請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95642完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛熙于 | zh_TW |
| dc.contributor.advisor | Hsi-Yu Schive | en |
| dc.contributor.author | 吳易修 | zh_TW |
| dc.contributor.author | Yi-Siou Wu | en |
| dc.date.accessioned | 2024-09-15T16:16:23Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | [1] Alessandro Mirizzi, Irene Tamborra, H.-Thomas Janka, Ninetta Saviano, Kate Scholberg, Robert Bollig, Lorenz Hüdepohl, and Sovan Chakraborty. Supernova neutrinos: Production, oscillations and detection. La Rivista del Nuovo Cimento, 39(102):1–112, Feb 2016.
[2] Gabriel Martínez-Pinedo, Tobias Fischer, Karlheinz Langanke, Andreas Lohs, Andre Sieverding, and Meng-Ru Wu. Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis. In Athem W. Alsabti and Paul Murdin, editors, Handbook of Supernovae, page 1805. Springer, 2017. [3] B. Müller. Neutrino emission as diagnostics of core-collapse supernovae. Annual Review of Nuclear and Particle Science, 69(1):253–278, October 2019. [4] Anthony Mezzacappa, Eirik Endeve, O. E. Bronson Messer, and Stephen W. Bruenn. Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae, 2020. [5] Ian Padilla-Gay. Neutrino Flavor Conversion in Dense Astrophysical Environments. PhD thesis, Københavns Universitet, Faculty of Science, Niels Bohr Institute, Theoretical high energy, astroparticle and gravitational physics, U. Copenhagen (main), 2022. [6] Joshua D. Martin, Duff Neill, A. Roggero, Huaiyu Duan, and J. Carlson. Equilibration of quantum many-body fast neutrino flavor oscillations, 2024. [7] G. Bellini, L. Ludhova, G. Ranucci, and F. L. Villante. Neutrino oscillations. Advances in High Energy Physics, 2014:1–28, 2014. [8] Spandan Mondal. Physics of neutrino oscillation, 2015. [9] Alexandre Sousa. Long-baseline neutrino oscillation experiments, 2011. [10] Yifang Wang and Zhi-zhong Xing. Neutrino Masses and Flavor Oscillations, page 371–395. WORLD SCIENTIFIC, August 2016. [11] Gianluigi Fogli, Eligio Lisi, Antonio Marrone, and Alessandro Mirizzi. Collective neutrino flavor transitions in supernovae and the role of trajectory averaging. Journal of Cosmology and Astroparticle Physics, 2007(12):010–010, December 2007. [12] Zewei Xiong, Meng-Ru Wu, Sajad Abbar, Soumya Bhattacharyya, Manu George, and Chun-Yu Lin. Evaluating approximate asymptotic distributions for fast neutrino flavor conversions in a periodic 1d box. Physical Review D, 108(6), September 2023. [13] R. F. Sawyer. Speed-up of neutrino transformations in a supernova environment. Physical Review D, 72(4), August 2005. [14] R. F. Sawyer. Neutrino cloud instabilities just above the neutrino sphere of a supernova. Physical Review Letters, 116(8), February 2016. [15] Sajad Abbar and Maria Cristina Volpe. On fast neutrino flavor conversion modes in the nonlinear regime. Physics Letters B, 790:545–550, March 2019. [16] Francesco Capozzi, Basudeb Dasgupta, Alessandro Mirizzi, Manibrata Sen, and Günter Sigl. Collisional triggering of fast flavor conversions of supernova neutrinos. Physical Review Letters, 122(9), March 2019. [17] Francesco Capozzi, Georg Raffelt, and Tobias Stirner. Fast neutrino flavor conversion: collective motion vs. decoherence. Journal of Cosmology and Astroparticle Physics, 2019(09):002–002, September 2019. [18] Lucas Johns, Hiroki Nagakura, George M. Fuller, and Adam Burrows. Neutrino oscillations in supernovae: Angular moments and fast instabilities. Physical Review D, 101(4), February 2020. [19] Joshua D. Martin, Changhao Yi, and Huaiyu Duan. Dynamic fast flavor oscillation waves in dense neutrino gases. Physics Letters B, 800:135088, January 2020. [20] Irene Tamborra and Shashank Shalgar. New developments in flavor evolution of a dense neutrino gas. Annual Review of Nuclear and Particle Science, 71(1):165–188, September 2021. [21] Jakob Ehring, Sajad Abbar, Hans-Thomas Janka, Georg Raffelt, and Irene Tamborra. Fast neutrino flavor conversion in core-collapse supernovae: A parametric study in 1d models. Physical Review D, 107(10), May 2023. [22] R. Bollig, H.