Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊明仁zh_TW
dc.contributor.advisorMing-Jen Yangen
dc.contributor.author方偉庭zh_TW
dc.contributor.authorWei-Ting Fangen
dc.date.accessioned2024-09-15T16:17:20Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation蔡雅婷、洪景山、陳依涵、方偉庭、邵彥銘、江琇瑛和馮欽賜,2019: WRF三維變分雷達資料同化個案研究。大氣科學,47,94-117。
Alland, J. J., and C. A. Davis, 2022: Effects of surface fluxes on ventilation pathways and the intensification of Hurricane Michael (2018). J. Atmos. Sci., 79, 1211–1229.
Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021a: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci., 78, 763–782.
Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021b: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783–796.
Altube, P., J. Bech, O. Argemí, T. Rigo, N. Pineda, S. Collis, and J. Helmus, 2017: Correction of dual-PRF doppler velocity outliers in the presence of aliasing. J. Atmos. Ocean. Technol., 34, 1529–1543.
Askelson, M. A., J.-P. Aubagnac, and J. M. Straka, 2000: An adaptation of the Barnes filter applied to the objective analysis of radar data. Mon. Wea. Rev., 128, 3050–3082.
Barker, D. M., W. Huang, Y.-R. Guo, A. Bourgeois, and X. N. Xio, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914.
Bell, M. M., and W.-C. Lee, 2002: An objective method to select a consistent set of tropical cyclone circulation centers derived from the GBVTD-simplex algorithm. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 642–643.
Bell, M. M., and W.-C. Lee, 2012: Objective tropical cyclone center tracking using single-Doppler radar. J. Appl. Meteor. Climatol., 51, 878–896.
Berenguer, M., D. Sempere-Torres, C. Corral, and R. Sánchez-Diezma, 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J. Atmos. Oceanic Technol., 23, 1157–1180.
Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312.
Boehm, A. M., and M. M. Bell, 2021: Retrieved thermodynamic structure of Hurricane Rita (2005) from airborne multi-Doppler radar data. J. Atmos. Sci., 78, 1583–1605.
Brown, R. A., and V. T. Wood, 1991: On the interpretation of single-Doppler velocity patterns within severe thunderstorms. Wea. Forecasting, 6, 32–48.
Brown, R. A., and V. T. Wood, 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere edition. 2nd ed. NOAA/NSSL, 55 pp.
Cha, T.-Y., and M. M. Bell, 2021: Comparison of single-Doppler and multiple-Doppler wind retrievals in Hurricane Matthew (2016). Atmos. Meas. Tech., 14, 3523–3539.
Cha, T.-Y., M. M. Bell, and A. J. DesRosiers, 2021: Doppler radar analysis of the eyewall replacement cycle of Hurricane Matthew (2016) in vertical wind shear. Mon. Wea. Rev., 149, 2927–2943.
Chang, P.-L., and P. F. Lin, 2011: Radar anomalous propagation associated with foehn winds induced by Typhoon Krosa (2007). J. Appl. Meteor. Climatol., 50, 1527–1542.
Chang, P.-L., B. J.-D. Jou, and J. Zhang, 2009a: An algorithm for tracking eyes of tropical cyclones. Wea. Forecasting, 24, 245–261.
Chang, P.-L., P. F. Lin, B. J.-D. Jou, and J. Zhang, 2009b: An application of reflectivity climatology in constructing radar hybrid scans over complex terrains. J. Atmos. Oceanic Technol., 26, 1315–1327.
Chang, P.-L., W.-T. Fang, P.-F. Lin, and M.-J. Yang, 2019: A vortex-based Doppler velocity dealiasing algorithm for tropical cyclones. J. Atmos. Oceanic Technol., 36, 1521–1545.
Chang, P.-L., W.-T. Fang, P.-F. Lin, and Y.-S. Tang, 2020: Influence of wind-induced antenna oscillations on radar observations and its mitigation. Wea. Forecasting, 35, 2235-2254.
Chen, B.-F., C. A. Davis, and Y.-H. Kuo, 2019: An idealized numerical study of shear-relative low-level mean flow on tropical cyclone intensity and size. J. Atmos. Sci., 76, 2309–2334.
Chen, B.-F., C. A. Davis, and Y.-H. Kuo, 2021: Examination of the combined effect of deep-layer vertical shear direction and lower-tropospheric mean flow on tropical cyclone intensity and size based on the ERA5 reanalysis. Mon. Wea. Rev., 149, 4057–4076.
Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550.
Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190-3208.
Chen, T.-C., S.-Y. Wang, M.-C. Yen, A. J. Clark, and J.-D. Tsay, 2010: Sudden surface warming–drying events caused by typhoon passages across Taiwan. J. Appl. Meteor. Climatol., 49, 234–252.
Chi, Y.-S., C.-Y. Huang, and W. C. Skamarock, 2024: Track deflection of Typhoon Chanthu (2021) near Taiwan as investigated using a high-Resolution global model. Mon. Wea. Rev., in press.
Chong, M., and O. Bousquet, 2001: On the application of MUSCAT to a ground-based dual-Doppler radar system, Meteorol. Atmos. Phys., 78, 133–139.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376.
Dazhang, T., S. G. Geotis, R. E. Passarelli Jr., A. L. Hansen, and C. L. Frush, 1984: Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 523–527.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2087.
DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543.
DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 1828–1842.
Donaldson, R. J., 1970: Vortex signature recognition by a Doppler radar. J. Appl. Meteor. Climatol., 9, 661–670.
Doviak, R. J., and D. S. Zrnic, 1993: Doppler radar and weather observations. 2d ed. Academic Press, 562 pp.
Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense Hurricanes. Part II: case studies. Mon. Wea. Rev., 133, 209–227.
Eilts, M. D., and S. D. Smith, 1990: Efficient dealiasing of Doppler velocities using local environment constraints. J. Atmos. Oceanic Technol., 7, 118–128.
Fang, W.-T., P.-L. Chang, and M.-J. Yang, 2024: An observational study on the rapid intensification of Typhoon Chanthu (2021) near the complex terrain of Taiwan. Mon. Wea. Rev., 152, 769-791.
Finocchio, P. M., and R. Rios-Berrios, 2021: The intensity- and size-dependent response of tropical cyclones to increasing vertical wind shear. J. Atmos. Sci., 78, 3673-3690.
Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 2155–2175.
Fischer, M. S., P. D. Reasor, B. H. Tang, K. L. Corbosiero, R. D. Torn, and X. Chen, 2023: A tale of two vortex evolutions: using a high-resolution ensemble to assess the impacts of ventilation on a tropical cyclone rapid intensification event. Mon. Wea. Rev., 151, 297-320.
Fischer, M. S., R. F. Rogers, and P. D. Reasor, 2020: The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Wea. Rev., 148, 981–1004.
Frank, W. M., and E. A. Ritchie, 1999: Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 2249–2269.
Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 32–44.
Frisch, A. S., L. J. Miller, and R. G. Strauch, 1974: Three-dimensional air motion measured in snow. Geophys. Res. Lett., 1, 86–89.
Frush, C. L., 1991: A graphical representation of the radar velocity dealiasing problem. Preprints, 25th Int. Conf. on Radar Meteoroloy, Paris, France, Amer. Meteor. Soc., 885-888.
Fu, H., Y. Wang, M. Riemer, and Q. Li, 2019: Effect of unidirectional vertical wind shear on tropical cyclone intensity change—Lower-layer shear versus upper-layer shear. Journal of Geophysical Research: Atmospheres, 124, 6265–6282.
Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142.
Gong, J., L. Wang, and Q. Xu, 2003: A three-step dealiasing method for Doppler velocity data quality control. J. Atmos. Oceanic Technol., 20, 1738–1748.
Guimond, S. R., P. D. Reasor, G. M. Heymsfield, and M. M. McLinden, 2020: The dynamics of vortex Rossby waves and secondary eyewall development in Hurricane Matthew (2016): New insights from radar measurements. J. Atmos. Sci. 77, 2349– 2374.
Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403.
Heideman, M. T., D. H. Johnson, and C. S. Burrus, 1985: Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci., 34, 265–277.
Heng, J., S. Yang, Y. Gong, J. Gu, and H. Liu, 2020: Characteristics of the convective bursts and their relationship with the rapid intensification of Super Typhoon Maria (2018). Atmos. Oceanic Sci. Lett., 13, 146–154.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Royal. Meteor. Soc., 146, 1999–2049.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hsiao, L. F., C. S. Liou, T. C. Yeh, Y. R. Guo, D. S. Chen, K. N. Huang, C. T. Terng, and J. H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 3298–3315.
Hsiao, L. F., D.-S. Chen, Y.-H. Kuo, Y.-R. Guo, T. C. Yeh, J.-S. Hong, C.-T. Fong, and C.-S. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 1249–1263.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.
Hsu, L.-H., S.-H. Su, and H.-C. Kuo, 2021: A numerical study of the sensitivity of typhoon track and convection structure to cloud microphysics. J. Geo. Res.: Atmospheres, 126, 1–17.
Hsu, L.-H., S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495–1510.
Hu, Y., and X. Zou, 2021: Tropical cyclone center positioning using single channel microwave satellite observations of brightness temperature. Remote Sens., 13, 2466.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. J. Atmos. Sci., 73, 3157–3180.
Huang, C.-Y., C.-H. Huang, and W. C. Skamarock, 2019: Track deflection of Typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Mon. Wea. Rev., 147, 1593–1613.
Huang, C.-Y., T.-C. Juan, H.-C. Kuo, and J.-H. Chen, 2020: Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: topographic influence. Mon. Wea. Rev., 148, 4519–4544.
Huang, H.-L., M.-J. Yang, and C.-H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112–129.
Huang, K.-C., and C.-C. Wu, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887–3910.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1257–1278.
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615.
Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc, 121, 821–851.
Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 1268–1285.
Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287–1131.
Jorgensen, D. P., T. R. Shepherd, and A. S. Goldstein, 2000: A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 airborne Doppler radar. J. Atmos. Oceanic Technol., 17, 585–594.
Jorgensen, D. P., T. R. Shepherd, and A. S. Goldstein, 2000: A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 airborne Doppler radar. J. Atmos. Oceanic Technol., 17, 585–594.
Jou, B. J.-D., W. C. Lee, S. P. Liu, and Y. C. Kao, 2008: Generalized VTD retrieval of atmospheric vortex kinematic structure. Part I: Formulation and error analysis. Mon. Wea. Rev., 136, 995–1012
Kao, Y. -C., B. J.-D. Jou, J. C -L. Chan, and W. -C Lee, 2019: An observational study of a coastal barrier jet induced by a landfalling typhoon. Mon. Wea. Rev., 147, 4589–4609.
Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374–1396.
Knapp, K. R., C. S. Velden, and A. J. Wimmers, 2018: A global climatology of tropical cyclone eyes. Mon. Wea. Rev., 146, 2089–2101.
Kuo, H.-C., R. T. Williams, and J.-H. Chen, 1999: A possible mechanism for the eye rotation of typhoon Herb. J. Atmos. Sci., 56, 1659–1673.
Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288–305.
Lee, C.-S., Y.-C. Liu, and F.-C. Chien, 2008: The secondary low and heavy rainfall associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 1260–1283.
Lee, T.-Y., C.-C. Wu, and R. Rios-Berrios, 2021: The role of low-level flow direction on tropical cyclone intensity changes in a moderate-sheared environment. J. Atmos. Sci., 78, 2859–2877.
Lee, W.-C., and F. D. Marks, 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 1925–1936.
Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and F. D. Marks Jr., 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part III: Evolution and structure of Typhoon Alex (1987). Mon. Wea. Rev., 128, 3982–4001.
Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 2419–2439.
Lemon, L. R., D. W. Burgess, and R. A. Brown, 1978: Tornadic storm airflow and morphology derived from single-Doppler radar measurements. Mon. Wea. Rev., 106, 48–61.
Lhermitte, R. M, and D. Atlas 1961: Precipitation motion by Pulse Doppler radar. Proceedings of the 9th Weather Radar Conference, Boston, Amer. Meteor. Soc, 218-233.
Lhermitte, R., 1970: Dual-Doppler radar observations of convective storm circulation. Preprints 14th Radar Meteorology Conference, Tucson, Ariz., Amer. Meteor. Soc., 139-144.
Liang, J., L. Wu, and G. Gu, 2018: Rapid weakening of tropical cyclones in monsoon gyres over the tropical Western North Pacific. J. Clim., 31, 1015–1028.
Liang, J., L. Wu, G. Gu, and Q. Liu, 2016: Rapid weakening of Typhoon Chan-Hom (2015) in a monsoon gyre. J. Geophys. Res. Atmos., 121, 9508–9520.
Lin, Y. L., D. B. Ensley, S. Chiao, and C. Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 2929-2950.
Lin, Y.-F., C.-C. Wu, T.-H. Yen, Y.-H. Huang, and G.-Y. Lien, 2020: Typhoon Fanapi (2010) and its interaction with Taiwan terrain – Evaluation of the uncertainty in track, intensity and rainfall simulations. J. Meteorol. Soc. Japan. Ser. II, 98, 93–113.
Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010.
Liou, Y.-C., T.-C. Chen Wang, and P.-Y. Huang, 2016: The inland eyewall reintensification of Typhoon Fanapi (2010) documented from an observational perspective using multiple-Doppler radar and surface measurements. Mon. Wea. Rev., 144, 241–261.
Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140–164.
Loew, E., and C. A. Walther; 1995: Real-time spectral moment calculations for a multi-frequency doppler radar. Preprints, 9th Symp. on Meteor. Observ. and Instrumentation, 27-31 March, 405–407.
Lorsolo, S., and A. Aksoy, 2012: Wavenumber analysis of azimuthally distributed data: Assessing maximum allowable gap size. Mon. Wea. Rev., 140, 1945–1956.
Marks, F. D., Jr., and R. A. Houze, Jr., 1987: Inner core structure of hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 1296–1317.
May, P. T., 2001: Mesocyclone and microburst signature distortion with dual PRT radar. J. Atmos. Oceanic Technol., 18, 1229–1233.
Mazzarella, V., I. Maiello, R. Ferretti, V. Capozzi, E. Picciotti, P. P. Alberoni, F. S. Marzano, and G. Budillon, 2020: Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A comparison between 3D and 4D variational methods. Quart. J. Roy. Meteor. Soc., 146, 348–366.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
Murillo, S. T., W. Lee, M. M. Bell, G. M. Barnes, F. D. Marks, and P. P. Dodge, 2011: Intercomparison of Ground-Based Velocity Track Display (GBVTD)-retrieved circulation centers and structures of Hurricane Danny (1997) from two coastal WSR-88Ds. Mon. Wea. Rev., 139, 153–174.
Pan, X., X. Tian, X. Li, Z. Xie, A. Shao, and C. Lu, 2012: Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res., 117, D17113.
Potvin, C. K., D. Betten, L. J. Wicker, K. L. Elmore, and M. I. Biggerstaff, 2012: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 3487–3494.
Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Q. J. R. Meteorol. Soc., 138, 1035–1054.
Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 1521–1530.
Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425–444.
Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603–631.
Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969.
Rennie, S., L. Rikus, N. Eizenberg, P. Steinle, and M. Krysta, 2020: Impact of Doppler radar wind observations on Australian high-resolution numerical weather prediction. Wea. Forecasting, 35, 309–324.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi:10.5194/acp-10-3163-2010.
Rihan, F. A., C. G. Collier, S. P. Ballard, and S. Swarbrick, 2008: Assimilation of Doppler radial winds into a 3D-Var system: Errors and impact of radial velocities on the variational analysis and model forecasts. Quart. J. Roy. Meteor. Soc., 134, 1701–1716.
Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 1717-1738.
Ryglicki, D. R., Velden, C. S., Reasor, P. D., Hodyss, D., and Doyle, J. D., 2021: Observations of atypical rapid intensification characteristics in Hurricane Dorian (2019). Mon. Wea. Rev. 149, 2131–2150.
Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 2089–2106.
Shimada, U., 2022: Variability of environmental conditions for tropical cyclone rapid intensification in the western North Pacific. J. Clim., 35, 4437–4454.
Simonin, D., S. P. Ballard, and Z. Li, 2014: Doppler radar radial wind assimilation using an hourly cycling 3D-Var with a 1.5 km resolution version of the Met Office Unified Model for nowcasting. Quart. J. Roy. Meteor. Soc., 140, 2298–2314.
Sirmans, D., D. S. Zrnic, and B. Bumgarner, 1976: Extension of maximum unambiguous Doppler velocity by use of two sampling rates. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 23–28.
Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
Tabary, P., F. Guiber, L. Périer, and J. Parent-du-Châtelet, 2006: An operational triple-PRT Doppler scheme for the French radar network. J. Atmos. Oceanic Technol., 23, 1645–1656.
Tabary, P., G. Scialom, and U. Germann, 2001: Real-time retrieval of the wind from aliased velocities measured by Doppler radars. J. Atmos. Oceanic Technol., 18, 875–882.
Tang, C. K., and J. C. Chan, 2015: Idealized simulations of the effect of local and remote topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 141, 2045–2056.
Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Torgerson, W. S., J. Schwendike, A. Ross, and C. Short, 2023a: Comparing short term intensity fluctuations and an Eyewall replacement cycle in Hurricane Irma (2017) during a period of rapid intensification. EGUsphere, 2023, 1-36.
Torgerson, W., J. Schwendike, A. Ross, and C. J. Short, 2023b: Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification. Wea. Climate Dyn., 4, 331-359.
Velden, C., and L. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244–253
Vinour, L., S. Jullien, A. Mouche, C. Combot, and M. Mangeas, 2021: Observations of tropical cyclone inner-Core fine-scale structure, and its link to intensity variations. J. Atmos. Sci., 78, 3651–3671.
Wada, A., 2021: Roles of oceanic mesoscale eddy in rapid weakening of Typhoons Trami and Kong-Rey in 2018 simulated with a 2-km-mesh atmosphere-wave-ocean coupled model. J. Meteorol. Soc. Japan. Ser. II, 99, 1453–1482.
Wadler, J. B., J. J. Cione, J. A. Zhang, E. A. Kalina, and J. Kaplan, 2022: The effects of environmental wind shear direction on tropical cyclone boundary layer thermodynamics and intensity change from multiple observational datasets. Mon. Wea. Rev., 150, 115-134.
Waldteufel P, and Corbin H. 1979: On the analysis of single Doppler data. J. Appl. Meteorol. 18, 532–542.
Wang, M., K. Zhao, W. C. Lee, B. J.-D. Jou, and M. Xue, 2012: The gradient velocity track display (GrVTD) technique for retrieving tropical cyclone primary circulation from aliased velocities measured by single-Doppler radar. J. Atmos. Oceanic Technol., 29, 1026–1041.
Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands-driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 2217–2236
Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859–1876.
Wood, K. M., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10,091–10,097.
Wood, V. T., and R. A. Brown, 1992: Effects of radar proximity on single-Doppler velocity signatures of axisymmetric rotation and divergence. Mon. Wea. Rev., 120, 2798–2807.
Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155–160.
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.
Wu, C.-C., and Y-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015.
Xiao, Q., Y. Kuo, J. Sun, W. Lee, E. Lim, Y. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788
Xu, Q., P. Zhang, S. Liu, and D. Parrish, 2011: A VAD-based dealiasing method for radar velocity data quality control. J. Atmos. Oceanic Technol., 28, 50–62.
Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095–3115.
Yang, M.‐J., D.‐L. Zhang, X.‐D. Tang, and Y. Zhang, 2011a: A modeling study of Typhoon Nari (2001) at landfall: 2. Structural changes and terrain‐induced asymmetries, J. Geophys. Res., 116, D09112, doi:10.1029/2010JD015445.
Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011b: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828.
Yang, M.-J., Y.-C. Wu, and Y.-C. Liou, 2018: The study of inland eyewall reformation of Typhoon Fanapi (2010) using numerical experiments and vorticity budget analysis. J. Geophys. Res. Atmos., 123, 9604–9623, https://doi. org/10.1029/2018JD02828.
Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193–3212.
Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan topography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.
Yeh, T.-C., L.-F. Hsiao, D.S. Chen, and K.-N. Huang, 2012: A study on terrain-induced tropical cyclone looping in East Taiwan: case study of Typhoon Haitang in 2005. Nat. Hazards, 63, 1497–1514.
Yu, C.-K., and L.-W. Cheng, 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 2894–2915.
Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 3587–3605.
Zhang, J., and S. Wang, 2006: An automated 2D multipass Doppler radar dealiasing scheme. J. Atmos. Oceanic Technol., 23, 1239–1248.
Zrnic, D. S., and P. Mahapatra, 1985: Two methods of ambiguity resolution in pulsed Doppler weather radars. IEEE Trans. Aerosp. Electron. Syst., 16, 1351–1363.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95645-
dc.description.abstract本研究主題為探討地形引發中尺度環流對熱帶氣旋內核結構演變之影響。2021年燦樹颱風在通過臺灣東部海面時強度快速增加,並伴隨眼牆對流顯著的波數1不對稱性,這些現象均透過臺灣密集的雷達網進行完整觀測。因此,藉由分析雷達回波、速度場以及地面測站資料,提供了本研究難得的機會,探討燦樹颱風內核結構的演變過程以及其與環境流場之關聯;並可針對此類結構極端扎實的颱風,進行雷達資料同化以探討模式渦漩初始化的議題。
為修正颱風強風造成雷達都卜勒速度的折錯問題,本研究首先發展vortex-based Doppler velocity dealiasing (VDVD)演算法,針對雷達都卜勒速度場進行品質控管。此演算法使用理想渦漩做為參考風場進行反折錯,並搭配內迴圈以ground-based velocity track display (GBVTD)技術調整颱風風場結構、外迴圈以GBVTD-simplex技術調整颱風中心的內外雙迴圈架構進行。結果顯示VDVD在理想個案或實際個案中,即使渦漩因為徑向風、平均流或渦漩本身切向風所造成的波數1不對稱風場結構,均可有效修正受折錯的速度場。燦樹颱風的雷達速度場資料經過VDVD與本研究所發展另一套修正局部折錯資料的方法處理後,可有效進行反折錯,以確保資料品質並進行後續的分析。
使用GBVTD反演燦樹颱風在3公里高度之切向風場顯示,其最大風速於增強階段時,在11小時內增加約18 m s-1,並於減弱階段在8小時內減少19 m s-1;顯示燦樹颱風在24小時內經歷了快速增強(rapid intensification)與快速減弱(rapid weaking)的過程,此類強度劇烈變化的個案為預報作業上的一大挑戰。在增強過程期間,燦樹颱風眼牆波數1不對稱性的最大值區域,由原本位於颱風中心東側,以氣旋式方向迅速移動至北側,此轉換過程恰好發生於地面測站資料觀測到地形繞流的訊號之後。另外,此波數1不對稱對流的軸向變化與雷達資料所反演的meso-β尺度垂直風切方向隨時間具有一致性;但由重分析資料計算而得的meso-α尺度垂直風切方向,則與眼牆對流分布不具一致性。顯示當外部強迫機制主要由地形所引發時, meso-β尺度的垂直風切可較meso-α尺度垂直風切更具代表性。利用此meso-β尺度垂直風切搭配地面測站資料進行分析,本研究推測燦樹颱風的快速增強過程與1) 地形引發在颱風南側之邊界層入流、2) 風向指向上風切左側象限的低層平均流以及3) 較弱的高層風切有關。
本研究進一步使用數值模式搭配雷達資料同化探討如何對於燦樹颱風此類風場結構極端扎實的颱風進行渦旋初始化。將雷達都卜勒速度內插至模式網格後進行資料同化的VRC實驗顯示其模擬之渦漩的強度變化與雷達觀測較為接近,從9月11日1100 UTC持續增強至9月12日0000 UTC,且眼牆對流演變亦與雷達觀測之圓形眼牆較為一致。VRP實驗模擬之渦漩雖然於9月11日1800 UTC前展現較VRC實驗更快的增強速率,但後續強度則呈現緩慢減弱的趨勢,加上眼牆對流的波數3的不對稱性,均與觀測資料不一致。上述實驗顯示VRC的同化策略可較為合理模擬渦漩的內核演變過程;然而,VRC實驗所模擬的垂直風切仍明顯較觀測資料為弱,不適合探討與風切相關的增強機制。因此,未來將藉由增加水平解析度與低層垂直解析度,對地形引發的meso-β尺度現象進行合理的模擬,以利後續定量評估造成燦樹颱風增強的主要物理機制。
zh_TW
dc.description.abstractThe central theme of this study is to investigate the impacts of terrain-induced flow on the inner-core evolution of a tropical cyclone (TC) tracking northward along Taiwan's eastern coast. Typhoon Chanthu (2021) underwent rapid intensification (RI) and rapid weakening (RW) within the 24-hour analyzed period near Taiwan, posing challenges for intensity forecasts. Its intensification, characterized by a significant increase of 18 m s-1 at 3 km altitude within 11 hours and pronounced wavenumber-1 asymmetry in eyewall convection, was thoroughly observed by Taiwan's dense radar network. These comprehensive observations provide a valuable opportunity to explore the central theme of this study and the vortex initialization issue for such an extremely compact TC through radar data assimilation in numerical model simulation.
