Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成zh_TW
dc.contributor.advisorChow-Shing Shinen
dc.contributor.author余孟宸zh_TW
dc.contributor.authorMeng-Chen Yuen
dc.date.accessioned2024-09-15T16:18:17Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] 3D 列印的生活應用與未來趨勢,模具與成型智慧工廠雜誌,2020.9,3D 列印的生活應用與未來趨勢 - SMARTMolding
[2] 適用於醫療產業之3D 列印技術介紹,模具與成型智慧工廠雜誌,2021.5,適用於醫療產業之3D 列印技術介紹 - SMARTMolding
[3] 超高精密3D列印製造領軍全球企業,國際領先的2μm 精度「PμSL光固化3D列印」技術: 微米高精密3D列印技術 - 智觀智造 (makerwisdom.com)
[4] A. Quinn, M. Brown, T.J. Gardner, and D.T.C. Allcock, “Geometries and fabrication methods for 3D printing ion traps,” Quantum Physics, Vol. 15, 42, 2022.
[5] Bikas H, Stavropoulos P and Chryssolouris G 2016 Additive manufacturing methods and modelling approaches: a critical review Int. J. Adv. Manuf. Technol. 83 389–405.
[6] Ponis, S.; Aretoulaki, E.; Maroutas, T.N.; Plakas, G.; Dimogiorgi, K. A Systematic Literature Review on Additive Manufacturing in the Context of Circular Economy. Sustainability 2021, 13, 6007. https://doi.org/10.3390/su13116007
[7] M. Kahl, M. Gertig, P. Hoyer, O. Friedrich and D. F. Gilbert, “Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication,” Frontiers in Bioengineering and Biotechnology, Vol. 7, 184, 2019.
[8] Macdonald N P, Cabot J M, Smejkal P, Guijt R M, Paull B and Breadmore M C 2017 Comparing microfluidic performance of three-dimensional (3D) printing platforms Anal. Chem. 89 3858–66.
[9] BigRep GmbH 2019 Large-scale 3D printer BigRep ONE (https://bigrep.com/bigrep-one/)
[10] Torrado, A. R., & Shemelya, C. M. (2016). Photopolymer 3D printing resin with improved mechanical properties using postcure treatments. Additive Manufacturing, 10, 1-8.
[11] Zhang R J and Larsen N B 2017 Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks Lab Chip 17 4273–82.
[12] Han D, Morde R S, Mariani S, La Mattina A A, Vignali E, Yang C, Barillaro G and Lee H 2020 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion Adv. Funct. Mater. 30 1909197.
[13] Yang Y, Li X J, Zheng X, Chen Z Y, Zhou Q F and Chen Y 2018 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation Adv. Mater. 30 1704912.
[14] Liu W J et al 2017 Rapid continuous multimaterial extrusion bioprinting Adv. Mater. 29 1604630.
[15] Ma X Y et al 2016 Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting Proc. Natl Acad. Sci. USA 113 2206–11.
[16] V. Carvalho et al, “3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review,” Sensors, Vol. 21, 3304, 2021.
[17] T.T. Zhu, A. J. Bushby & D. J. Dunstan (2008) Materials mechanical size effects: a review, Materials Technology, 23:4, 193-209, https://doi.org/10.1179/175355508X376843
[18] The Link Between 3D Printing, Surface Finish and Mold Tools, https://www.additivemanufacturing.media/articles/the-link-between-3D-printing-surface-finish-and-mold-tools
[19] Aziz, A.R., Zhou, J., Thorne, D., Cantwell, W.J. Geometrical Scaling Effects in the Mechanical Properties of 3D-Printed Body-Centered Cubic (BCC) Lattice Structures. Polymers 2021, 13, 3967. https://doi.org/10.3390/polym13223967
[20] S. P. Pappas, Photocrosslinking. Comprehensive Polymer Science and Supplements, 1989, pp.135–148. https://doi.org/10.1016/b978-0-08-096701-1.00185-3
[21] Ribas-Massonis, A.; Cicujano, M.; Duran, J.; Besalú, E.; Poater, A. Free-Radical Photopolymerization for Curing Products for Refinish Coatings Market. Polymers 2022, 14, 2856. https://doi.org/10.3390/polym14142856
[22] Qi Ge et al 2020 Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2 022004
[23] Nanoscribe GmbH 2019 Photonic Professional GT2: world’s highest resolution 3D printer, https://www.nanoscribe.com/en/solutions/photonic-professional-gt2
[24] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8
[25] Takada K, Sun H B and Kawata S 2005 Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting Appl. Phys. Lett. 86 071122
[26] Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T and Kawata S 2007 Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency Appl. Phys. Lett. 90 131106
[27] Saha S K, Wang D E, Nguyen V H, Chang Y N, Oakdale J S and Chen S-C 2019 Scalable submicrometer additive manufacturing Science 366 105–9
[28] Wu S H, Serbin J and Gu M 2006 Two-photon polymerization for three-dimensional micro-fabrication J. Photochem. Photobiol. A 181 1–11
[29] Hull C W 1986 Apparatus for production of three-dimensional objects by stereolithography US Patent US4575330A
[30] 3D Systems Inc. 3D printers, 3D scanning, software, manufacturing and healthcare services, https://www.3dsystems.com/
[31] Zhang X, Jiang X N and Sun C 1999 Micro-stereolithography of polymeric and ceramic microstructures Sensors Actuators A 77 149–56
[32] Wang J, Goyanes A, Gaisford S and Basit A W 2016 Stereolithographic (SLA) 3D printing of oral modified-release dosage forms Int. J. Pharm. 503 207–12
[33] UnionTech Inc. 2019 3D stereolithography printing solutions, http://en.union-tek.com/
[34] Materialise Inc. 2019 Stereolithography, https://www.materialise.com/en/manufacturing/3d-printing-technology/stereolithography
[35] Formlabs 2019 Resin library and 3D printing materials, https://formlabs.com/3d-printers/form-3/tech-specs/
[36] Sun C, Fang N, Wu D M and Zhang X 2005 Projection micro-stereolithography using digital micro-mirror dynamic mask Sensors Actuators A 121 113–20
[37] Zheng X Y, Deotte J, Alonso M P, Farquar G R, Weisgraber T H, Gemberling S, Lee H, Fang N and Spadaccini C M 2012 Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system Rev. Sci. Instrum. 83 125001
[38] Zheng X Y et al 2016 Multiscale metallic metamaterials Nat. Mater. 15 1100–6
[39] Qi Ge et al 2020 Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2 022004
[40] Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv Mater. 2017 Apr;29(15).
[41] Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Two-photon direct laser writing of ultracompact multi-lens objectives Nat. Photonics 10 554–60
[42] Chen X F, Liu W Z, Dong B Q, Lee J, Ware H O T, Zhang H F and Sun C 2018 High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness Adv. Mater. 30 1705683
[43] Yang C, Boorugu M, Dopp A, Ren J, Martin R, Han D, Choi W and Lee H 2019 4D printing reconfigurable, deployable and mechanically tunable metamaterials Mater. Horiz. 6 1244–50
[44] Swinehart, D. F., The Beer-Lambert Law. Journal of Chemical Education, 1962, 39(7), 333. https://doi.org/10.1021/ed039p333
[45] Schittecatte, L., Geertsen, V., Bonamy, D. et al. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Communications 13, 357–377 (2023). https://doi.org/10.1557/s43579-023-00352-3
[46] Chaudhary, R., Fabbri, P., Leoni, E. et al. Additive manufacturing by digital light processing: a review. Prog Addit Manuf 8, 331–351 (2023). https://doi.org/10.1007/s40964-022-00336-0
[47] Hwangbo, H., Jeon, SJ. Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates. Korean J. Chem. Eng. 39, 451–459 (2022). https://doi.org/10.1007/s11814-021-0934-x
[48] BMF Materials Inc. 2019 Micro 3D printing, industrial micro precision 3D printing, http://www.bmftec.com/
[49] Gong H, Bickham B P, Woolley A T and Nordin G P 2017 Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels Lab Chip 17 2899–909
[50] Shallan A I, Smejkal P, Corban M, Guijt R M and Breadmore M C 2014 Cost-effective three-dimensional printing of visibly transparent microchips within minutes Anal. Chem. 86 3124–30
[51] Walker D A, Hedrick J L and Mirkin C A 2019 Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface Science 366 360–4
[52] Tumbleston J R et al 2015 Continuous liquid interface production of 3D objects Science 347 1349–52
[53] Walker D A, Hedrick J L and Mirkin C A 2019 Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface Science 366 360–4
[54] Phil Mooney, Projection Micro Stereolithography 3D Printing, JULY 9, 2020: https://bmf3d.com/blog/projection-micro-stereolithography-3d-printing/
[55] Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. https://doi.org/10.3390/polym13040598
[56] James V. Crivello and Elsa Reichmanis,Photopolymer Materials and Processes for Advanced Technologies,Chemistry of Materials: Photopolymer Materials and Processes for Advanced Technologies | Chemistry of Materials (acs.org)
[57] Two-Photon Polymerization: A New Approach to Micromachining, https://www.photonics.com/Articles/Two-Photon_Polymerization_A_New_Approach_to/a26907
[58] Braddom, E.(2005), 探索DLP技術奧秘/DLP的過去、現在與未來;https://www.ctimes.com.tw/DispArt/tw/DLP/TI/%E5%BE%B7%E5%B7%9E%E5%84%80%E5%99%A8/%E5%BE%B7%E5%84%80/05040109448E.shtml
[59] Imaging technologies explained: DLP projectors; https://www.barco.com/zh/inspiration/news-insights/2022-01-19-dlp-vs-lcd-projectors
[60] 葉雲鵬、鄭正元,智慧機械與數位製造3D列印的發展,科儀新知222期,2020: p. 101-102.
[61] Urey, H., S. Madhavan, and M. Brown, MEMS Microdisplays, in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 2067-2080.
[62] Liu, H., and B. Bhushan, Nanotribological Characterization of Digital Micromirror Devices Using Atomic Force Microscope. Ultramicroscopy, 2004. 100(3): p. 391-412
[63] Hornbeck, L., Projection Displays and MEMS: Timely Convergence for a Bright Future. Micromachining and Micromachining. Vol. 2640. 1995: SPIE.
[64] Gong, Yuanzheng & Zhang, Song. (2010). Ultrafast 3-D shape measurement with an off-the-shelf DLP projector. Optics express. 18. 19743-54. 10.1364/OE.18.019743.
[65] Hornbeck, L.J., Digital Light Processing for High Brightness High Resolution Applications. Display III in Projection. 1997.
[66] Hornbeck, L.J., From Cathode Rays to Digital Micromirrors — A Historical of Electronic Projection Display Technology. Texas Instruments Technical Journal, 1998. 15: p.7-46.
[67] Cullen, Andrew T., Price, Aaron D.,“Digital light processing for the fabrication of 3D intrinsically conductive polymer structures.”Synthetic Metals, 2018. 235: p. 34-41.
[68] A. Bertsch, P. Renaud, Stereolithography vol. 1, Springer, Boston, MA, 2011, pp. 81–112.
[69] Santoliquido, O., P. Colombo, and A. Ortona, “Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches.”Journal of the European Ceramic Society, 2019. 39(6): p. 2140-2148.
[70] Mo, Jianhua & Groot, Mattijs & Boer, Johannes. (2013). Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography. Optics express. 21. 10048-61. https://doi.org/10.1364/OE.21.010048
[71] Chien-Yi Lu. (2023). Study on the Single Layer Thickness Control of Digital Light Processing. Department of Mechanical Engineering, National Taiwan University. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88894
[72] Hur, Jungyu, and Seo, Manseung. Optical Proximity Corrections for Digital Micromirror Device-Based Maskless Lithography.” J. Optical Soc of Korea, 16, 3, Sept. 2012, pp. 221–227. https://doi.org/10.3807/JOSK.2012.16.3.221
[73] Z. Xiong, H. Liu, R. Chen, J. Xu, Q. Li, J. Li, and W. Zhang, "Illumination uniformity improvement in digital micromirror device based scanning photolithography system," Opt. Express 26, 18597-18607, 2018. https://doi.org/10.1364/OE.26.018597
[74] Ri-Chang Yang, Development and Discussion of Visualized DLP Printing System, Department of Mechanical Engineering, National Taiwan University, 2022. https://hdl.handle.net/11296/kpsq2d
[75] M. Kerker, The Scattering of Light and other Electromagnetic Radiation, Elsevier, 2016.
[76] C. Qian, K. Hu, J. Li, P. Li, Z. Lu, The effect of light scattering in stereolithography ceramic manufacturing, J. Eur. Ceram. Soc. 41 (14) (2021) 7141–7154.
[77] Zhangjing Yu, Zhiguo Wang, Xuehua Yu, Yichao Wang, Ke Zhong, Yuhui Zhao, Jibin Zhao, Monte Carlo simulation of photopolymerizable ceramic suspension curing profile in vat photopolymerization, Journal of the European Ceramic Society, Volume 44, Issue 6, 2024, Pages 4083-4096. https://www.sciencedirect.com/science/article/pii/S0955221923011172
[78] Nollaig Butler, Yan Zhao, Shun Lu, Shuo Yin, Effects of light exposure intensity and time on printing quality and compressive strength of β-TCP scaffolds fabricated with digital light processing, Journal of the European Ceramic Society, Volume 44, Issue 4, 2024, Pages 2581-2589. https://www.sciencedirect.com/science/article/pii/S0955221923009500
[79] Yu, Z., Li, X., Zuo, T. et al. High-accuracy DLP 3D printing of closed microfluidic channels based on a mask option strategy. Int J Adv Manuf Technol 127, 4001–4012 (2023). https://doi.org/10.1007/s00170-023-11769-4
[80] Cirac, J. I. and Zoller, P., Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett.74.4091, 1995 May. https://link.aps.org/doi/10.1103/PhysRevLett.74.4091
[81] Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002). https://doi.org/10.1038/416238a
[82] Monroe C, Kim J. Scaling the ion trap quantum processor. Science. 2013 Mar 8;339(6124):1164-9. https://pubmed.ncbi.nlm.nih.gov/23471398/
[83] R.E. March, Ion Trap Mass Spectrometers, Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, 2017, Pages 330-337, ISBN 9780128032244, https://doi.org/10.1016/B978-0-12-409547-2.12675-7
[84] Nolting D, Malek R, Makarov A. Ion traps in modern mass spectrometry. Mass Spectrom Rev. 2019 Mar;38(2):150-168. doi: 10.1002/mas.21549. Epub 2017 Oct 30. PMID: 29084367. https://pubmed.ncbi.nlm.nih.gov/29084367/
[85] Paul, W. (1990). Electromagnetic traps for charged and neutral particles. Reviews of Modern Physics, 62(3), 531-540. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.62.531
[86] Blatt, R., Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008). https://doi.org/10.1038/nature07125
[87] Lowell S. Brown and Gerald Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap, Rev. Mod. Phys. 58, 233 – Published 1 January 1986. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.58.233
[88] Phrozen, Onyx Rigid Pro410 3D Printing Resin, https://us.phrozen3d.com/products/onyx-rigid-pro410-resin
[89] Sigma-Aldrich, Sudan I, Properties, https://www.sigmaaldrich.com/TW/en/product/sial/103624?icid=sharepdp-clipboard-copy-productdetailpage
[90] How Light Stabilizers Protect Polymers from UV Degradation, Everlight Chemical, https://everlight-uva.com/products/eversorb/hals/uvdegradation-hals/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95648-
dc.description.abstract在使用光固化技術進行具有微間隙結構的列印時,常常會遇到間隙消失的問題,這會影響成品的功能性,這種現象為光固化列印的尺寸效應。本研究主要從化學和光學兩方面來探討此問題。從化學角度來看,自由基在固化反應中扮演著關鍵角色,其積聚可能會加速樹酯的固化。而從光學角度來看,DLP投影系統的光源之像素亮度呈高斯分布,會導致光能量溢出。隨著列印設備解析度的提高,每單位面積的光能量增加,並且曝光圖案的光能量溢出會使間隙區域亮度增加,進而導致樹酯在預期外的區域固化。
本研究提出了多種解決方案以應對這些挑戰。在化學方面,這些解決方案包括加熱樹酯、增加曝光之間的間隔時間,以及添加能夠淬滅自由基的材料。在光學方面,則涉及調整灰階值和改變光能量分配方式。
最後,綜合所有的有利條件條件,確定了使用本研究的設備能夠達到的最小間隙尺寸,並將此應用於離子阱結構的列印中。
zh_TW
dc.description.abstractWhen using photopolymerization technology to print gap structures, issues often arise where the gaps disappear, compromising the functionality of the final product, which is the size effect in photopolymerization printing. This study primarily investigates this issue from both chemical and optical perspectives. Chemically, free radicals play a crucial role in the curing reaction, and their accumulation can accelerate resin curing. Optically, the light energy from the DLP source extends beyond the projection pattern due to the Gaussian distribution. As printer resolution improves, the light energy per unit area increases, and extended energy beyond the projection area can elevate brightness in gap areas, causing resin to cure unexpectedly.
This study proposes several solutions to address these challenges. Chemically, solutions include heating the resin, increasing intervals between exposures, and adding materials that can quench free radicals. Optically, adjustments involve modifying grayscale values and altering light distribution methods. Ultimately, by optimizing these conditions, the study determines the minimum achievable gap size using the equipment employed, and applies this knowledge to printing ion trap structures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:18:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:18:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Contents IV
List of Figures VII
List of Tables XIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Layout 4
Chapter 2 Literature Review 5
2.1 Additive Manufacturing 5
2.1.1 Overview of 3D Printing Technology Types 5
2.1.2 Photopolymerization 6
2.1.3 The photopolymerization reaction of the resin 10
2.2 DLP 3D Printing 12
2.2.1 DLP Projector 12
2.2.2 Digital Micromirror Device (DMD) Chips 13
2.2.3 Bottom-up and Top-down in DLP 16
2.2.4 Projection Micro Stereolithography (PμSL) 18
2.3 Printing Issues Arising from Increased Resolution 23
2.3.1 Excessive Curing in the Depth (z) Direction 23
2.3.2 Phenomenon of curing expansion on the projection plane 25
2.4 Ion Trap 31
2.5 Summary 32
Chapter 3 Experimental Instruments and Materials 33
3.1 Real-time monitoring PµSL system 33
3.1.1 Projector 34
3.1.2 CMOS real-time monitoring system 34
3.1.3 Light path system 35
3.1.4 Printing software 35
3.2 Resin materials and related equipment 35
3.2.1 Resin materials 36
3.2.2 Related equipment 38
3.3 Measure equipment 41
Chapter 4 Experimental Methodology 42
4.1 Experimental Theory and Methods 42
4.2 Equipment Setup 43
4.3 3D Printing Process 47
4.2.1 Design of 3D Model 49
4.2.2 Model Slicing 51
4.2.3 Adjustment of Printing Parameters 51
4.2.4 Platform Setup 58
4.2.5 Coverslip and Resin Surface Focusing 59
4.2.6 Layer-by-layer Printing 60
4.2.7 Cleaning 61
4.2.8 Result Verification and Measurement 61
Chapter 5 Results and Discussions 63
5.1 Real-time Monitoring PµSL system Test 63
5.1.1 System Focusing Test 63
5.1.2 Brightness Uniformity Test 66
5.1.3 The Printing Parameters for 3D Structure Printing 70
5.2 Temperature Effect 72
5.3 The Effects of the Interval Time 76
5.4 Free Radical Quencher Effect to Printing Gap 79
5.5 Light Energy Superposition in Gap Printing 85
5.6 The Impact of Grayscale Modification on Printing Gap Structures 87
5.7 Effects of IPM on Printing Small Gaps 93
5.8 Curing Thresholds and the Effect of Light Energy and Free Radicals 94
5.8.1 The Light-curing Threshold of the PµSL System 95
5.8.2 Light-curing Threshold in Gap Area 97
5.8.3 Verification of Light-curing Threshold for Grayscale Modification 98
5.8.4 Different Threshold between PµSL System and Gap Printing 98
5.9 Application 99
5.9.1 Gap Structure Printing 99
5.9.2 Ion Trap Structure Printing 101
Chapter 6 Conclusions and Future Work 106
6.1 Conclusions 106
6.2 Future work 107
References 108
Appendix 121
-
dc.language.isoen-
dc.titleDLP列印之間隙控制探討zh_TW
dc.titleControlling Gap Size in DLP Printingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林志郎;林俊達zh_TW
dc.contributor.oralexamcommitteeChih-Lang Lin;Guin-Dar Linen
dc.subject.keywordDLP,間隙結構,自由基,光能量,離子阱,zh_TW
dc.subject.keywordDLP,gap structure,free radicals,light energy,ion trap,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202403811-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved