請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹魁元 | zh_TW |
| dc.contributor.advisor | Kuei-Yuan Chan | en |
| dc.contributor.author | 張問蕖 | zh_TW |
| dc.contributor.author | Wen-Qu Zhang | en |
| dc.date.accessioned | 2024-09-15T16:17:01Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] D.-S. Komaris, G. Tarfali, B. O'Flynn, and S. Tedesco, “Unsupervised IMU-based evaluation of at-home exercise programmes: a feasibility study,” BMC Sports Sci- ence, Medicine and Rehabilitation, vol. 14, no. 1, p. 28, 2022.
[2] R. S. McGinnis, S. M. Cain, S. P. Davidson, R. V. Vitali, N. C. Perkins, and S. G. McLean, “Quantifying the effects of load carriage and fatigue under load on sacral kinematics during countermovement vertical jump with IMU-based method,” Sports Engineering, vol. 19, pp. 21–34, 2016. [3] P. Miranda-Oliveira, M. Branco, and O. Fernandes, “Accuracy of Inertial Measure- ment Units When Applied to the Countermovement Jump of Track and Field Ath- letes,” Sensors, vol. 22, no. 19, p. 7186, 2022. [4] Vicon, “Full body modeling with plug-in gait,” 2024. Accessed: 2024-07-19. [5] Vicon, “Vicon hardware accessories,” 2024. Accessed: 2024-07-19. [6] X. T. B.V., MTw Awinda User Manual, 2024. Accessed: 2024-07-13. [7] J. Zhao, “A Review of Wearable IMU (Inertial-Measurement-Unit)-based Pose Es- timation and Drift Reduction Technologies,” in Journal of Physics: Conference Se- ries, vol. 1087, p. 042003, IOP Publishing, 2018. [8] L. Pacher, N. Vignais, C. Chatellier, R. Vauzelle, and L. Fradet, “The contribution of multibody optimization when using inertial measurement units to compute lower- body kinematics,” Medical Engineering & Physics, vol. 111, p. 103927, 2023. [9] Movella, “Xsens mtw awinda,” 2024. Accessed: 2024-07-13. [10] G. P. Panebianco, M. C. Bisi, R. Stagni, and S. Fantozzi, “Analysis of the perfor- mance of 17 algorithms from a systematic review: Influence of sensor position, anal- ysed variable and computational approach in gait timing estimation from IMU mea- surements,” Gait & posture, vol. 66, pp. 76–82, 2018. [11] P. Colne and P. Thoumie, “Muscular compensation and lesion of the anterior cruciate ligament: Contribution of the soleus muscle during recovery from a forward fall,” Clinical Biomechanics, vol. 21, no. 8, pp. 849–859, 2006. [12] V. J. Harandi, D. C. Ackland, R. Haddara, L. E. C. Lizama, M. Graf, M. P. Galea, and P. V. S. Lee, “Gait compensatory mechanisms in unilateral transfemoral amputees,” Medical engineering & physics, vol. 77, pp. 95–106, 2020. [13] A. Ancillao, S. Tedesco, J. Barton, and B. O'Flynn, “Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review,” Sensors, vol. 18, no. 8, p. 2564, 2018. [14] M. Bocian, J. Brownjohn, V. Racic, D. Hester, A. Quattrone, and R. Monnickendam, “A framework for experimental determination of localised vertical pedestrian forces on full-scale structures using wireless attitude and heading reference systems,” Jour- nal of Sound and Vibration, vol. 376, pp. 217–243, 2016. [15] E. Shahabpoor and A. Pavic, “Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor,” Journal of biomechanics, vol. 79, pp. 181–190, 2018. [16] L. Ren, R. K. Jones, and D. Howard, “Whole body inverse dynamics over a complete gait cycle based only on measured kinematics,” Journal of biomechanics, vol. 41, no. 12, pp. 2750–2759, 2008. [17] A. Karatsidis, G. Bellusci, H. M. Schepers, M. De Zee, M. S. Andersen, and P. H. Veltink, “Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture,” Sensors, vol. 17, no. 1, p. 75, 2016. [18] H. J. Hermens, B. Freriks, C. Disselhorst-Klug, and G. Rau, “Development of recom- mendations for SEMG sensors and sensor placement procedures,” Journal of elec- tromyography and Kinesiology, vol. 10, no. 5, pp. 361–374, 2000. [19] H. Akuzawa, A. Imai, S. Iizuka, N. Matsunaga, and K. Kaneoka, “The influence of foot position on lower leg muscle activity during a heel raise exercise measured with fine-wire and surface EMG,” Physical Therapy in Sport, vol. 28, pp. 23–28, 2017. [20] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of Hand Prostheses Using Peripheral Information,” IEEE reviews in biomedical engineering, vol. 3, pp. 48–68, 2010. [21] K. L. Newcomer, T. D. Jacobson, D. A. Gabriel, D. R. Larson, R. H. Brey, and K. N. An, “Muscle Activation Patterns in Subjects With and Without Low Back Pain,” Archives of physical medicine and rehabilitation, vol. 83, no. 6, pp. 816–821, 2002. [22] F. Schellenberg, K. Oberhofer, W. R. Taylor, and S. Lorenzetti, “Review of Mod- elling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training,” Computational and mathematical methods in medicine, vol. 2015, 2015. [23] “Overview of