To address the challenge of recovering aliased Doppler velocities caused by strong TC winds, this study proposes a vortex-based Doppler velocity dealiasing (VDVD) algorithm specifically for TCs. The algorithm employs an inner-outer iterative procedure, adjusting the reference vortex structure using the ground-based velocity track display (GBVTD) technique, and utilizing the GBVTD-simplex algorithm for center correction. Both the VDVD and a local dealiasing method, also developed in this study, were applied to the aliased Doppler velocities. These methods effectively corrected the velocities and ensured the data were suitable for accurate analyses.
Radar analyses for Typhoon Chanthu suggest that radar-derived meso-β scale vertical wind shear (VWS), which aligns better with the observed rotation of eyewall asymmetry, is more representative than meso-α scale VWS when terrain-induced forcing predominates. Further examination of the radar-derived VWS indicates that the VWS profile provided a more favorable environment for typhoon intensification. Observational analyses reveal that Chanthu's RI was influenced by three factors: 1) terrain-induced boundary inflow from the south of the typhoon; 2) upshear-left-pointing low-level mean flow; and 3) weak upper-level VWS.
To explore effective methods for initializing a compact TC vortex like Chanthu in numerical models, two radar data assimilation strategies were compared. The VRC experiment, which assimilates Doppler velocity interpolated onto the model grid, showed better consistency with radar observations regarding intensity change and eyewall evolution. In contrast, the VRP experiment, which assimilates thinned radar data in original coordinates, exhibited eyewall asymmetry dominated by a wavenumber-3 structure, differing from radar observations. However, the weak VWS in the VRC experiment, inconsistent with observations, hinders investigating intensification mechanisms. Future enhancements like increasing horizontal and vertical resolution are recommended to better capture meso-β scale features and assess the major mechanisms driving Chanthu's intensification.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:17:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:17:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
List of Figures viii
List of Tables xvii
1. Introduction 1
2. Vortex-based Doppler velocity dealiasing algorithm 10
2.1. Data and Methodology 15
2.1.1 Radar data 15
2.1.2 Methodology 16
2.2. Sensitivity Tests 21
2.2.1 Rankine combined vortex 23
2.2.2 Effect of Doppler velocity asymmetry 27
2.2.3 Effect of TC center displacement 34
2.2.4 Mitigation of the TC center displacement effects 36
2.3. Results and Evaluations 40
2.3.1 Typhoon Fitow (2013) 40
2.3.2 Typhoon Nesat (2017) 47
2.4. Discussion 51
3. Rapid Intensification of Typhoon Chanthu (2021) 53
3.1. Data and method 53
3.2. Overall structure 59
3.3. Evolution of the inner core structure 67
3.4. Radar-derived mean flow and VWS 74
3.5. Discussion 81
3.5.1 Terrain effects 81
3.5.2 VWS profile patterns 91
3.5.3 Banded reflectivity feathers outside the eyewall 97
4. Vortex initialization strategies for a compact TC 99
4.1. Numerical model Configuration 99
4.2. Idealized experiments 101
4.2.1 Uniform flow experiment 104
4.2.2 Rotational flow experiment 110
4.3. Simulation validation 115
4.4. Discussion 123
5. Conclusions and future work 129
Appendix 140
A1. Iterative Surface fitting dealising algorithm 140
A2. Table of abbreviations 150
A3. Table of variables 151
Reference 152
-
dc.language.isoen-
dc.title地形引發中尺度環流對燦樹颱風(2021)快速增強之影響zh_TW
dc.titleA Study on the Mesoscale Flows Induced by Taiwan Terrain and Their Impacts on the Rapid Intensification of Typhoon Chanthu (2021)en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor李清勝zh_TW
dc.contributor.coadvisorCheng-Shang Leeen
dc.contributor.oralexamcommittee郭鴻基;吳俊傑;廖宇慶;王重傑;張保亮zh_TW
dc.contributor.oralexamcommitteeHung-Chi Kuo;Chun-Chieh Wu;Yu-Chieng Liou;Chung-Chieh Wang;Pao-Liang Changen
dc.subject.keyword颱風,快速增強,地形效應,風場反演,反折錯,垂直風切,資料同化,zh_TW
dc.subject.keywordtyphoon,rapid intensification,terrain effect,wind retrieval,dealias,vertical wind shear,data assimilation,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202403267-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf16.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved