請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95662
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 温進德 | zh_TW |
dc.contributor.advisor | Jin-Der Wen | en |
dc.contributor.author | 吳郁涵 | zh_TW |
dc.contributor.author | Yu-Han Wu | en |
dc.date.accessioned | 2024-09-15T16:40:43Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | Ashkin, A., & Dziedzic, J. (1971). Optical levitation by radiation pressure. Applied Physics Letters, 19(8), 283-285.
Ashkin, A., & Gordon, J. P. (1983). Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Optics letters, 8(10), 511-513. Ashley, C. T., & Warren, S. T. (1995). Trinucleotide repeat expansion and human disease. Annual review of genetics, 29(1), 703-728. Avellaneda, M. J., Franke, K. B., Sunderlikova, V., Bukau, B., Mogk, A., & Tans, S. J. (2020). Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 578(7794), 317-320. https://doi.org/10.1038/s41586-020-1964-y Brierley, I., Jenner, A. J., & Inglis, S. C. (1992). Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. Journal of molecular biology, 227(2), 463-479. Bustamante, C. (2008). In singulo biochemistry: When less is more. Annu. Rev. Biochem., 77, 45-50. Chen, G., Chang, K.-Y., Chou, M.-Y., Bustamante, C., & Tinoco Jr, I. (2009). Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of–1 ribosomal frameshifting. Proceedings of the National Academy of Sciences, 106(31), 12706-12711. Dumont, S., Cheng, W., Serebrov, V., Beran, R. K., Tinoco Jr, I., Pyle, A. M., & Bustamante, C. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105-108. Farabaugh, P. J. (1996). PROGRAMMED TRANSLATIONAL FRAMESHIFTING. Annual review of genetics, 30(1), 507-528. https://doi.org/10.1146/annurev.genet.30.1.507 Green, L., Kim, C.-H., Bustamante, C., & Tinoco Jr, I. (2008). Characterization of the mechanical unfolding of RNA pseudoknots. Journal of molecular biology, 375(2), 511-528. Hansen, T. M., Reihani, S. N. S., Oddershede, L. B., & Sørensen, M. A. (2007). Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proceedings of the National Academy of Sciences, 104(14), 5830-5835. Hoffmann, M., Mosbauer, K., Hofmann-Winkler, H., Kaul, A., Kleine-Weber, H., Kruger, N., Gassen, N. C., Muller, M. A., Drosten, C., & Pohlmann, S. (2020). Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 585(7826), 588-590. https://doi.org/10.1038/s41586-020-2575-3 Hsu, C. F., Chang, K. C., Chen, Y. L., Hsieh, P. S., Lee, A. I., Tu, J. Y., Chen, Y. T., & Wen, J. D. (2021). Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Res, 49(12), 6941-6957. https://doi.org/10.1093/nar/gkab512 Hsu, H. T., Murata, A., Dohno, C., Nakatani, K., & Chang, K. (2022). Premature translation termination mediated non-ER stress induced ATF6 activation by a ligand-dependent ribosomal frameshifting circuit. Nucleic Acids Res, 50(9), 5369-5383. https://doi.org/10.1093/nar/gkac257 Huang, Y.-T. (2023). Exploring how RNA pseudoknots affect ribosomal frameshifting using optical tweezers. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Master Thesis. https://doi.org/10.6342/NTU202302146 Kim, N.-K., Zhang, Q., Zhou, J., Theimer, C. A., Peterson, R. D., & Feigon, J. (2008). Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. Journal of molecular biology, 384(5), 1249-1261. Léger, M., Dulude, D., Steinberg, S. V., & Brakier-Gingras, L. (2007). The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed-1 ribosomal frameshift. Nucleic acids research, 35(16), 5581-5592. McKeague, M., Wong, R. S., & Smolke, C. D. (2016). Opportunities in the design and application of RNA for gene expression control. Nucleic acids research, 44(7), 2987-2999. Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature methods, 5(6), 491-505. Neupane, K., Zhao, M., Lyons, A., Munshi, S., Ileperuma, S. M., Ritchie, D. B., Hoffer, N. Q., Narayan, A., & Woodside, M. T. (2021). Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat Commun, 12(1), 4749. https://doi.org/10.1038/s41467-021-25085-6 Schlick, T., Zhu, Q., Dey, A., Jain, S., Yan, S., & Laederach, A. (2021). To knot or not to knot: multiple conformations of the SARS-CoV-2 frameshifting RNA element. Journal of the American Chemical Society, 143(30), 11404-11422. Shibata, T., Nagano, K., Ueyama, M., Ninomiya, K., Hirose, T., Nagai, Y., Ishikawa, K., Kawai, G., & Nakatani, K. (2021). Small molecule targeting r (UGGAA) n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nature Communications, 12(1), 236. Theimer, C. A., Blois, C. A., & Feigon, J. (2005). Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Molecular cell, 17(5), 671-682. Tu, J.-Y. (2020). Exploring How the Ribosome Affects Frameshift-Stimulating Pseudoknots by Using Optical Tweezers. Institute of Molecular and Cellular Biology College of Life Science, National Taiwan University Master Thesis. https://doi.org/10.6342/NTU202003117 Varricchio, C., Mathez, G., Pillonel, T., Bertelli, C., Kaiser, L., Tapparel, C., Brancale, A., & Cagno, V. (2022). Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. Antiviral Res, 208, 105452. https://doi.org/10.1016/j.antiviral.2022.105452 Wong, R. S., Chen, Y. Y., & Smolke, C. D. (2018). Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic acids research, 46(3), 1541-1552. Yamada, T., Furuita, K., Sakurabayashi, S., Nomura, M., Kojima, C., & Nakatani, K. (2022). NMR determination of the 2: 1 binding complex of naphthyridine carbamate dimer (NCD) and CGG/CGG triad in double-stranded DNA. Nucleic acids research, 50(17), 9621-9631. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95662 | - |
dc.description.abstract | 當核醣體在轉譯過程中遇到mRNA上的滑動序列(slippery sequence)和下游刺激子(stimulator) RNA 偽結,會有一定機率往上游移動一個核苷酸而改變閱讀框架,稱為 -1計畫性核醣體框架位移(-1 programmed ribosomal frameshifting, -1 PRF),造成後續轉譯出的蛋白質序列不同,-1 PRF對於合成生物學的應用及許多病毒基因表達至關重要。在眾多-1 PRF刺激子中,DU177偽結具有較高的效率與清楚的結構資訊,所以我們選用DU177作為模板,研究如何利用小分子藥物為配體來調控-1 PRF,而且前人的研究也成功利用DU177的突變體搭配特定的小分子配體來調控-1 PRF的效率,但其調控的分子機制並不清楚。在此論文中,我們運用相同的設計將DU177的stem突變成帶有5'-CGG-3'/3'-GGC-5'的序列而破壞其結構(-1 PRF效率下降),但小分子藥物NCT8可與該區域的GG mismatch結合而回復結構穩定性(效率回升),我們利用單分子光鉗技術探討NCT8與RNA結構的結合機制。實驗的結果發現NCT8對於stem 1上帶有5'-CGG-3'/3'-GGC-5'的construct有影響,藥物讓低穩定偽結回復到與原生型DU177相似的高穩定偽結,在對照組帶有5'-CGG-3'/3'-GGC-5'的髮夾結構中,藥物有增加結構穩定性的趨勢。
另一方面,一種稱為Merafloxacin的氟喹諾酮類抗菌化合物,對於SARS-CoV-2冠狀病毒有抑制其-1 PRF的特性,SARS-CoV-2的-1 PRF刺激子是由三個莖(依序稱為stem 1,stem 2,和stem 3)摺疊的偽結結構,因此推論藥物抑制-1 PRF的作用機制可能與這些二級結構的摺疊有關。我們透過光鉗觀察一系列相關小分子藥物對於SARS-CoV-2 RNA偽結摺疊過程的影響,探討藥物抑制病毒-1 PRF效率的機制,實驗結果顯示藥物對SARS-CoV-2偽結的stem 2和stem 3摺疊有影響,藥物與stem 2和stem 3結合,結構處於不穩定狀態無法摺疊成穩定偽結,及改變構形間轉換的比例,進而影響到-1 PRF的效率。 | zh_TW |
dc.description.abstract | During the translation process, when the ribosome encounters the slippery sequence and downstream stimulator RNA pseudoknot on the mRNA, there is a probability of shifting one nucleotide upstream, altering the reading frame. This phenomenon is known as -1 programmed ribosomal frameshifting (-1 PRF), leading to a different protein sequence being translated. -1 PRF is crucial for synthetic biology applications and the gene expression of many viruses. Among numerous -1 PRF stimulators, the DU177 pseudoknot exhibits high efficiency and clear structural information, making it an ideal template for studying how small molecule ligands can modulate -1 PRF. Previous research successfully utilized mutants of DU177 along with specific small molecule ligands to modulate -1 PRF efficiency. However, the molecular mechanism underlying this regulation remains unclear. In this study, we designed DU177 mutants where the stem was partially disrupted by introducing a 5'-CGG-3'/3'-GGC-5' sequence, leading to decreased -1 PRF efficiency. The NCT8 ligands can target the GG mismatch motif, restoring structural stability and thereby restoring -1 PRF efficiency. Subsequently, we employed optical tweezers to investigate the binding mechanism between NCT8 and the RNA structure. Our data showed that NCT8 affects constructs containing the 5'-CGG-3'/3'-GGC-5' sequence on stem 1, restoring low-stability pseudoknots to a high-stability state similar to the native DU177. Additionally, in control hairpin structures with the 5'-CGG-3'/3'-GGC-5' sequence, the drug showed a trend of increased structural stability.
On the other hand, a fluoroquinolone antibiotic compound called Merafloxacin exhibits properties of inhibiting -1 PRF in SARS-CoV-2. The -1 PRF stimulator of SARS-CoV-2 a pseudoknot formed by three stems (termed stem 1, stem 2, and stem 3), suggesting that the mechanism of action of Merafloxacin in inhibiting -1 PRF may be related to the folding of these secondary structures. We investigated a series of related small-molecule drugs using optical tweezers to observe their effects on the folding of SARS-CoV-2 RNA pseudoknots, aiming to elucidate the mechanism by which these drugs inhibit viral -1 PRF efficiency. Our data showed that the drugs affect the folding of stem 2 and stem 3 of the SARS-CoV-2 pseudoknot structure. By binding to stem 2 and stem 3, the drugs destabilize their structures and prevente them from folding into a highly stable pseudoknot. This alteration affects the ratio of conformational transitions, thereby influencing the efficiency of -1 PRF. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:40:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:40:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
論文口試委員審定書 i 謝辭 ii 中文摘要 iii Abstract v 目次 vii 圖次 xii 表次 xiv 第一章 導論 1 1.1偽結與計畫性框架位移的關係 1 1.2 人類端粒酶RNA 1 1.2.1 簡介 1 1.2.2 結構分析 2 1.2.3 DU177摺疊機制 2 1. 3 合成生物學 3 1.3.1 簡介 3 1.3.2 萘啶氨基甲酸酯二聚體衍生物 3 1.4嚴重急性呼吸道傳染病毒(SARS-CoV-2) 4 1.4.1簡介 4 1.4.2氟喹諾酮類藥物對SARS-CoV-2的作用 4 1.5單分子技術 4 1.5.1 簡介 4 1.5.2應用 5 1.5.3雷射光鉗 5 1.6研究動機 6 1.6.1 探討高效能與NCT8結合的偽結摺疊機制 6 1.6.2 NCT8影響僞結摺疊動態變化的重要性 6 1.6.3探討不同藥物對SARS-CoV-2 RNA偽結的重要性 7 第二章 材料與方法 8 2.1 材料 8 2.1.1勝任細胞品系 8 2.1.2 質體 8 2.1.3 載體DNA序列及引子設計 8 2.1.4溶液 10 2.1.5小分子藥物 11 2.2方法 11 2.2.1 質體建構 11 2.2.2 細胞外轉譯作用 13 2.2.3 聚合酶連鎖反應製作 DNA handle 14 2.2.4 DNA handle 的修飾 15 2.2.5 DNA handle 與 RNA 的黏合反應 15 2.2.6 單分子技術光鉗 16 第三章 DU177相關偽結與NCT8之交互作用 18 3.1 DU177力的遞增實驗結果 18 3.1.1 DU177偽結 18 3.2 D4力的遞增實驗結果 18 3.2.1 D4偽結及NCT8的影響 18 3.2.2 D4偽結中的hairpin 1 與hairpin 2及NCT8的影響 20 3.2.3 區分D4中的髮夾結構 21 3.2.4 D4偽結摺疊順序 21 3.3 D4定力實驗結果 21 3.3.1 D4偽結的摺疊模式及NCT8的影響 21 3.3.2 D4髮夾結構的摺疊模式及NCT8的影響 22 3.4 D1力的遞增實驗結果 22 3.4.1 D1偽結及NCT8的影響 22 3.4.2 D1偽結中的hairpin 1 與hairpin 2及NCT8的影響 23 第四章 SARS-CoV-2 RNA偽結與小分子藥物之交互作用 24 4.1 SARS-CoV-2 RNA力的遞增實驗結果 24 4.1.1 SARS-CoV-2 RNA偽結 24 4.1.2 Merafloxacin 對SARS-CoV-2 RNA的影響 24 4.1.3 Rufloxacin 對SARS-CoV-2 RNA的影響 24 4.1.4 Grazoprevir對SARS-CoV-2 RNA的影響 25 4.1.5 Dihydroergotoxine對SARS-CoV-2 RNA的影響 25 4.2 SARS-CoV-2 RNA定力實驗結果 26 4.2.1 SARS-CoV-2 RNA的摺疊 26 4.2.2 Merafloxacin 對SARS-CoV-2 RNA摺疊的影響 26 4.2.3 Rufloxacin 對SARS-CoV-2 RNA摺疊的影響 27 4.2.4 Grazoprevir對SARS-CoV-2 RNA摺疊的影響 28 4.2.5 Dihydroergotoxine對SARS-CoV-2 RNA摺疊的影響 28 第五章 討論 30 5.1 NCT8對於DU177相關結構的影響 30 5.1.1 上游突變序列對D4偽結摺疊的順序及藥物的效應 30 5.1.2 下游突變序列對D1偽結摺疊的順序及藥物的效應 31 5.2 不同藥物對SARS-CoV-2 RNA的影響 32 參考文獻 33 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用光鉗探討小分子藥物對於框架位移刺激子RNA偽結的效應 | zh_TW |
dc.title | Effects of Small-Molecule Drugs on Frameshift-Stimulating RNA Pseudoknots Measured by Optical Tweezers | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張功耀;楊立威 | zh_TW |
dc.contributor.oralexamcommittee | Kung-Yao Chang;Lee-Wei Yang | en |
dc.subject.keyword | GG mismatch,NCT8,SARS-CoV-2,氟喹諾酮類藥物,-1 PRF,光鉗, | zh_TW |
dc.subject.keyword | GG mismatch,NCT8,SARS-CoV-2,-1 PRF,fluoroquinolone antibiotic compound,optical tweezers, | en |
dc.relation.page | 105 | - |
dc.identifier.doi | 10.6342/NTU202403928 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 7.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。