Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧南佑zh_TW
dc.contributor.advisorNan-You Luen
dc.contributor.author薛仲評zh_TW
dc.contributor.authorChung-Ping Hsuehen
dc.date.accessioned2024-09-15T16:31:33Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-11-
dc.identifier.citationGWEC Global Wind Report 2024. (2024): Global Wind Energy Council.
鄭錦榮. (2010). 研習風力發電機組葉片防振與劣化量測監控技術: 台灣電力公司綜合研究所.
柯旻佑. (2023). 應用WRF與LES耦合模型分析真實颱風邊界層中之風場特性. 國立臺灣大學機械工程學系碩士學位論文.
Roshko, A. (1954). On the drag and shedding frequency of two-dimensional bluff bodies.
Nakamura, Y., & Matsukawa, T. (1987). Vortex excitation of rectangular cylinders with a long side normal to the flow. Journal of Fluid Mechanics, 180, 171-191.
Yarusevych, S., Sullivan, P. E., & Kawall, J. G. (2009). On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245-271. doi: 10.1017/s0022112009007058
孔忠煦. (2020). 利用晶格波茲曼法結合壓電平板理論研究流固耦合下的壓電振動能量擷取系統. 國立臺灣大學機械工程學系碩士學位論文.
台灣電力公司. Retrieved 06/12, 2024, from https://www.taipower.com.tw
Pozarlik, A. K., & Kok, J. B. (2007). Numerical investigation of one-and two-way fluid-structure interaction in combustion systems. Paper presented at the International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2007.
Izhar, A., Qureshi, A. H., & Khushnood, S. (2017). Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver. China Ocean Engineering, 31(1), 79-90. doi: 10.1007/s13344-017-0010-9
Grøstad, Y. (2019). Fluid-Structure Interaction Study of Vortex-Induced Vibration in Thermowells. Norwegian University of Science and Technology.
Han, X., Lin, W., Tang, Y., Zhao, C., & Sammut, K. (2015). Effects of natural frequency ratio on vortex-induced vibration of a cylindrical structure. Computers & Fluids, 110, 62-76. doi: 10.1016/j.compfluid.2014.12.022
Sharma, D. (2020). CFD Simulation of Vortex-Induced Vibration of Ice Accreted Stay Cable Using ANSYS-Fluent. The University of Toledo.
al, B. D. e. (2016). Fluid-struct coupled computations of NREL 5MW WT blade during standstill. Journal of Physics: Conference Series.
Jonkman, G. B. a. J. (2007). Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines.
Hayat, K., de Lecea, A. G. M., Moriones, C. D., & Ha, S. K. (2016). Flutter performance of bend–twist coupled large-scale wind turbine blades. Journal of Sound and Vibration, 370, 149-162. doi: 10.1016/j.jsv.2016.01.032
張新榃, 楊超, & 吳志剛. (2014). 基於大變形梁模型的風力機葉片氣動彈性分析. 北京航空航天大學學報
Larsen, J. W., & Nielsen, S. R. K. (2006). Non-linear dynamics of wind turbine wings. International Journal of Non-Linear Mechanics, 41(5), 629-643. doi: 10.1016/j.ijnonlinmec.2006.01.003
Hansen, B. S. K. a. M. H. (2009). Some effects of large blade deflections on aeroelastic.
Gantasala, S., Tabatabaei, N., Cervantes, M., & Aidanpää, J.-O. (2019). Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades. Energies, 12(12). doi: 10.3390/en12122422
張鈞齊. (2022). 5 MW風機葉片於不同風速之流固耦合模擬及結構失效分析. 國立臺北科技大學製造科技研究所碩士學位論文.
Heinz, J. C., Sørensen, N. N., Zahle, F., & Skrzypiński, W. (2016). Vortex-induced vibrations on a modern wind turbine blade. Wind Energy, 19(11), 2041-2051. doi: 10.1002/we.1967
Kooijman, H., Lindenburg, C., Winkelaar, D., & Van der Hooft, E. (2003). DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS. DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports.
Bourguet, R., Karniadakis, G. E., & Triantafyllou, M. S. (2011). Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. Journal of Fluids and Structures, 27(5-6), 838-847. doi: 10.1016/j.jfluidstructs.2011.03.008
王彬, & 楊慶山. (2008). 弱耦合算法的實現及其應用. 工 程 力 學, 第 25 卷第 12 期.
香港機電工程署. Retrieved 03/12, 2024, from https://www.emsd.gov.hk
Çıtakoğlu, F. Retrieved 06/25, 2024, from https://www.linkedin.com/pulse
Shukla, D. (2018). WIND ENERGY & ITS OPTIMISATION.
Kasem, M. A. M. (2020). Aerodynamic Structural and Aeroelastic Design of Wind Turbine Blades.
Joustra, J., Flipsen, B., & Balkenende, R. (2021). Structural reuse of wind turbine blades through segmentation. Composites Part C: Open Access, 5. doi: 10.1016/j.jcomc.2021.100137
KEBA. Retrieved 7/31, 2024, from https://www.keba.com/
Lesics. Retrieved 07/05, 2024, from https://www.lesics.com
Gaiasol. Retrieved 07/05, 2024, from https://gaiasol.org
J. Jonkman, S. B., W. Musial, and G. Scott. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development.
Irvine, T. (2009). KARMAN VORTEX SHEDDING AND THE STROUHAL NUMBER.
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605.
Ansys Fluent Theory Guide. (2021). ANSYS, Inc.
宋學官, 蔡林, & 張華. ANSYS 流固耦合分析與工程實例.
Naseri, A., Totounferoush, A., González, I., Mehl, M., & Pérez-Segarra, C. D. (2020). A scalable framework for the partitioned solution of fluid–structure interaction problems. Computational Mechanics, 66(2), 471-489. doi: 10.1007/s00466-020-01860-y
RAJA, R. S. (2012). Coupled fluid structure interaction analysis on a cylinder exposed to ocean wave loading. CHALMERS UNIVERSITY OF TECHNOLOGY.
Izhar, A. B., Qureshi, A. H., & Khushnood, S. (2014). Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX. China Ocean Engineering, 28(4), 541-556. doi: 10.1007/s13344-014-0044-1
Jean Donea, A. H., J.-Ph. Ponthot and, & Rodr´ıguez-Ferran, A. (2004). Arbitrary Lagrangian–Eulerian Methods The Encyclopedia of Computational Mechanics, Wiley (Vol. 1, pp. 413-437).
Ali, A., De Risi, R., & Sextos, A. (2021). Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling? Soil Dynamics and Earthquake Engineering, 141. doi: 10.1016/j.soildyn.2020.106483
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95652-
dc.description.abstract風力發電近年快速增長使的全球各地增加了大量的風機設施及裝置,而風力機葉片常由柔韌的複合材料製成,並需面對複雜風況對其結構強度與疲勞的考驗,本研究使用Ansys多物理工程模擬軟體探討渦流及葉片的流場與雙向流固耦合關係。本文研究首先透過Ansys Fluid Flow(Fluent)進行流場之架設與模擬,並加入Ansys Transient Structural做為固體之運算模組以及System Coupling模組構建雙向流固耦合之模擬,通過三種不同流速驗證渦流誘發振動帶動短葉片之鎖定(lock-in)效應,並針對葉片入流的攻角所造成之影響進行呈現。模擬結果顯示在流場分析中,渦流逸散頻率與理論值比較誤差極小,並且在雙向流固耦合運算中,成功重現渦流誘發振動引起的鎖定現象,得出如共振般持續放大的週期性位移,也重現了不同入流攻角下的渦流逸散與渦流誘發振動現象,在10 m/s流速下僅在入流接近垂直時觀察到鎖定現象,而渦流逸散現象在葉片和入流方向夾角超過 的範圍較為顯著,在入流方向與葉片接近平行時則會減弱甚至消失。然而本文的設定從入流設定到模型架設皆進行了一定程度的簡化以在現今的設備下順利進行研究,若能擴增運算資源或結合如大數據及人工智慧等技術,研究主題將能進一步深化並有更廣泛的應用。zh_TW
dc.description.abstractThe rapid growth of wind power generation in recent years has led to the installation of numerous wind turbine facilities worldwide. Wind turbine blades are typically made of flexible composite materials and must withstand complex wind conditions caused by external environmental factors such as weather, wind direction, and rotation, which pose challenges to their structural strength and fatigue. This study uses Ansys multiphysics simulation software to investigate vortices at smaller scales and the fluid-structure interaction (FSI) of wind turbine blades. The study first uses Ansys Fluid Flow (Fluent) to set up and simulate the flow field, incorporates Ansys Transient Structural for solid computation, and employs the System Coupling module to construct a 2-way FSI simulation. Three different flow speeds are tested to validate the lock-in phenomenon induced by vortex-induced vibrations on short blades, and the impact of the blade's angle of attack on inflow is presented. The simulation results show that the vortex shedding frequency in the flow field analysis matches the theoretical values. The 2-way FSI simulation successfully recreated the lock-in phenomenon caused by vortex-induced vibrations, resulting in periodic displacements akin to resonance. Different inflow angles also influenced vortex shedding and induced vibrations, with lock-in observed only when the inflow was nearly perpendicular at a flow speed of 10 m/s, and the vortex shedding phenomenon is more pronounced when the angle between the blade and the inflow direction exceeds , while it weakens or even disappears when the inflow direction is nearly parallel to the blade.. However, the study's setup involved some simplifications to proceed with current resources. Expanding computational resources or integrating big data and artificial intelligence technologies could further deepen the research and broaden its applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:31:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:31:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vi
表次 ix
縮寫表 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 名詞與背景介紹 5
1.3.1 風機簡介 5
1.3.2 風機葉片簡介 5
1.3.3 翼形簡介 5
1.3.4 風機的俯仰控制 6
1.3.5 卡門渦流 7
1.3.6 渦流誘發振動 7
1.3.7 流固耦合 8
1.4 論文架構 8
第二章 研究背景與方法 18
2.1 流固耦合模型 18
2.1.1 流場計算方法 18
2.1.2 結構動力計算方法 21
2.1.3 耦合方法 22
2.1.4 模擬設定 23
2.2 模擬流程 26
第三章 固定葉片流場模擬 37
3.1 流場模擬結果 37
3.2 流場等值線圖 39
第四章 雙向流固耦合模擬 46
4.1 不同流速下之模擬情形 46
4.2 不同攻角下之模擬情形 47
第五章 結論與建議 66
5.1 成果與討論 66
5.2 未來展望 66
參考文獻 68
-
dc.language.isozh_TW-
dc.title以流固耦合模擬探討風機葉片之渦流誘發振動zh_TW
dc.titleInvestigation of Vortex-Induced Vibration in Wind Turbine Blades Using Fluid-Structure Interaction Simulationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳亦莊;王建凱;陳韋任zh_TW
dc.contributor.oralexamcommitteeYi-Zhuang Wu;Chien-Kai Wang;Wei-Jen Chenen
dc.subject.keyword風機葉片,渦流誘發振動,鎖定現象,雙向流固耦合,zh_TW
dc.subject.keywordturbine blade,vortex induced vibration,lock-in phenomenon,2-way FSI,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202404140-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-08-09-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
11.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved