請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張書瑋 | zh_TW |
| dc.contributor.advisor | Shu-Wei Chang | en |
| dc.contributor.author | 蘇正順 | zh_TW |
| dc.contributor.author | Zheng-Shun Su | en |
| dc.date.accessioned | 2024-09-15T16:39:28Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | [1] S. E. Naleway, M. M. Porter, J. McKittrick, and M. A. Meyers, "Structural Design Elements in Biological Materials: Application to Bioinspiration," Advanced Materials, vol. 27, no. 37, pp. 5455-5476, 2015, doi: https://doi.org/10.1002/adma.201502403.
[2] U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Bioinspired structural materials," Nature Materials, vol. 14, no. 1, pp. 23-36, 2015/01/01 2015, doi: 10.1038/nmat4089. [3] Y. Wang, S. E. Naleway, and B. Wang, "Biological and bioinspired materials: Structure leading to functional and mechanical performance," Bioactive Materials, vol. 5, no. 4, pp. 745-757, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.bioactmat.2020.06.003. [4] W. Song et al., "Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review," Coatings, vol. 11, no. 11, p. 1297, 2021. [Online]. Available: https://www.mdpi.com/2079-6412/11/11/1297. [5] F. Buccino et al., "Down to the Bone: A Novel Bio-Inspired Design Concept," Materials, vol. 14, no. 15, p. 4226, 2021. [Online]. Available: https://www.mdpi.com/1996-1944/14/15/4226. [6] Y. Sun, D. Zhang, Y. Liu, and T. Lueth, "FEM-Based Mechanics Modeling of Bio-Inspired Compliant Mechanisms for Medical Applications," IEEE Transactions on Medical Robotics and Bionics, vol. 2, pp. 364-373, 07/22 2020, doi: 10.1109/TMRB.2020.3011291. [7] A. Yazid, N. Abdelkader, and H. Abdelmadjid, "A state-of-the-art review of the X-FEM for computational fracture mechanics," Applied Mathematical Modelling, vol. 33, no. 12, pp. 4269-4282, 2009/12/01/ 2009, doi: https://doi.org/10.1016/j.apm.2009.02.010. [8] J. Dolbow, N. Moës, and T. Belytschko, "An extended finite element method for modeling crack growth with frictional contact," (in English), Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 51-52, pp. 6825–6846, 2001 2001, doi: 10.1016/s0045-7825(01)00260-2. [9] N. Moës and T. Belytschko, "Extended finite element method for cohesive crack growth," Engineering Fracture Mechanics, vol. 69, no. 7, pp. 813-833, 2002/05/01/ 2002, doi: https://doi.org/10.1016/S0013-7944(01)00128-X. [10] F. Libonati, V. Cipriano, L. Vergani, and M. J. Buehler, "Computational Framework to Predict Failure and Performance of Bone-Inspired Materials," ACS Biomaterials Science & Engineering, vol. 3, no. 12, pp. 3236-3243, 2017/12/11 2017, doi: 10.1021/acsbiomaterials.7b00606. [11] Y.-Y. Tsai, Y. Chiang, J. L. Buford, M.-L. Tsai, H.-C. Chen, and S.-W. Chang, "Mechanical and Crack Propagating Behavior of Sierpiński Carpet Composites," ACS Biomaterials Science & Engineering, vol. 9, no. 7, pp. 3912-3922, 2023/07/10 2023, doi: 10.1021/acsbiomaterials.0c01595. [12] Y. Chiang, C.-C. Tung, X.-D. Lin, P.-Y. Chen, C.-S. Chen, and S.-W. Chang, "Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana," Composite Structures, vol. 262, p. 113349, 2021/04/15/ 2021, doi: https://doi.org/10.1016/j.compstruct.2020.113349. [13] J. Dentinger and G. Street, "Animal Locomotion (second edition). Andrew A. Biewener and Sheila N. Patek. 2018. Oxford University Press, Oxford, U.K. 240 pp. $95.00 hardcover. ISBN: 978‐019874316," The Journal of Wildlife Management, vol. 83, 07/01 2019, doi: 10.1002/jwmg.21713. [14] D. Windsor and A. Dagg, "Gaits in the Macropodinae (Marsupialia)," Journal of Zoology, vol. 163, pp. 165-175, 05/06 2010, doi: 10.1111/j.1469-7998.1971.tb04530.x. [15] R. Alexander and A. Vernon, "The mechanics of hopping by kangaroos (Macropodidae)," Journal of Zoology, vol. 177, pp. 265-303, 08/20 2009, doi: 10.1111/j.1469-7998.1975.tb05983.x. [16] T. F. Clancy and D. B. Croft, "Differences in Habitat Use and Grouping Behavior between Macropods and Eutherian Herbivores," Journal of Mammalogy, vol. 72, no. 3, pp. 441-449, 1991, doi: 10.2307/1382126. [17] R. V. Baudinette, G. K. Snyder, and P. B. Frappell, "Energetic cost of locomotion in the tammar wallaby," American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 262, no. 5, pp. R771-R778, 1992/05/01 1992, doi: 10.1152/ajpregu.1992.262.5.R771. [18] A. A. Biewener and R. V. Baudinette, "In Vivo Muscle Force and Elastic Energy Storage During Steady-Speed Hopping of Tammar Wallabies (Macropus Eugenii)," Journal of Experimental Biology, vol. 198, no. 9, pp. 1829-1841, 1995, doi: 10.1242/jeb.198.9.1829. [19] R. Kram and T. J. Dawson, "Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus)," Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol. 120, no. 1, pp. 41-49, 1998/05/01/ 1998, doi: https://doi.org/10.1016/S0305-0491(98)00022-4. [20] M. B. Bennett and G. C. Taylor, "Scaling of elastic strain energy in kangaroos and the benefits of being big," Nature, vol. 378, no. 6552, pp. 56-59, 1995/11/01 1995, doi: 10.1038/378056a0. [21] E. Snelling et al., "Scaling of the ankle extensor muscle-tendon units and the biomechanical implications for bipedal hopping locomotion in the post-pouch kangaroo Macropus fuliginosus," Journal of Anatomy, vol. 231, pp. 921-930, 11/01 2017, doi: 10.1111/joa.12715. [22] D. Arifakis, J. Muraca, A. Singh, and M. Granatosky, "Artiodactyla Locomotion," 2021, pp. 1-8. [23] A. A. Biewener, "Allometry of Quadrupedal Locomotion: the Scaling of Duty Factor, Bonecurvature and Limb Orientation to Body Size," Journal of Experimental Biology, vol. 105, no. 1, pp. 147-171, 1983, doi: 10.1242/jeb.105.1.147. [24] E. Amson, "Scaling effect on the mid-diaphysis properties of long bones—the case of the Cervidae (Deer)," The Science of Nature, vol. 103, pp. 1-10, 06/27 2016, doi: 10.1007/s00114-016-1379-7. [25] B. Kilbourne, "Scale Effects between Body Size and Limb Design in Quadrupedal Mammals," PloS one, vol. 8, p. e78392, 11/08 2013, doi: 10.1371/journal.pone.0078392. [26] M. Doube et al., Limb bone scaling in hopping macropods and quadrupedal artiodactyls. 2018. [27] R. Oftadeh, M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian, "Biomechanics and Mechanobiology of Trabecular Bone: A Review," Journal of Biomechanical Engineering, vol. 137, no. 1, 2015, doi: 10.1115/1.4029176. [28] T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, and Y. Lin, "Nanomaterials and bone regeneration," Bone Research, vol. 3, no. 1, p. 15029, 2015/11/10 2015, doi: 10.1038/boneres.2015.29. [29] B. Quang, V. Nurcombe, S. Cool, C. Blitterswijk, J. Boer, and V. LaPointe, "The Components of Bone and What They Can Teach Us about Regeneration," Materials, vol. 11, p. 14, 12/22 2017, doi: 10.3390/ma11010014. [30] S. Sacher, C. J. Hernandez, and E. Donnelly, "Characterization of Ultralow-Density Cellular Solids: Lessons from 30 years of Bone Biomechanics Research," Advanced Engineering Materials, vol. 23, no. 7, p. 2100206, 2021, doi: https://doi.org/10.1002/adem.202100206. [31] J. M. Rosales Rocabado et al., "A multi-factorial analysis of bone morphology and fracture strength of rat femur in response to ovariectomy," Journal of Orthopaedic Surgery and Research, vol. 13, no. 1, p. 318, 2018/12/13 2018, doi: 10.1186/s13018-018-1018-4. [32] H. K. Genant et al., "Noninvasive assessment of bone mineral and structure: State of the art," Journal of Bone and Mineral Research, vol. 11, no. 6, pp. 707-730, 1996, doi: 10.1002/jbmr.5650110602. [33] P. Ammann and R. Rizzoli, "Bone strength and its determinants," Osteoporosis International, vol. 14, no. 3, pp. 13-18, 2003/03/01 2003, doi: 10.1007/s00198-002-1345-4. [34] C. Cefalu, "Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin," Current medical research and opinion, vol. 20, pp. 341-9, 04/01 2004, doi: 10.1185/030079903125003062. [35] L. D. Carbonare and S. Giannini, "Bone microarchitecture as an important determinant of bone strength," Journal of Endocrinological Investigation, vol. 27, no. 1, pp. 99-105, 2004/01/01 2004, doi: 10.1007/BF03350919. [36] T. Hopper, R. Meder, and J. Pope, "Comparison of high-resolution MRI, optical microscopy and SEM for quantitation of trabecular architecture in the rat femur," Magnetic resonance imaging, vol. 22, pp. 953-61, 10/01 2004, doi: 10.1016/j.mri.2004.02.008. [37] S. K. Maiti, L. J. Gibson, and M. F. Ashby, "Deformation and energy absorption diagrams for cellular solids," Acta Metallurgica, vol. 32, pp. 1963-1975, 1984. [38] A. M. Torres et al., "Bone-inspired microarchitectures achieve enhanced fatigue life," Proceedings of the National Academy of Sciences, vol. 116, no. 49, pp. 24457-24462, 2019, doi: doi:10.1073/pnas.1905814116. [39] X. S. Liu, P. Sajda, P. K. Saha, F. W. Wehrli, and X. E. Guo, "Quantification of the Roles of Trabecular Microarchitecture and Trabecular Type in Determining the Elastic Modulus of Human Trabecular Bone," (in eng), Journal of bone and mineral research, vol. 21, no. 10, pp. 1608-1617, 10 2006, doi: 10.1359/jbmr.060716. [40] D. Ulrich, B. van Rietbergen, A. Laib, and P. R̈uegsegger, "The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone," Bone, vol. 25, no. 1, pp. 55-60, 1999/07/01/ 1999, doi: https://doi.org/10.1016/S8756-3282(99)00098-8. [41] R. B. Cook and P. Zioupos, "The fracture toughness of cancellous bone," Journal of Biomechanics, vol. 42, no. 13, pp. 2054-2060, 2009/09/18/ 2009, doi: https://doi.org/10.1016/j.jbiomech.2009.06.001. [42] M. Launey, M. Buehler, and R. Ritchie, "On the Mechanistic Origins of Toughness in Bone," Annual Review of Materials Research, vol. 40, pp. 25-53, 07/02 2010, doi: 10.1146/annurev-matsci-070909-104427. [43] I. Giorgio, M. Spagnuolo, U. Andreaus, D. Scerrato, and A. M. Bersani, "In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials," Mathematics and Mechanics of Solids, vol. 26, no. 7, pp. 1074-1103, 2021, doi: 10.1177/1081286520978516. [44] D. Goss, C. A. Penick, A. Grishin, and D. Bhate, "Chapter SIX - Bio-inspired design and additive manufacturing of cellular materials," in Biomimicry for Aerospace, V. Shyam, M. Eggermont, and A. F. Hepp Eds.: Elsevier, 2022, pp. 141-185. [45] K. Liu and L. Jiang, "Multifunctional Integration: From Biological to Bio-Inspired Materials," ACS Nano, vol. 5, no. 9, pp. 6786-6790, 2011/09/27 2011, doi: 10.1021/nn203250y. [46] S. H. Siddique, P. J. Hazell, H. Wang, J. P. Escobedo, and A. A. H. Ameri, "Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – A review," Additive Manufacturing, vol. 58, p. 103051, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.addma.2022.103051. [47] A. Malshe, K. Rajurkar, A. Samant, H. Hansen, S. Bapat, and W. Jiang, "Bio-inspired functional surfaces for advanced applications," CIRP Annals - Manufacturing Technology, vol. 62, pp. 607–628, 12/31 2013, doi: 10.1016/j.cirp.2013.05.008. [48] E. Zarro, "Bio-inspired Product Design: The Study of Pinicola Shelves," 2014. [49] S. Wenda et al., "Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review," Coatings, vol. 11, p. 1297, 10/26 2021, doi: 10.3390/coatings11111297. [50] A. Poundarik and D. Vashishth, "Multiscale imaging of bone microdamage," Connective tissue research, vol. 56, pp. 1-12, 02/09 2015, doi: 10.3109/03008207.2015.1008133. [51] R. K. Nalla, J. H. Kinney, and R. O. Ritchie, "Mechanistic fracture criteria for the failure of human cortical bone," Nature Materials, vol. 2, no. 3, pp. 164-168, 2003/03/01 2003, doi: 10.1038/nmat832. [52] F. Libonati, G. Gu, Z. Qin, L. Vergani, and M. Buehler, "Bone-Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing," Advanced Engineering Materials, vol. 18, 05/01 2016, doi: 10.1002/adem.201600143. [53] C. Audibert, J. Chaves-Jacob, J.-M. Linares, and Q.-A. Lopez, "Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces," Materials & Design, vol. 160, pp. 708-717, 2018/12/15/ 2018, doi: https://doi.org/10.1016/j.matdes.2018.10.013. [54] M. J. Mirzaali, V. Mussi, P. Vena, F. Libonati, L. Vergani, and M. Strano, "Mimicking the loading adaptation of bone microstructure with aluminum foams," Materials & Design, vol. 126, pp. 207-218, 2017/07/15/ 2017, doi: https://doi.org/10.1016/j.matdes.2017.04.039. [55] N. Cadoret, J. Chaves-Jacob, and J.-M. Linares, "Structural additive manufacturing parts bio-inspired from trabecular bone form-function relationship," Materials & Design, vol. 231, p. 112029, 2023/07/01/ 2023, doi: https://doi.org/10.1016/j.matdes.2023.112029. [56] W. Nowinski, Combining axial, coronal, and sagittal MRI data (Medical Imaging 1994). SPIE, 1994. [57] R. M. Haralick, S. R. Sternberg, and X. Zhuang, "Image Analysis Using Mathematical Morphology," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532-550, 1987, doi: 10.1109/TPAMI.1987.4767941. [58] C. Bauckhage, NumPy / SciPy Recipes for Image Processing: Binary Images and Morphological Operations. 2017. [59] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979, doi: 10.1109/TSMC.1979.4310076. [60] Z. Liu, C. Zhao, X. Wu, and W. Chen, "An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors," Sensors, vol. 17, no. 3, p. 451, 2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/3/451. [61] G. Kibria and B. Bhattacharyya, "4 - Microelectrical discharge machining of Ti-6Al-4V: Implementation of innovative machining strategies," in Microfabrication and Precision Engineering, J. P. Davim Ed.: Woodhead Publishing, 2017, pp. 99-142. [62] W. Abu-Ain, S. N. H. S. Abdullah, B. Bataineh, T. Abu-Ain, and K. Omar, "Skeletonization Algorithm for Binary Images," Procedia Technology, vol. 11, pp. 704-709, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.protcy.2013.12.248. [63] A. Rosenfeld and J. Pfaltz, "Pfalz, J.L.: Sequential Operations in Digital Picture Processing. Journal of the ACM 13(4), 471-494," J. ACM, vol. 13, pp. 471-494, 10/01 1966, doi: 10.1145/321356.321357. [64] Y. Chiang, T.-W. Chiu, and S.-W. Chang, ImageMech: From image to particle spring network for mechanical characterization. 2022. [65] A. P. Thompson et al., "LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales," Computer Physics Communications, vol. 271, p. 108171, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.cpc.2021.108171. [66] R. Simard and P. L'Ecuyer, "Computing the Two-Sided Kolmogorov-Smirnov Distribution," Journal of Statistical Software, vol. 39, no. 11, pp. 1 - 18, 03/09 2011, doi: 10.18637/jss.v039.i11. [67] Y.-Y. Song and Y. Lu, "Decision tree methods: applications for classification and prediction," Shanghai archives of psychiatry, vol. 27, pp. 130-5, 04/25 2015, doi: 10.11919/j.issn.1002-0829.215044. [68] B. Jijo and A. Mohsin Abdulazeez, "Classification Based on Decision Tree Algorithm for Machine Learning," Journal of Applied Science and Technology Trends, vol. 2, pp. 20-28, 01/01 2021. [69] Y. Izza, A. Ignatiev, and J. Marques-Silva, "On Explaining Decision Trees," p. arXiv:2010.11034doi: 10.48550/arXiv.2010.11034. [70] J. R. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, no. 1, pp. 81-106, 1986/03/01 1986, doi: 10.1007/BF00116251. [71] S. Aning and M. Przybyła-Kasperek, "Comparative Study of Twoing and Entropy Criterion for Decision Tree Classification of Dispersed Data," Procedia Computer Science, vol. 207, pp. 2434-2443, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.procs.2022.09.301. [72] P. Gulati, A. Sharma, and M. Gupta, "Theoretical Study of Decision Tree Algorithms to Identify Pivotal Factors for Performance Improvement: A Review," International Journal of Computer Applications, vol. 141, pp. 19-25, 05/17 2016, doi: 10.5120/ijca2016909926. [73] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001/10/01 2001, doi: 10.1023/A:1010933404324. [74] H. Pang et al., "Pathway analysis using random forests classification and regression," Bioinformatics, vol. 22, no. 16, pp. 2028-2036, 2006, doi: 10.1093/bioinformatics/btl344. [75] K. Fawagreh, M. M. Gaber, and E. Elyan, "Random forests: from early developments to recent advancements," Systems Science & Control Engineering, vol. 2, no. 1, pp. 602-609, 2014/12/01 2014, doi: 10.1080/21642583.2014.956265. [76] L. I. Kuncheva and C. J. Whitaker, "Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy," Machine Learning, vol. 51, no. 2, pp. 181-207, 2003/05/01 2003, doi: 10.1023/A:1022859003006. [77] T.-H. Lee, A. Ullah, and R. Wang, "Bootstrap Aggregating and Random Forest," 2020, pp. 389-429. [78] C. N. Nguyen, Y. Wang, and H.-N. Nguyen, "Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic," Journal of Biomedical Science and Engineering, vol. 2013, pp. 551-560, 2013. [79] Y. Liu, Y. Wang, and J. Zhang, "New Machine Learning Algorithm: Random Forest," in Information Computing and Applications, Berlin, Heidelberg, B. Liu, M. Ma, and J. Chang, Eds., 2012// 2012: Springer Berlin Heidelberg, pp. 246-252. [80] A. Kulkarni, D. Chong, and F. A. Batarseh, "Foundations of data imbalance and solutions for a data democracy," p. arXiv:2108.00071doi: 10.48550/arXiv.2108.00071. [81] I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, "Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem," Technologies, vol. 9, no. 4, p. 81, 2021. [Online]. Available: https://www.mdpi.com/2227-7080/9/4/81. [82] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, "Permutation importance: a corrected feature importance measure," Bioinformatics, vol. 26, no. 10, pp. 1340-1347, 2010, doi: 10.1093/bioinformatics/btq134. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95658 | - |
| dc.description.abstract | 隨著工業技術的推移與發展,材料設計對於產業需求與日俱增。現今材料追求兼顧強度與韌性,並且具備輕量化的特性,然而人工材料的發展限制導致無法因應此需求。因此,藉由效仿自然界中來自不同生物所帶來的特殊結構與優異的力學特性,使得仿生材料成為眾多研究者設法突破人工材料劣勢的設計對象。為了生存於特殊的環境,不同生活習性的生物體內中演化出不同的骨骼結構,也發展出相異的機械性能。來自不同物種的骨骼提供了多樣化的結構材料設計參考,擴展材料設計空間,因此本研究啟發自骨骼的微結構,透過微結構的拓樸排列所形成複合材料,探討此複合材料具備的高韌性材料性質。
本研究的骨骼微結構來自袋鼠科及偶蹄目兩種分群,共四個物種的股骨。股骨屬於後肢的大腿骨之一,本研究微觀上特別關注骨小樑結構。袋鼠科與偶蹄目具有不同的運動行為,前者常以後肢帶動大幅度的跳躍,前肢不參與跳躍,後者則在奔跑前後肢以同等力量著地,該兩者分群的運動行為是否能夠為啟發自骨骼微結構的複合材料帶來高韌性的力學優勢,以及該高韌性分群所具備的幾何性質,是本研究的探討對象之一。本研究利用電腦斷層掃描影像以及圖像處理演算法,取得骨骼的微結構單元。在幾何特徵方面,藉由提取圖像特徵的計算方法,可得骨骼微結構的孔隙率、骨小樑厚度、孔洞大小等。在力學行為上,使用二維三角晶格彈簧模型預測參考骨骼微結構拓樸形式的複合材料的破壞力學行為,探討高韌性的複合材料。 本研究發現不同分群或物種的骨骼微結構皆具有廣闊的幾何特徵分布,帶來廣大的設計空間,也反映在力學性質的多樣性。在力學性質上,來自紅頸袋鼠(袋鼠科)骨頭微結構的複合材料具有最高的楊氏模數、極限強度和韌性,而偶蹄目並未發現擁有較高的力學性質。以機器學習模型輔助進行分群及物種的分類,對於幾何特徵,騮毛小羚羊(偶蹄目)和紅頸袋鼠(袋鼠科)最能夠展現幾何特徵上的差異,對於具最高韌性的紅頸袋鼠(袋鼠科),具備較低骨小樑角度和較高平均骨小樑厚度。除此之外,亦運用主成分分析將幾何特徵進行正交轉換,再以相同方式進行分類,結果也是騮毛小羚羊(偶蹄目)和紅頸袋鼠(袋鼠科)最能夠在主成分的分布上觀察到此差異。本研究亦使用機器學習模型釐清幾何特徵與力學性質的關係。平均骨小樑角度會同時顯著影響楊氏模數、極限強度和韌性,而平均孔洞大小和孔隙率主要影響楊氏模數,極限強度和韌性主要受骨小樑角度和孔洞凸殼面積的標準差影響。針對韌性,三者最為有影響力的幾何特徵與韌性皆呈中度負相關。透過上述方法,可幫助了解以骨骼微結構為啟發複合材料的設計空間,以及從中發掘優異的力學性質。 | zh_TW |
| dc.description.abstract | Modern materials are now expected to balance strength and toughness while being lightweight. However, the development of artificial materials faces limitations that hinder meeting these requirements. Thus, researchers are seeking to biomimetic materials, which exhibit excellent mechanical properties found in unique structures. Different animals have evolved different skeletal structures to survive in different environments, providing design insights for structural material. Therefore, this thesis explores composite materials inspired by bone microstructures.
This study focuses on the microstructures of femurs from four species within Macropodiformes and Atiodactyla. These two clades exhibit different locomotion behaviors: Macropodiformes primarily use hindlimbs for hopping, with forelimbs not involved in hopping, while Artiodactyla distribute their loading evenly on both forelimbs and hindlimbs. This study investigates whether the locomotive behaviors of these two groups can inspire the design of composite materials with high toughness derived from bone microstructure, and examines the geometric features that characterize the high toughness in these groups. Bone microstructures were obtained using X-ray microtomographic imaging and image processing algorithms. Geometric features such as porosity, trabecular thickness, and pore size were calculated using image feature extraction methods. The mechanical behavior and failure mechanisms of composite materials, based on the topology of bone microstructures, were predicted using a lattice spring model. In this study, we found that the bone microstructures of different clades or species exhibit a wide range of geometric features, providing extensive design space and reflecting a diversity of mechanical properties. Bennetts wallaby showed the highest Young's modulus, ultimate strength, and toughness, while Artiodactyla did not exhibit higher mechanical properties. Machine learning models were employed to classify clades and species based on geometric features. Bay duiker (Artiodactyla) and Bennetts wallaby (Macropodiformes) showed the most significant differences in average trabecular angle and thickness. For the group of Bennetts wallaby, which exhibits the highest toughness, a lower trabecular angle and a higher average trabecular thickness are observed. Principal component analysis was also used to orthogonally transform geometric features, with similar classification results showing differences in the distribution of principal components between the two species. Machine learning models were also used to evaluate the relationship between geometric features and mechanical properties. The average trabecular angle strongly influenced Young's modulus, ultimate strength, and toughness. For toughness, the three most influential geometric features and toughness were moderately negatively correlated. This approach allows us to be able to understand the design space inspired by bone microstructures and identify excellent mechanical properties. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:39:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:39:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures viii List of Tables xviii 1. Introduction 1 1.1 Background 1 1.2 Objectives 3 1.3 Organization of the thesis 4 2. Literature review 5 2.1 Overview of the bones 5 2.2 Relationships of geometric parameters to mechanical properties of bone microstructures 8 2.3 Bone-inspired structural materials 10 3. Methodology 13 3.1 Dataset for bone microstructures 13 3.1.1 X-Ray microtomographic image processing 13 3.1.2 Bone microstructures generation 18 3.1.3 Geometric analysis 19 3.2 Dataset for simulation 23 3.2.1 Computational simulation 23 3.2.2 Sampling method for dataset for simulation 25 3.3 Machine learning approaches 26 3.3.1 Decision tree for classification problems 26 3.3.2 Random forest for regression problems 28 3.3.3 Performance metrics 30 3.3.4 Feature importance 32 4. Difference and high toughness of composite inspired by bone microstructures 33 4.1 Distributions of dataset 33 4.1.1 Bone microstructures dataset 33 4.1.2 Subset of bone microstructures used for simulation 42 4.2 High toughness in composites inspired by bone microstructures 46 4.3 Classification by geometric features 56 4.4 Classification by principal components transformed from geometric features 65 4.5 Summery 71 5. Relationship between geometric features and toughness 74 5.1 Regression for mechanical properties by geometric features 74 5.2 Relationship of geometric features and toughness 82 5.3 Stress distribution in high toughness composites and their geometric features 87 5.4 Summery 90 6. Conclusions and future work 91 6.1 Conclusions 91 6.2 Future work 93 Reference 94 | - |
| dc.language.iso | en | - |
| dc.subject | 仿生設計 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 二維三角晶格彈簧模型 | zh_TW |
| dc.subject | 幾何特徵 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 骨骼微結構 | zh_TW |
| dc.subject | geometric features | en |
| dc.subject | composite materials | en |
| dc.subject | bioinspired design | en |
| dc.subject | bone microstructure | en |
| dc.subject | machine learning | en |
| dc.subject | lattice spring model | en |
| dc.title | 以電腦模擬計算骨骼微結構為啟發的高韌性複合材料 | zh_TW |
| dc.title | High toughness composites inspired by bone microstructures using computational simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳俊杉;陳柏宇;陳幼良;周佳靚 | zh_TW |
| dc.contributor.oralexamcommittee | Chuin-Shan Chen;Po-Yu Chen;Yu-Liang Chen;Chia-Ching Chou | en |
| dc.subject.keyword | 骨骼微結構,仿生設計,複合材料,幾何特徵,二維三角晶格彈簧模型,機器學習, | zh_TW |
| dc.subject.keyword | bone microstructure,bioinspired design,composite materials,geometric features,lattice spring model,machine learning, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202404057 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 14.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