opensim workflows - opensim documentation - opensim. https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/ pages/53084226/Overview+of+OpenSim+Workflows. (Accessed on 05/23/2024). [24] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine, “AN OPTIMAL CONTROL MODEL FOR MAXIMUM-HEIGHT HUMAN JUMPING,” Journal of biomechan- ics, vol. 23, no. 12, pp. 1185–1198, 1990. [25] A. J. Van Soest, A. L. Schwab, M. F. Bobbert, and G. J. van Ingen Schenau, “THE IN- FLUENCE OF THE BIARTICULARITY OF THE GASTROCNEMIUS MUSCLE ON VERTICAL-JUMPING ACHIEVEMENT,” Journal of biomechanics, vol. 26, no. 1, pp. 1–8, 1993. [26] M. F. Bobbert, W. W. de Graaf, J. N. Jonk, and L. R. Casius, “Explanation of the bilateral deficit in human vertical squat jumping,” Journal of applied physiology, vol. 100, no. 2, pp. 493–499, 2006. [27] D. T. Reilly and M. Martens, “Experimental Analysis of the Quadriceps Muscle Force and Patello-Femoral Joint Reaction Force for Various Activities,” Acta Or- thopaedica Scandinavica, vol. 43, no. 2, pp. 126–137, 1972. [28] A. Nagano, T. Komura, and S. Fukashiro, “Optimal coordination of maximal-effort horizontal and vertical jump motions–a computer simulation study,” Biomedical en- gineering online, vol. 6, pp. 1–9, 2007. [29] A. Pedotti, V. Krishnan, and L. Stark, “Optimization of Muscle-Force Sequencing in Human Locomotion,” Mathematical Biosciences, vol. 38, no. 1-2, pp. 57–76, 1978. [30] B. Bresler and J. Frankel, “The Forces and Moments in the Leg During Level Walk- ing,” Transactions of the American Society of Mechanical Engineers, vol. 72, no. 1, pp. 27–36, 1950. [31] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendel- man, and D. G. Thelen, “OpenSim: Open Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE transactions on biomedical engineering, vol. 54, no. 11, pp. 1940–1950, 2007. [32] “Anybody technology - anybody technology.” https://www.anybodytech.com/. (Accessed on 05/23/2024). [33] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp, “Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait,” IEEE transactions on biomedical engineering, vol. 63, no. 10, pp. 2068–2079, 2016. [34] D. A. Winter, BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVE- MENT. John wiley & sons, 2009. [35] X. T. B.V., “Mtw awinda,” 2024. Accessed: 2024-07-13. [36] A. C. Severin and J. Danielsen, “Rotation sequence and marker tracking method affects the humerothoracic kinematics of manual wheelchair propulsion,” Journal of Biomechanics, vol. 141, p. 111212, 2022. [37] K. Group, “Portable 3d force plates with aluminum top plate 9286b,” 2024. Ac- cessed: 2024-07-13. [38] R. Van Hulle, C. Schwartz, V. Denoël, J.-L. Croisier, B. Forthomme, and O. Brüls, “A foot/ground contact model for biomechanical inverse dynamics analysis,” Journal of Biomechanics, vol. 100, p. 109412, 2020. [39] S.-Y. Low, A Method of Determining Muscle Forces in Taekwondo Front Kick via Optimization and Inverse Dynamics. 2017. [40] F. De Groote, A. Van Campen, I. Jonkers, and J. De Schutter, “Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors,” Journal of biomechanics, vol. 43, no. 10, pp. 1876– 1883, 2010. [41] A. Zargham, M. Afschrift, J. De Schutter, I. Jonkers, and F. De Groote, “Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces,” Gait & posture, vol. 74, pp. 223–230, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95644 | - |
| dc.description.abstract | 本研究提出一個僅使用四顆慣性量測單元 (Inertial Measurement Units, IMU) 估測人體蹲跳動作中運動狀態、地面反作用力及肢段力矩的方法。傳統上,這類分析通常需要使用較昂貴的設備,如測力板,並且在實驗室環境中進行。然而,在非實驗室環境中進行人體運動量測,對於遠端居家復健和多元化運動項目之分析至關重要。在蹲跳行為中,地面反作用力位置對於人體運動狀態的計算結果影響很大,但多數論文只有討論利用 IMU 量測地面反作用力之大小而非位置。
本研究提出的方法主要基於最佳控制和感測器融合策略。首先建立一個人體肢段的動態系統,以各肢段力矩做為系統輸入,輸出為符合 運動學約束的運動狀態。透過最佳化方法求得最佳之系統輸入,在確保地面反作用力位置合理的前提下,使系統輸出與多個感測器測量結果相符合。研究結果表明,此方法能夠在考慮地面反作用力位置合理性的情況下,得到與直接 IMU 測量相似的運動學數據,同時滿足平面簡化模型中的運動學約束。 總的來說,本研究為非實驗室環境下的人體運動分析提供了一種新的透過動態最佳化建立人體運動系統的方法,對於遠端復健、運動訓 練等領域具有重要的應用價值。 | zh_TW |
| dc.description.abstract | This study proposes a method to estimate the human motion, ground reaction force (GRF), and segmental torques during human countermovement jumps using only four inertial measurement units (IMUs). Traditionally, such analyses require more expensive equipment, such as force plates, and are conducted in laboratory settings. However, measuring human motion in non-laboratory environment is crucial for remote rehabilitation and the analysis of diverse sports activities. In countermovement jump behavior, the position of the ground reaction force significantly impacts the calculation results of the human motion state, yet most studies only discuss measuring the magnitude of the ground reaction force using IMUs, rather than its position.
The method proposed in this study is primarily based on optimal control and sensor fusion strategies. A dynamic system of human segments is established, using segmental torques as system inputs and outputs that conform to kinematic constraints as the system’s outputs. The optimal system inputs are determined through optimization methods, ensuring that the ground reaction force position is reasonable and that the system outputs match the measurements from multiple sensors. The results indicate that this method can yield kinematic data similar to those obtained from direct IMU measurements while considering the reasonableness of the ground reaction force position and sat- isfying the kinematic constraints of a simplified planar model. In summary, this study provides a novel method for establishing a human motion system through dynamic optimization for human motion analysis outside of laboratory environments, which has significant application value in fields such as remote rehabilitation and sports training. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:17:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:17:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v 目次 vii 圖次 x 表次 xii 符號列表 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 人體量測 4 2.1.1 動作捕捉 4 2.1.2 力學量測 8 2.1.3 肌肉訊號量測 8 2.2 力學模擬與估測 9 2.2.1 地面反作用力的預測 10 2.2.2 肌肉力估測 11 2.3 人體肌肉骨骼模型 12 2.3.1 數學簡化模型 12 2.3.2 商用模型 13 2.4 小結 15 第三章 研究方法 17 3.1 實驗及慣性量測單元數據分析 18 3.1.1 實驗設備及方法 20 3.1.2 慣性量測單元數據分析 21 3.2 地面反作用力計算方法驗證 23 3.2.1 受測者資料蒐集 23 3.2.2 地面反作用力計算 23 3.3 運動狀態估測 26 3.3.1 動態系統 26 3.3.2 最佳化 29 3.4 最佳化方法驗證 32 3.4.1 驗證方式 33 3.4.2 驗證結果 34 3.5 小結 36 第四章 實驗結果分析 37 4.1 欲比較之其他方法介紹 37 4.2 系統結果比較 40 4.2.1 動力學:地面反作用力及肢段力矩 41 4.2.2 運動學:肢段質心加速度、肢段角度及角速度 43 4.3 比重調整之結果比較 46 4.3.1 調整力矩項之比重 46 4.3.2 調整地面反作用力位置項之比重 52 4.3.3 調整加速規項之比重 57 4.4 小結 62 第五章 結論與未來工作 64 5.1 研究成果與貢獻 64 5.2 未來工作 65 5.2.1 模型與動作之複雜度 65 5.2.2 模型假設 66 5.2.3 力矩結果之合理性 66 5.2.4 肌肉力的估測 66 參考文獻 67 附錄A AppendixA 72 • 肢段自由體圖 72 • 肌肉參數表 77 • 最佳化問題 78 • 力與力矩平衡及肌肉力結果 78 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最佳控制 | zh_TW |
| dc.subject | 感測器融合 | zh_TW |
| dc.subject | 慣性量測單元 | zh_TW |
| dc.subject | 地面反作用力位置 | zh_TW |
| dc.subject | 動態最佳化 | zh_TW |
| dc.subject | sensor fusion | en |
| dc.subject | dynamic optimization | en |
| dc.subject | ground reaction force position | en |
| dc.subject | inertial measurement units | en |
| dc.subject | optimal control | en |
| dc.title | 以動態最佳化方法結合慣性量測估測人體運動狀態與地面反作用力:反向跳行為分析 | zh_TW |
| dc.title | Estimation of Human Motion and Ground Reaction Forces Using Dynamic Optimization and Inertial Measurement: An Analysis of Countermovement Jump | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐瑋勵;張秉純 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Li Hsu;Biing-Chwen Chang | en |
| dc.subject.keyword | 動態最佳化,地面反作用力位置,慣性量測單元,最佳控制,感測器融合, | zh_TW |
| dc.subject.keyword | dynamic optimization,ground reaction force position,inertial measurement units,optimal control,sensor fusion, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202403789 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 21.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