-T. Janka, A. Lohs, G. Martínez-Pinedo, C. J. Horowitz, and T. Melson. Muon creation in supernova matter facilitates neutrino-driven explosions. Physical Review Letters, 119(24), December 2017. [23] Gang Guo, Gabriel Martínez-Pinedo, A. Lohs, and Tobias Fischer. Charged-current muonic reactions in core-collapse supernovae. Physical Review D, 102(2), July 2020. [24] Tobias Fischer, Gang Guo, Gabriel Martínez-Pinedo, Matthias Liebendörfer, and Anthony Mezzacappa. Muonization of supernova matter. Physical Review D, 102(12), December 2020. [25] Francesco Capozzi, Madhurima Chakraborty, Sovan Chakraborty, and Manibrata Sen. Mu-tau neutrinos: Influencing fast flavor conversions in supernovae. Physical Review Letters, 125(25), December 2020. [26] Francesco Capozzi, Madhurima Chakraborty, Sovan Chakraborty, and Manibrata Sen. Supernova fast flavor conversions in 1+1d : Influence of mu-tau neutrinos. Physical Review D, 106(8), October 2022. [27] P. Strack and A. Burrows. Generalized boltzmann formalism for oscillating neutrinos. Physical Review D, 71(9), May 2005. [28] Yunfan Zhang and Adam Burrows. Transport equations for oscillating neutrinos. Physical Review D, 88(10), November 2013. [29] Manu George, Meng-Ru Wu, Irene Tamborra, Ricard Ardevol-Pulpillo, and Hans-Thomas Janka. Fast neutrino flavor conversion, ejecta properties, and nucleosynthesis in newly-formed hypermassive remnants of neutron-star mergers. Physical Review D, 102(10), November 2020. [30] Tobias Stirner, Günter Sigl, and Georg Raffelt. Liouville term for neutrinos: flavor structure and wave interpretation. Journal of Cosmology and Astroparticle Physics, 2018(05):016–016, May 2018. [31] Evan Grohs, Sherwood Richers, Sean M. Couch, Francois Foucart, James P. Kneller, and G. C. McLaughlin. Neutrino fast flavor instability in three dimensions for a neutron star merger, 2023. [32] Taiki Morinaga. Fast neutrino flavor instability and neutrino flavor lepton number crossings. Physical Review D, 105(10), May 2022. [33] Basudeb Dasgupta. Collective neutrino flavor instability requires a crossing. Physical Review Letters, 128(8), February 2022. [34] Manu George, Chun-Yu Lin, Meng-Ru Wu, Tony G. Liu, and Zewei Xiong. Coseν: A collective oscillation simulation engine for neutrinos. Computer Physics Communications, 283:108588, February 2023. [35] Meng-Ru Wu, Manu George, Chun-Yu Lin, and Zewei Xiong. Collective fast neutrino flavor conversions in a 1d box: Initial conditions and long-term evolution. Physical Review D, 104(10), November 2021. [36] Soumya Bhattacharyya and Basudeb Dasgupta. Elaborating the ultimate fate of fast collective neutrino flavor oscillations. Physical Review D, 106(10), November 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95642 | - |
| dc.description.abstract | 這篇論文探討了一維高密度微中子氣體中的快速味轉換(FFC),並著重於三味系統的分析。FFC在例如核塌縮超新星(CCSNe)和中子星合併(NSMs)等極端的天文環境中是十分重要的。然而過去關於FFC的研究僅著重於考慮e和x的兩味近似系統,本研究將會考慮包含e、μ、以及τ在內的完整三味系統。
我們使用數值模擬方法來演化系統,並且通過改變不同的初始條件來探討三味系統的各式特徵。我們對三味系統進行了不穩定性分析(Instability analysis),並觀察到在兩味系統中未曾觀察過的新特徵,同時探討了緲子-陶子不對稱性對於系統的影響。 我們的研究探討了極端天文環境裡微中子的性質,同時強調了研究三味系統的必要性。這份研究能讓我們深入理解極端環境下微中子的基本性質,並為未來三味系統FFC的研究奠定基礎。 | zh_TW |
| dc.description.abstract | This thesis examines the fast flavor conversion (FFC) in one-dimensional dense neutrino gases, focusing on a comprehensive three-flavor scenario. Fast flavor conversions are essential in elucidating neutrino behavior in extreme astrophysical environments, such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). Unlike traditional studies that rely on a two-flavor approximation, this research considers the full three-flavor system involving electron, muon, and tau neutrinos.
We use numerical simulation to evolve the system, studying the different phenomena of the three-flavor system by possessing different initial conditions. An instability analysis for three flavor systems is performed, revealing new features that are not present in two-flavor approximations. We also explore the impact of μτ asymmetry on the system, demonstrating how increasing asymmetry influences flavor evolution. Our results provide deeper insights into the collective behavior of neutrinos in dense astrophysical environments, highlighting the necessity of considering all three flavors to capture the full complexity of fast flavor conversions. This work contributes to the fundamental understanding of neutrino dynamics and sets the stage for future studies in three-flavor neutrino systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:16:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:16:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xix Denotation xxi Chapter 1 Introduction 1 Chapter 2 Equations of motion 3 2.1 Free-streaming limit 5 2.2 Fast flavor conversions 5 2.3 Two-flavor approximation 7 2.4 Polarization vector for two-flavor case 9 2.5 Three-flavor system 11 2.6 Polarization vector for three-flavor case 13 Chapter 3 Numerical Simulation 15 3.1 Initialization 15 3.1.1 Scheme : Pure_Flv2 16 3.1.2 Scheme : Pure_Flv3 17 3.1.3 Scheme : Mixed_Flv3 18 3.2 Numerical simulation schemes 19 3.2.1 Boundary conditions 19 3.2.2 Discretization and numerical schemes 19 3.2.3 Converting to physical units 20 Chapter 4 Conserved Quantities 21 4.1 Locally conserved quantities 21 4.1.1 Conservation of Tr(ρ) 21 4.1.2 QKE in terms of polarization vector (two-flavor) 22 4.1.3 QKE in terms of polarization vector (three-flavor) 24 4.1.4 Conservation of |P| 25 4.1.5 Conservation of <P,P,P> 26 4.2 Globally conserved quantities 27 4.2.1 Conservation of D0 27 4.3 Numerical simulation 29 Chapter 5 Instability Analysis 33 5.1 Linear instability analysis for two-flavor case 33 5.2 Linear instability analysis for three-flavor case 35 5.3 Numerical simulation 38 5.3.1 Two-flavor case 38 5.3.2 Three-flavor case 39 Chapter 6 Flavor Evolution 41 6.1 Identical Geµ & Geτ 41 6.1.1 Initial angular distribution 41 6.1.2 Flavor survival probability 42 6.1.3 Angular distribution 45 6.1.4 Density matrix 49 6.1.5 Summary 53 6.2 Increasing Gµτ , crossings in three sectors 54 6.2.1 Setup 54 6.2.2 Angular distribution 55 6.2.3 Density matrix (diagonal entries) 58 6.2.4 Density matrix (off-diagonal entries) 61 6.2.5 Summary 62 6.3 Asymptotic distributions 63 6.3.1 Analytical evaluation for two-flavor case 63 6.3.1.1 Box-like prescription 64 6.3.1.2 Linear prescription 65 6.3.1.3 Quadratic prescription 65 6.3.1.4 Continuous prescription 65 6.3.2 Analytical evaluation for three-flavor case 66 6.3.3 Error estimations 68 6.3.4 Result 69 6.3.5 Conclusion 71 Chapter 7 Flavor Evolution: Extended Analysis 73 7.1 Full flavor depolarization 73 7.1.1 Setup 74 7.1.2 Asymmetry parameters 75 7.1.3 Angular distribution 76 7.1.4 Density matrix 78 7.1.5 Summary 80 7.2 Two crossings and three crossings 81 7.2.1 Setup 81 7.2.2 Angular distribution 82 7.2.3 Density matrix 84 7.2.4 Summary 87 Chapter 8 Conclusions 89 8.1 Summary of findings 89 8.2 Future research 90 References 91 Appendix A — Imposing z-axial Symmetry97 | - |
| dc.language.iso | en | - |
| dc.subject | 微中子振盪 | zh_TW |
| dc.subject | 緲子-陶子不對稱性 | zh_TW |
| dc.subject | 中子星合併 | zh_TW |
| dc.subject | 核塌縮超新星 | zh_TW |
| dc.subject | 三味系統 | zh_TW |
| dc.subject | 快速味轉換 | zh_TW |
| dc.subject | Core-collapse supernovae | en |
| dc.subject | Three-flavor system | en |
| dc.subject | Neutrino oscillations | en |
| dc.subject | Fast flavor conversion | en |
| dc.subject | μτ asymmetry | en |
| dc.subject | Neutron star mergers | en |
| dc.title | 探討一維高密度微中子氣體中的快速味轉換:關於三味系統的分析 | zh_TW |
| dc.title | Exploring Fast Neutrino Flavor Conversions in One-Dimensional Dense Neutrino Gases : A Three-Flavor Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳孟儒;熊怡 | zh_TW |
| dc.contributor.oralexamcommittee | Meng-Ru Wu;Yee Hsiung | en |
| dc.subject.keyword | 快速味轉換,微中子振盪,三味系統,核塌縮超新星,中子星合併,緲子-陶子不對稱性, | zh_TW |
| dc.subject.keyword | Fast flavor conversion,Neutrino oscillations,Three-flavor system,Core-collapse supernovae,Neutron star mergers,μτ asymmetry, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202403347 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 18.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
