗,zh_TW
dc.subject.keywordGG mismatch,NCT8,SARS-CoV-2,-1 PRF,fluoroquinolone antibiotic compound,optical tweezers,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202403928-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved