請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95647完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | zh_TW |
| dc.contributor.advisor | Yao-Yang Tsai | en |
| dc.contributor.author | 石翊鵬 | zh_TW |
| dc.contributor.author | Yi-Peng Shih | en |
| dc.date.accessioned | 2024-09-15T16:17:58Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] S. K. Lawrence, D. P. Adams, D. F. Bahr, and N. R. Moody, “Mechanical and electromechanical behavior of oxide coatings grown on stainless steel 304l by nanosecond pulsed laser irradiation,” Surface and Coatings Technology, vol. 235, pp. 860–866, 2013.
[2] Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Applied Surface Science, vol. 256, no. 5, pp. 1582–1588, 2009. [3] C. Cui, X. Cui, X. Ren, M. Qi, J. Hu, and Y. Wang, “Surface oxidation phenomenon and mechanism of aisi 304 stainless steel induced by nd: Yag pulsed laser,” Applied surface science, vol. 305, pp. 817–824, 2014. [4] J. J. Pérez, P. Sakanaka, M. Algatti, J. Mendoza-Alvarez, and A. C. Orea, “An improved three-dimensional model for growth of oxide films induced by laser heating,” Applied surface science, vol. 175, pp. 703–708, 2001. [5] D. P. Adams, V. Hodges, D. Hirschfeld, M. A. Rodriguez, J. McDonald, and P. Kotula, “Nanosecond pulsed laser irradiation of stainless steel 304l: Oxide growth and effects on underlying metal,” Surface and coatings technology, vol. 222, pp. 1–8, 2013. [6] V. Veiko, G. Odintsova, E. Ageev, Y. Karlagina, A. Loginov, A. Skuratova, and E. Gorbunova, “Controlled oxide films formation by nanosecond laser pulses for color marking,” Opt Express, vol. 22, no. 20, pp. 24 342–7, 2014. [7] 何承叡, “探討雷射彩色打標加工與其類神經網路模型建立之研究,” 機械工程學研究所, 國立台灣大學, 2022. [8] A. J. Antończak, D. Kocoń, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—sensitivity scaling for a stainless steel,” Applied Surface Science, vol. 264, pp. 229–236, 2013. [9] Y. Xiang, R. Mei, F. Azad, L. Zhao, S. Su, G. Lu, and S. Wang, “Investigation by nanosecond fiber laser for hybrid color marking and its potential application,” Optics & Laser Technology, vol. 147, p. 107553, 2022. [10] Y. Chen, X. Li, J. Liu, Y. Zhang, and X. Chen, “Effect of scanning speed on properties of laser surface remelted 304 stainless steel,” Micromachines, vol. 13, no. 9, p. 1426, 2022. [11] V. Veiko, Y. Karlagina, M. Moskvin, V. Mikhailovskii, G. Odintsova, P. Olshin, D. Pankin, V. Romanov, and R. Yatsuk, “Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses,” Optics and Lasers in Engineering, vol. 96, pp. 63–67, 2017. [12] J. Hecht, “Short history of laser development,” Optical engineering, vol. 49, no. 9, pp. 091 002–091 002, 2010. [13] G. Chryssolouris, Laser machining: theory and practice. Springer Science & Business Media, 2013. [14] S. S. Zumdahl and D. J. DeCoste, Chemical principles. Cengage Learning, 2012. [15] W. T. Silfvast, “Lasers,” in Encyclopedia of Physical Science and Technology (Third Edition), third edition ed., R. A. Meyers, Ed. New York: Academic Press, 2003, pp. 267–281. [16] C. B. Hitz, J. J. Ewing, and J. Hecht, Introduction to laser technology. John Wiley & Sons, 2012. [17] A. Javān, W. R. Bennett, and D. R. Herriott, “Population inversion and continuous optical maser oscillation in a gas discharge containing a he-ne mixture,” Phys. Rev. Lett., vol. 6, pp. 106–110, 1961. [18] A. Lahiri, “Chapter 8 - quantum optics,” in Basic Optics. Elsevier, 2016, pp. 697-899. [19] W. T. Silfvast, Laser fundamentals. Cambridge university press, 2004. [20] B. Jacobsson, “Spectral control of lasers and optical parametric oscillators with volume bragg gratings.” [21] G. Dattoli, D. Mario, M. Labat, P. Ottaviani, and S. Pagnutti, “Introduction to the physics of free electron laser and comparison with conventional laser sources,” 10 2010. [22] EdmundOptics, “Laser resonator modes,” https://www.edmundoptics.eu/knowledge-center/application-notes/lasers/laser-resonator-modes/, Aug 2020, accessed: 2023-12-20. [23] QT5201U, “Coincidence time measurement of pulsed lasers & useful applications,” https://qt5201.org/index.php/Coincidence_Time_Measurement_of_Pulsed_Lasers_%26_%22Useful%22_Applications, May 2021, accessed: 2023-12-20. [24] M. A. Ortega Delgado and A. F. Lasagni, “Reducing field distortion for galvanometer scanning system using a vision system,” Optics and Lasers in Engineering, vol. 86, pp. 106–114, 2016. [25] Z. Wang, H. Su, Y. Chen, Y. Li, and S. Li, “Heat transfer and thermocapillary flow of a double-emulsion droplet heated using an infrared laser by the photothermal effect: a numerical study,” Microgravity Science and Technology, vol. 33, 08 2021. [26] Wikipedia, “Transverse mode,” https://en.wikipedia.org/wiki/Transverse_mode, Dec 2023, accessed: 2024-01-09. [27] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D: Applied Physics, vol. 45, no. 11, p. 113001, 2012. [28] G. Das, M. Coluccio, S. Alrasheed, A. Giugni, M. Allione, B. Torre, G. Perozziello, P. Candeloro, and E. Di Fabrizio, “Plasmonic nanostructures for the ultrasensitive detection of biomolecules,” vol. 39, pp. 547–586, 11 2016. [29] Z. Han and S. I. Bozhevolnyi, “Chapter 5 - waveguiding with surface plasmon polaritons,” in Modern Plasmonics, ser. Handbook of Surface Science, N. Richardson and S. Holloway, Eds. North-Holland, 2014, vol. 4, pp. 137–187. [30] I. Dmitruk, N. Zubrilin, N. Berezovska, O. Dombrovskiy, S. Balanets, E. Grabovsky, and I. Blonskiy, “Laser-induced formation of periodic structures on the metal surfaces and surface plasmons excitation,” Advanced Materials Research, vol. 1117, pp. 3–8, 2015. [31] Byju’s, “Single slit diffraction,” https://byjus.com/physics/single-slit-diffraction/, Mar 2023, accessed: 2023-09-12. [32] C. Palmer and E. G. Loewen, Diffraction grating handbook. Newport Corporation New York, 2005. [33] D. J. Young, High temperature oxidation and corrosion of metals. Elsevier, 2008, vol. 1. [34] K. Phillips, “What is spectral range?” https://www.hunterlab.com/blog/what-is-spectral-range/, Jan 2024, accessed: 2024-05-21. [35] Wikipedia, “Rgb color spaces,” https://en.wikipedia.org/wiki/RGB_color_spaces, May 2024, accessed: 2024-05-21. [36] Wikipedia, “Cmyk color model,” https://en.wikipedia.org/wiki/CMYK_color_model, May 2024, accessed: 2024-05-21. [37] W. Backhaus, R. Kliegl, and J. Werner, Color Vision: Perspectives from Different Disciplines. Walter de Gruyter, 1998. [Online]. Available: https://books.google.com.tw/books?id=DrduOSrOFegC [38] Wikipedia, “Cie 1931 color space,” https://en.wikipedia.org/wiki/CIE_1931_color_space, May 2024, accessed: 2024-05-21. [39] C. Wyman, P.-P. Sloan, and P. Shirley, “Simple analytic approximations to the CIE XYZ color matching functions,” Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, pp. 1–11, July 2013. [Online]. Available: http://jcgt.org/published/0002/02/01/ [40] Wikipedia, “Thin-film interference,” https://en.wikipedia.org/wiki/Thin-film_interference, May 2024, accessed: 2024-05-22. [41] M. Betz, “Sphere head spectrophotometers and specular component explained,” https://proofing.de/sphere-head-spectrophotometers-and-specular-component-explained/, May 2021, accessed: 2024-03-04. [42] C. Paul, “Confocal laser scanning microscopy explained in 3 easy steps,” https://bitesizebio.com/19958/confocal-laser-scanning-microscopy/, Apr 2023, accessed: 2024-03-11 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95647 | - |
| dc.description.abstract | 雷射彩色打標加工技術所涉及的機制相當複雜,目前仍缺乏完整的理論模型。而在實務上,雷射彩色打標加工過程中,大量使用試誤法來建立加工參數與打標成品之間的對應關係,然而實際上,在雷射打標加工的過程中會產生數種特殊外觀如彩虹紋、表面成色不均及隨觀察角變化顏色等,這些特殊外觀大多難以被量化,並且無論使用試誤法或機器學習建模,皆大大增加建模的難度。本研究透過研究各參數在雷射彩色打標加工時對顏色的效應,提出三種特殊外觀與參數關係的歸納結果,推測其形成機制,使特殊外觀由不可控變為可控,同時歸納脈衝步距、脈衝頻率、單發脈衝能量及脈衝寬度參數效應,釐清顏色生成規律,以利使用者在因環境因素、模型不完整等原因導致打標成品顏色與預期不符時,能正確地對參數做出微調。
為了解雷射彩色打標加工中,參數與打標成品顏色的對應關係,本研究進行全因子實驗,並搭配 CIELAB 標準進行色彩量測。 全因子實驗顯示在脈衝步距過短,或單發脈衝能量過長時,打標成品顏色會呈現黯淡的灰、褐色或棕黑色,而若單發脈衝能量過低,或者脈衝步距過高,則會使打標成品顏色維持原色,其餘的參數組合則可以製造出鮮豔的彩色。實驗結果亦顯示打標成品顏色不均勻的現象具有重複性,且可利用參數微調的方式控制,出現在彩色區域與灰、褐色、棕黑色及原色的交界處。 可藉由微調參數的方式來避免打標成品顏色不均勻,但為使微調參數的過程中所造成的色差最小化,研究了各加工參數對顏色之效應,結果顯示顏色同樣主要由單發脈衝能量與脈衝步距決定,並且功率增加與脈衝步距降低皆使反射光譜高峰之波長變長、成品表面粗糙度增加以及成品顏色彩度降低,同時調整兩參數可使調整參數所造成的色差最小化。脈衝寬度 12ns 以下在加工單道時出現凹痕,12ns 以上則出現週期性重熔痕跡,同時顏色不均勻的現象在脈衝寬度越高時越容易發生。 | zh_TW |
| dc.description.abstract | The mechanisms involved in laser color marking technology are highly complex, and a comprehensive theoretical model is still lacking. In practical applications, trial-and-error methods are extensively employed to establish the relationship between processing parameters and the resulting marked products. However, in the actual laser marking process, several unique visual effects may emerge, such as rainbow patterns, uneven surface coloration, and color variations depending on the observation angle. These unique appearances are generally difficult to quantify, making the modeling process significantly more challenging, whether using trial-and-error methods or machine learning approaches. This study investigates the effects of various parameters on color during laser color marking, proposing three types of correlations between unique visual effects and parameters, and hypothesizing the underlying mechanisms. The goal is to transition these unique appearances from being uncontrollable to controllable. Additionally, the effects of parameters such as pulse spacing, pulse frequency, single-pulse energy, and pulse width are summarized to clarify the principles of color formation. This will enable users to make precise adjustments to parameters when the color of the marked product deviates from expectations due to environmental factors or incomplete models.
To understand the relationship between parameters and the color of the marked product during laser color marking, a full factorial experiment was conducted, with color measurements performed using the CIELAB standard. The full factorial experiment revealed that when the pulse spacing is too short or the single-pulse energy is too high, the resulting marked product exhibits dull gray, brown, or dark brown colors. Conversely, when the single-pulse energy is too low or the pulse spacing is too large, the marked product tends to maintain its original color. Other parameter combinations can produce vibrant colors. The experiment also showed that the phenomenon of uneven color distribution is reproducible and can be controlled through fine-tuning of parameters, particularly at the boundaries between colored areas and gray, brown, dark brown, or original colors. By fine-tuning the parameters, it is possible to avoid uneven color distribution in the marked product. However, to minimize color deviations during the adjustment process, the effects of various processing parameters on color were studied. The results indicated that color is primarily determined by single-pulse energy and pulse spacing, and that increasing power and decreasing pulse spacing both lead to longer peak wavelengths in the reflection spectrum, increased surface roughness of the product, and reduced color saturation. Adjusting these two parameters together can minimize color deviations caused by parameter adjustments. Pulse widths below 12 ns resulted in indentations during single-pass processing, while pulse widths above 12 ns produced periodic remelting traces, with uneven coloration becoming more pronounced as the pulse width increases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:17:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:17:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 表次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 氧化層形成之相關研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 參數與顏色對應關係之相關研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 其他相關文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第二章 基礎理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 雷射概論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 光學與雷射起源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 雷射原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 雷射器基本構造 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.4 雷射特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.5 雷射加工理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 繞射現象與繞射光柵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 繞射現象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.2 繞射光柵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 高溫氧化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 熱力學與動力學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 色彩光學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.1 色彩規範 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2 色彩空間轉換 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4.3 薄膜干涉成色 (Thin-film interference) . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.4 鏡面反射與漫反射 (Specular reflection) . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 有限元素法 (Finite Element Method, FEM) . . . . . . . . . . . . . . . . . . . . . . . 54 第三章 實驗設備與規劃 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 實驗設備與儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 光纖雷射打標雕刻機 S60W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 分光式色差儀 KONICA MINOLTA CM-26d . . . . . . . . . . . . . . . . . . . 58 3.1.3 雷射共軛焦顯微鏡 KEYENCE VK-9700 . . . . . . . . . . . . . . . . . . . . . . 61 3.1.4 工件材料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 實驗系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 實驗系統架設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.2 機台設定之參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.3 實驗參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 實驗流程與結果量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 打標成品光譜分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.2 加工結果量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.3 加工過程熱模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 第四章 實驗結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1 全因子實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.1 三因子全因子實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.2 四因子全因子實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 成色缺乏彩色之參數探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.1 三種成色缺乏彩色之區域光譜分析結果 . . . . . . . . . . . . . . . . . . . . . 89 4.2.2 三種成色缺乏彩色之區域與實驗參數之關係 . . . . . . . . . . . . . . . . . 97 4.3 成色較具彩色之參數探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.1 打標成品之光譜分析結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 單發脈衝能量之效應 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.3 脈衝寬度之效應 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3.4 脈衝頻率及脈衝步距之影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.4 成品顏色品質控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.4.2 加工參數與成品顏色均勻度之關係 . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.4.3 加工參數與紋狀微結構之關係 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.4.4 照光時與未照光時具有不同顏色之現象 . . . . . . . . . . . . . . . . . . . . . 162 第五章 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光譜分析 | zh_TW |
| dc.subject | 304 不鏽鋼 | zh_TW |
| dc.subject | 奈秒雷射 | zh_TW |
| dc.subject | 雷射彩色打標 | zh_TW |
| dc.subject | Spectroscopy | en |
| dc.subject | Laser color marking | en |
| dc.subject | Nanosecond laser | en |
| dc.subject | 304 stainless steel | en |
| dc.title | 雷射彩色打標成品顏色品質控制之研究 | zh_TW |
| dc.title | Study on the Product Color Quality Control of Laser Color Marking | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何正榮;許富銓 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Rong Ho;Fu-Chuan Hsu | en |
| dc.subject.keyword | 雷射彩色打標,奈秒雷射,304 不鏽鋼,光譜分析, | zh_TW |
| dc.subject.keyword | Laser color marking,Nanosecond laser,304 stainless steel,Spectroscopy, | en |
| dc.relation.page | 173 | - |
| dc.identifier.doi | 10.6342/NTU202404073 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 101.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
