請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 蘇恆 | zh_TW |
| dc.contributor.author | Heng Su | en |
| dc.date.accessioned | 2024-09-15T16:18:36Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | "The Taiwan Wind Energy Assessment Manual," Green Energy & Environment Research Laboratories ITRI, 2011.
"Global Wind Report 2023," GWEC, 2023. A. Myhr, C. Bjerkseter, A. Ågotnes, and T. A. Nygaard, "Levelised Cost of Energy for Offshore Floating Wind Turbines in a Life Cycle Perspective," Renewable Energy, vol. 66, pp. 714-728, 2014. M. J. Kaiser and B. Snyder, "Offshore Wind Energy Installation and Decommissioning Cost Estimation in the U.S. Outer Continental Shelf," Energy Research Group, LLC, 2010. Z. Tian and Y. Zhang, "Numerical Estimation of the Typhoon-Induced Wind and Wave Fields in Taiwan Strait," Ocean Engineering, vol. 239, no. 9, 2021. A. Otter, J. Murphy, V. Pakrashi, A. Robertson, and C. Desmond, "A Review of Modelling Techniques for Floating Offshore Windturbines," Wind Energy, vol. 25, no. 5, pp. 831-857, 2021. C. Clement, S. Kosleck, and T. Lie, "Investigation of Viscous Damping Effect on the Coupled Dynamic Response of a Hybrid Floating Platform Concept for Offshore A. Nematbakhsh, E. E. Bachynski, Z. Gao, and T. Moan, "Comparison of Wave Load Effects on a TLP Wind Turbine by using Computational Fluid Dynamics and Potential Flow Theory Approaches," Applied Ocean Research, vol. 53, pp. 142-154, 2015. H. Chen, Q. Xu, X. Zheng, L. G. Bennetts, B. Xie, Z. Lin, Z. Lin,and Y. Li, "Viscous Effects on the Added mass and Damping Forces during free Heave Decay of a Floating Cylinder with a Hemispherical Bottom," European Journal of Mechanics - B/Fluids, vol. 98, pp. 8-20, 2023. K. H. Jung, K. A. Chang, and H. J. Jo, "Viscous Effect on the Roll Motion of a Rectangular Structure," Engineering Mechanics, vol. 132, no. 2, pp. 190-200, 2006. M. Kim, K. H. Jung, S. Park, S. B. Suh, I. R. Park, J. Kim,and K. S. Kim, "Experimental Study on Viscous Effect in Roll and Heave Motions of a Rectangular Structure," Ocean Engineering, vol. 171, no. 4, pp. 250-258, 2019. A. J. Coulling, A. J. Goupee, A. N. Robertson, J. M. Jonkman, H. J. Dagher, "Validation of a FAST Semi-Submersible Floating Wind Turbine Numerical Model with DeepCwind Test Data," Renewable and Sustainable Energy, vol. 52, no. 2, 2013. C. Y. Chen, "Comparative Study on Semi-Submersible Floating Platforms for Offshore Wind in Taiwan Strait," M.S. thesis, Dept. Engineering Sicience and Ocean Engineering, National Taiwan University, 2020. H. Y. Tong, "Normal Operating Performance Study of a 15 MW Floating Wind Turbine System Using Semi-Submersible TaidaFloat Platform in the Hsinchu Offshore Area," M.S. thesis, Dept. Engineering Sicience and Ocean Engineering, National Taiwan University, 2022. Y. S. Cai, "Normal Operating and Extreme Condition Performance Study of 15MW Floating Wind Turbine System Using Semi-Submersible Taida Floating Platform with 3×2 and 3×3 Mooring Design in the Hsinchu Offshore Area," M.S. thesis, Dept. Engineering Sicience and Ocean Engineering, National Taiwan University, 2023. J. J. Hong, "Performance Prediction of a Disk-Type Semi-Submersible Floating Platform in Taiwan Strait," M.S. thesis, Dept. Engineering Sicience and Ocean Engineering, National Taiwan University, 2022. C. L. Kuo, "Comparative Study of Three Semi-Submersible Platform Designs on Normal Operating Performance of 13.2 MW Floating Wind Turbine in the Hsinchu Offshore Area," M.S. thesis, Dept. Engineering Sicience and Ocean Engineering, National Taiwan University, 2022. OrcaFlex Documentation Version 11.4a, Orcina, 2023. W. E. Cummins, The Impulse Response Function and Ship Motions, Department of the Navy, David Taylor Model Basin, 1962. Aqwa Theory Manual, Ansys, 2024. J. N. Newman, "The Theory of Ship Motions," Advances in Applied Mechanics, vol. 18, pp. 221-283, 1979. F. R. Menter, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. F. N. Fritsch and J. Butland, "A Method for Constructing Local Monotone Piecewise Cubic in Interpolants," SIAM Journal, vol. 5, no. 2, pp. 300-305, 1984. S. A. Ning, G. Hayman, R. Damiani, and J. Jonkman, "Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn," in Wind Energy Aerodynamics and Aeroacoustics, 2015. W. Z. Shen, R. Mikkelsen and J. N. Sørensen, "Tip Loss Corrections for Wind Turbine Computations," Wind Energy, vol. 8, no. 4, pp. 457-475, 2005. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 1997. M. H. Hansen, A. Hansen, T. J. Larsen, S. Øye, P. Sørensen and P. Fuglsang, Control Design for a Pitch-Regulated, Variable Speed Wind Turbine, Risø National Laboratory, 2005. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," National Renewable Energy Laboratory, 2009. D. T. Griffith and T. D. Ashwill, "The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00," Sandia National Laboratories, 2011. B. E. Watsamon Sahasakkul, "Development of a Model for an Offshore Wind Turbine Supported by a Moored Semi-Submersible Platform," M.S. thesis, Dept. Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 2014. J. Liu, E. Thomas, L. Manuel, D. T. Griffith, K. M. Ruehl and M. Barone, "Integrated System Design for a Large Wind Turbine Supported on a Moored Semi- Submersible Platform," Journal of Marine Science and Engineering, vol. 6, no. 9, 2018. F. Vorpahl, W. Popko and D. Kaufer, "Description of a basic model of the "UpWind reference jacket" for code comparison in the OC4 project under IEA Wind Annex XXX," Institute for Wind Energy and Energy System, 2011. D. T. Griffith, "The SNL100-02 Blade: Advanced Core Material Design Studies for the Sandia 100- meter Blade," Sandia National Laboratories, 2013. K. G. Vijay, D. Karmakar, Emre Uzunoglu and C. Guedes Soares, "Performance of Barge-Type Floaters for Floating Wind Turbine," in Progress in Renewable Energies Offshore, Taylor & Francis Group, 2016, pp. 637 - 645. A. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, A. Coulling and C. Luan, "Definition of the Semisubmersible Floating System for Phase II of OC4," National Renewable Energy Laboratory, 2014. C. A. Chen, K. H. Chen, Y. Igarashi, D. Chen, K. T. Ma and Z. Y. Lai, "Design of Mooring Sysyem for a 15MW Semi-Submersible, Taidafloat, in Taiwan Strait," in OMAE, 2023. Position Mooring, DNVGL-OS-E301, DNVGL, 2018. "Data Buoy Observation Data Annual Report 2015-2021," Central Weather Bureau, 2015-2021. I. J. Hsu, G. Ivanov, K. T. Ma, Z. Z. Huang, H. T. Wu, Y. T. Huang and M. Chou, "Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines," in OMAE, 2022. "Manual on Codes," in WMO Technical Regulations, vol. 1, World Meteorological Organization, 2019. R. M. Isherwood, "A Revised Parameterisation of the Jonswap Spectrum," Applied Ocean Research, vol. 9, no. 1, pp. 47-50, 1987. T. C. Chuang and R. Y. Yang, "Experimental and Numerical Study of a Barge-Type FOWT Platform under Wind and Wave Load," Ocean Engineering, vol. 230, 2021. Recommended Practice for Planning, Designing and Constructing Fixed Offshored Platforms - Working Stress Design, American Petroleum Institute, 1993. Wind Energy Generation Systems Part1: Design Requirements, IEC 61400-1, Norwegian Electrotechnical, 2019. T. Y. Lin, C. Y. Yang, S. W. Chau and J. S. Kouh, "Dynamic Amplification of Gust- Induced Aerodynamic Loads Acting on a Wind Turbine during Typhoons in Taiwan," Marine Science and Engineering, vol. 9, no. 4, pp. 352-369, 2021. P. H. Lin, C. T. Tu, "The Characteristics of Gust Wind at Western Coast of Taiwan During Typhoon Weather Condition," in Taiwan Wind Energy Conference, 2010. G. Marsh, C. Wignall, P. R. Thies, N. Barltrop, A. Incecik, V. Venugopal and L. Johanning, "Review and Application of Rainflow Residue Processing Techniques for Accurate Fatigue Damage Estimation," International Journal of Fatigue, vol. 82, pp. 757-765, 2016. Coupled Analysis of Floating Wind Turbines, DNVGL-RP-0286, DNVGL, 2019. Floating Production Installations, ABS, 2014. M. Ikhennicheu, M. Lynch, S. Doole, F. Borisade, D. Matha, J. L. Dominguez, R. D. Vicente, T. Habekost, L.Ramirez, S. Potestio, C. Molins and P. Trubat, Review of the State of the Art of Mooring and Anchoring Designs, Technical Challenges and Identification of Relevant DLCs, Corewind, 2020. Y. Zhou, Q. Xiao, C. Peyrard, and G. Pan, "Assessing Focused Wave Applicability on a Coupled Aero-Hydro-Mooring FOWT System using CFD Approach," Ocean Engineering, vol. 240, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95649 | - |
| dc.description.abstract | 本研究探討流體黏性對半潛式浮式風機系統性能的影響,分析三種半潛式浮 式風機系統(圓碟型、駁船型及圓柱型)在四種系統佈置方向(15°、45°、75°及 105°)下的性能表現,模擬場址為新竹外海,模擬條件包括額定風速條件(RC)、50 年回歸期風速條件(50C)及長期條件(LTC)。三種半潛式浮式風機皆為 35875 噸,搭 載 SNL 13.2 MW 風機,使用 3×3 繫纜系統。ANSYS AQWA 用於預測忽略流體黏 性的水動力特性,STAR-CCM+用於預測考慮黏性效應的水動力特性,ORCAFLEX 用於預測繫纜受力和葉片空氣動力,以及求解運動方程式獲得運動響應、發電機功 率及纜繩張力。假設波向和風向相同,風和浪分別以 API 風譜及 JONSWAP 波譜 描述,預測 RC(示性波高 1.7m、零上切週期 5.5s)、50C(示性波高 12.72m、零 上切週期 8.83s)及 LTC 在四個風向(45°、135°、225°及 315°)下浮式風機各項性 能,其中長期條件是基於新竹外海 2015 至 2021 年的統計結果。本研究結果顯示, 圓碟型浮式風機在 RC 下的最大傾角及平均傾角超過限制值,駁船型在 50C 下的 最大偏移量及纜繩張力超過限制值。圓柱型浮式風機在系統佈置為 105°時為最佳 設計,發電機容量因子 0.446,九條纜繩最大損傷為限制損傷的 26.97%。流體黏性 對性能標準差影響最大,對性能平均值影響最小。流體黏性對發電機容量因子影響 極小,最大差異僅 0.227%,駁船型浮式風機容量因子最大,圓柱型次之,圓碟型 最小,分別為理論容量因子的 98.08%、95.98%及 94.58%。流體黏性對纜繩疲勞損 傷影響顯著,差異在-35.70%至-63.42%之間,九條纜繩最大損傷以駁船型浮式風機 最小,圓柱型次之,圓碟型最大,分別為限制損傷量的 17.14%、26.97%及 97.47%。 | zh_TW |
| dc.description.abstract | This study investigates the impact of fluid viscosity on the performance of semi- submersible floating offshore wind turbine (FOWT) systems. Three types of semi- submersible floating platform (disk-, barge-, and column-type) are investigated in the Hsinchu offshore area under four system arrangement directions (15°, 45°, 75°, and 105°) and three simulation conditions: rated wind speed (RC), 50-year return period wind speed (50C), and long-term (LTC). The studied FOWTs all have a mass of 35,875 ton, a 3×3 mooring system, and an SNL 13.2-MW wind turbine. The hydrodynamic properties without fluid viscosity are predicted using AQWA based on potential flow theory, while the hydrodynamic properties considering viscous effects are predicted using STAR- CCM+. ORCAFLEX is employed to predict the mooring system forces and blade aerodynamics of the FOWT system and to solve the motion equations for obtaining the motion response, generator power, and mooring line tension. Assuming that the waves align with the wind direction, the wind and waves are described using the API wind spectrum and JONSWAP wave spectrum, respectively. Predictions are made for the performance evaluation of the FOWT system using a significant wave height of 1.7 m and a zero-up-crossing period of 5.5 s in the RC scenario, a significant wave height of 12.72 m and a zero-up-crossing period of 8.83 s in the 50C scenario, and four wind directions (45°, 135°, 225°, and 315°) in the LTC scenario. The LTC scenario is analyzed based on the statistical results from the Hsinchu offshore area from 2015 to 2021. The results indicate that the disk-type FOWT exceeds tilt angle limits under RC scenario. Under 50C scenario, the barge-type FOWT exceeds limits for maximum offset and mooring line tension. The column-type FOWT, with a system arrangement of 105°, is identified as the optimal design, where its capacity factor is 0.446 and the maximum damage is 26.97% of the allowable damage. The effect of viscosity is most pronounced on the standard deviation of performance metrics, particularly affecting the disk-type FOWT under RC scenario and the barge-type the under 50C scenario. The capacity factor is limited affected by viscosity, with a maximum difference of only 0.227% . The barge-type FOWT has the highest capacity factor (98.08%), followed by the column-type (95.98%) and disk-type ones (94.58%). The viscosity significantly impacts mooring line fatigue damage, with differences ranging from - 35.70% to -63.42%. The barge-type FOWT shows the least damage, followed by the column-type and disk-type ones, with damages of 17.14%, 26.97%, and 97.47% of the allowable damage, respectively. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:18:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:18:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract I
摘要 III Nomenclature VI List of Figures XIII List of Tables XIX 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 2 Numerical Methods 6 2.1 Numerical Framework 6 2.2 Potential Flow Modeling 7 2.3 Viscous Flow Modeling 14 2.3.1 Governing Equations 14 2.3.2 Turbulence Model 16 2.3.3 Volume of Fluids Method 18 2.3.4 Simulation Setup 20 2.3.5 Calculation of the Hydrodynamic Properties 23 2.4 Aerodynamic Modeling 26 2.5 Wind Turbine Control System Modeling 31 2.5.1 Low-Pass Filter 31 2.5.2 Generator-Torque Controller 32 2.5.3 Blade-Pitch Controller 33 2.6 Mooring Line Modeling 36 3 Floating Offshore Wind Turbine System 39 3.1 Wind Turbine Design 39 3.2 Platform Design 44 3.3 Mooring System Design 46 4 Simulation Conditions 49 4.1 Metocean Conditions 49 4.1.1 Wave Conditions 51 4.1.2 Wind Conditions 54 4.2 Case Descriptions 57 5 Design Requirements 66 6 Verification 68 7 Simulation Results 72 7.1 Hydrodynamic Properties 72 7.2 Load Response Amplitude Operators 78 7.3 Rated Wind Speed Condition 86 7.3.1 Motion Response 86 7.3.2 Generator Power 104 7.3.3 Mooring Line Tension 108 7.3.4 Summary 113 7.4 50-Year Return Period Wind Speed Condition 119 7.4.1 Motion Response 119 7.4.2 Mooring Line Tension 137 7.4.3 Summary 142 7.5 Long-Term Condition 146 7.5.1 Maximum Value 146 7.5.2 Capacity Factor 164 7.5.3 Fatigue Damage 169 8 Conclusions 187 References 190 Appendix 194 | - |
| dc.language.iso | en | - |
| dc.subject | 半潛式浮台 | zh_TW |
| dc.subject | 黏性效應 | zh_TW |
| dc.subject | 浮式風機 | zh_TW |
| dc.subject | 發電機性能 | zh_TW |
| dc.subject | 纜繩疲勞損傷 | zh_TW |
| dc.subject | 運動性能 | zh_TW |
| dc.subject | Mooring Line Fatigue Damage | en |
| dc.subject | Floating Wind Turbine | en |
| dc.subject | Semi-Submersible | en |
| dc.subject | Viscosity Effect | en |
| dc.subject | Motion Performance | en |
| dc.subject | Generator Performance | en |
| dc.title | 黏性效應對於半潛式浮式風機系統性能的影響 | zh_TW |
| dc.title | The Impact of Viscous Effect on the Performance of Semi-Submersible Floating Wind Turbine System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗岳;鍾年勉;羅光閔;高瑞祥;鍾承憲 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Yueh Lin;Nien-Mien Chung;Guang-Min Luo;Jui-Hsiang Kao;Cheng-Shien Chong | en |
| dc.subject.keyword | 浮式風機,半潛式浮台,黏性效應,運動性能,發電機性能,纜繩疲勞損傷, | zh_TW |
| dc.subject.keyword | Floating Wind Turbine,Semi-Submersible,Viscosity Effect,Motion Performance,Generator Performance,Mooring Line Fatigue Damage, | en |
| dc.relation.page | 248 | - |
| dc.identifier.doi | 10.6342/NTU202401827 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2029-08-06 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 53.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
