Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95637
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈zh_TW
dc.contributor.advisorLin-Chi Chenen
dc.contributor.author何亭萱zh_TW
dc.contributor.authorTing-Syuan Heen
dc.date.accessioned2024-09-15T16:14:36Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-07-27-
dc.identifier.citationAbnous, K., Danesh, N. M., Alibolandi, M., Ramezani, M., & Taghdisi, S. M. (2017). Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Microchimica Acta, 184(4), 1151-1159.
Ahmad, A., & Moore, E. (2012). Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo [a] pyrene in water. Analyst, 137(24), 5839-5844.
Altintas, Z., Akgun, M., Kokturk, G., & Uludag, Y. (2018). A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosensors and Bioelectronics, 100, 541-548.
Arya, S. K., Zhurauski, P., Jolly, P., Batistuti, M. R., Mulato, M., & Estrela, P. (2018). Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosensors and Bioelectronics, 102, 106-112.
Bahner, N., Reich, P., Frense, D., Menger, M., Schieke, K., & Beckmann, D. (2018). An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Analytical and Bioanalytical Chemistry, 410(5), 1453-1462.
Brosel-Oliu, S., Abramova, N., Uria, N., & Bratov, A. (2019). Impedimetric transducers based on interdigitated electrode arrays for bacterial detection–A review. Analytica chimica acta, 1088, 1-19.
Campos, R., & Kataky, R. (2012). Electron transport in supported and tethered lipid bilayers modified with bioelectroactive molecules. The Journal of Physical Chemistry B, 116(13), 3909-3917.
Chaniotakis, N., & Sofikiti, N. (2008). Novel semiconductor materials for the development of chemical sensors and biosensors: A review. Analytica chimica acta, 615(1), 1-9.
Chiriaco, M. S., Primiceri, E., d'Amone, E., Ionescu, R. E., Rinaldi, R., & Maruccio, G. (2011). EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab on a Chip, 11(4), 658-663.
Cho, I.-H., Lee, J., Kim, J., Kang, M.-s., Paik, J. K., Ku, S., Cho, H.-M., Irudayaraj, J., & Kim, D.-H. (2018). Current technologies of electrochemical immunosensors: Perspective on signal amplification. Sensors, 18(1), 207.
de-los-Santos-Álvarez, N., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., & Tuñón-Blanco, P. (2009). SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B. Biosensors and Bioelectronics, 24(8), 2547-2553.
Ding, S., Das, S. R., Brownlee, B. J., Parate, K., Davis, T. M., Stromberg, L. R., Chan, E. K. L., Katz, J., Iverson, B. D., & Claussen, J. C. (2018). CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosensors and Bioelectronics, 117, 68-74.
Du, Y., Li, B., & Wang, E. (2013). “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Accounts of chemical research, 46(2), 203-213.
E Ferapontova, E. (2011). Electrochemical indicators for DNA electroanalysis. Current Analytical Chemistry, 7(1), 51-62.
Fang, J., Miao, X., Zhang, X., Liu, Y., Chen, S., Chen, Y., Wang, W., & Zhang, Y. (2019). Enhancing the capacity of activated carbon electrodes by a redox mediator pair for the fabrication of flexible asymmetric solid-state supercapacitors. Journal of Power Sources, 418, 24-32.
Feng, J.-J., Xu, J.-J., & Chen, H.-Y. (2005). Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode. Journal of Electroanalytical Chemistry, 585(1), 44-50.
Hatada, M., Loew, N., Okuda-Shimazaki, J., Khanwalker, M., Tsugawa, W., Mulchandani, A., & Sode, K. (2021). Development of an Interdigitated Electrode-Based Disposable Enzyme Sensor Strip for Glycated Albumin Measurement. Molecules, 26(3), 734.
Heinrich, L., Tissot, N., Hartmann, D. J., & Cohen, R. (2010). Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. Journal of immunological methods, 352(1-2), 13-22.
Hu, L., Zhai, T., Li, H., & Wang, Y. (2019). Redox‐mediator‐enhanced electrochemical capacitors: recent advances and future perspectives. ChemSusChem, 12(6), 1118-1132.
Islam, M. N., Gorgannezhad, L., Masud, M. K., Tanaka, S., Hossain, M. S. A., Yamauchi, Y., Nguyen, N. T. , & Shiddiky, M. J. (2018). Graphene‐Oxide‐Loaded Superparamagnetic Iron Oxide Nanoparticles for Ultrasensitive Electrocatalytic Detection of MicroRNA. ChemElectroChem, 5(17), 2488-2495.
Jolly, P., Formisano, N., Tkáč, J., Kasák, P., Frost, C. G., & Estrela, P. (2015). Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sensors and Actuators B: Chemical, 209, 306-312.
Keighley, S. D., Li, P., Estrela, P., & Migliorato, P. (2008). Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 23(8), 1291-1297.
Kudr, J., Zitka, O., Klimanek, M., Vrba, R., & Adam, V. (2017). Microfluidic electrochemical devices for pollution analysis–A review. Sensors and Actuators B: Chemical, 246, 578-590.
Kundu, A., Ausaf, T., Rajasekaran, P., & Rajaraman, S. (2019). Multimodal microfluidic biosensor with interdigitated electrodes (IDE) and microelectrode array (MEA) for bacterial detection and identification. Paper presented at the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).
Lai, C.-Y., Huang, W.-C., Weng, J.-H., Chen, L.-C., Chou, C.-F., & Wei, P.-K. (2020). Impedimetric aptasensing using a symmetric Randles circuit model. Electrochimica Acta, 337, 135750.
Lai, C.-Y., Weng, J.-H., Shih, W.-L., Chen, L.-C., Chou, C.-F., & Wei, P.-K. (2019). Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation. Electrochimica Acta, 320, 134629.
Lamas-Ardisana, P., Martínez-Paredes, G., Añorga, L., & Grande, H. (2018). Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing. Biosensors and Bioelectronics, 109, 8-12.
Lao, Y.-H., Peck, K., & Chen, L.-C. (2009). Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Analytical chemistry, 81(5), 1747-1754.
Lauffenburger, D. A., & Linderman, J. (1996). Receptors: models for binding, trafficking, and signaling: Oxford University Press.
Lei, K. F., Wu, M.-H., Hsu, C.-W., & Chen, Y.-D. (2014). Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosensors and Bioelectronics, 51, 16-21.
Li, T., Díaz‐Real, J. A., & Holm, T. (2021). Design of Electrochemical Microfluidic Detectors: A Review. Advanced Materials Technologies, 6(12), 2100569.
Li, Y., Hu, M., Huang, X., Wang, M., He, L., Song, Y., Jia, Q., Zhou, N., Zhang, Z., & Du, M. (2020). Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sensors and Actuators B: Chemical, 306, 127608.
Liang, Y., Wu, C., Figueroa-Miranda, G., Offenhaeusser, A., & Mayer, D. (2019). Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosensors and Bioelectronics, 144, 111668.
Lisak, G., Cui, J., & Bobacka, J. (2015). based microfluidic sampling for potentiometric determination of ions. Sensors and Actuators B: Chemical, 207, 933-939.
Liu, X., Qin, Y., Deng, C., Xiang, J., & Li, Y. (2015). A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta, 132, 150-154.
Liu, Y., Canoura, J., Alkhamis, O., & Xiao, Y. (2021). Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors. ACS applied materials & interfaces, 13(8), 9491-9499.
Lu, Y., Yao, Y., Zhang, Q., Zhang, D., Zhuang, S., Li, H., & Liu, Q. (2015). Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosensors and Bioelectronics, 67, 662-669.
Lynn, N. S., Šípová, H., Adam, P., & Homola, J. (2013). Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity. Lab on a Chip, 13(7), 1413-1421.
Maganzini, N., Thompson, I., Wilson, B., & Soh, H. T. (2022). Pre-equilibrium biosensors: A new approach towards rapid and continuous molecular measurements. bioRxiv.
Mahato, K., Kumar, A., Maurya, P. K., & Chandra, P. (2018). Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosensors and Bioelectronics, 100, 411-428.
Mazlan, N., Ramli, M., Abdullah, M. M. A. B., Halin, D. C., Isa, S. M., Talip, L., Danial, N. S., & Murad, S. Z. (2017). Interdigitated electrodes as impedance and capacitance biosensors: A review. Paper presented at the AIP Conference proceedings.
McCreery, R. L. (2008). Advanced carbon electrode materials for molecular electrochemistry. Chemical reviews, 108(7), 2646-2687.
Mejri-Omrani, N., Miodek, A., Zribi, B., Marrakchi, M., Hamdi, M., Marty, J.-L., & Korri-Youssoufi, H. (2016). Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Analytica chimica acta, 920, 37-46.
Miranda‐Castro, R., de‐los‐Santos‐Álvarez, N., Lobo‐Castañón, M. J., Miranda‐Ordieres, A. J., & Tuñón‐Blanco, P. (2009). Structured nucleic acid probes for electrochemical devices. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(19), 2077-2090.
Mujica, M. L., Zhang, Y., Bédioui, F., Gutiérrez, F., & Rivas, G. (2020). Label-free graphene oxide–based SPR genosensor for the quantification of microRNA21. Analytical and Bioanalytical Chemistry, 412(15), 3539-3546.
Nirschl, M., Reuter, F., & Vörös, J. (2011). Review of transducer principles for label-free biomolecular interaction analysis. Biosensors, 1(3), 70-92.
Ohno, R., Ohnuki, H., Wang, H., Yokoyama, T., Endo, H., Tsuya, D., & Izumi, M. (2013). Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosensors and Bioelectronics, 40(1), 422-426.
Oshannessy, D. J., Brighamburke, M., Soneson, K. K., Hensley, P., & Brooks, I. (1993). Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Analytical biochemistry, 212(2), 457-468.
Paschoalino, W. J., Kogikoski Jr, S., Barragan, J. T., Giarola, J. F., Cantelli, L., Rabelo, T. M., Pessanha, T. M., & Kubota, L. T. (2019). Emerging considerations for the future development of electrochemical paper‐based analytical devices. ChemElectroChem, 6(1), 10-30.
Patskovsky, S., Latendresse, V., Dallaire, A.-M., Doré-Mathieu, L., & Meunier, M. (2013). Combined surface plasmon resonance and impedance spectroscopy systems for biosensing. Analyst, 139(3), 596-602.
Pons, M., Perenon, M., Bonnet, H., Gillon, E., Vallée, C., Coche-Guérente, L., Defrancq, E., Spinelli, N., Van der Heyden, A., & Dejeu, J. (2022). Conformational transition in SPR experiments: impact of spacer length, immobilization mode and aptamer density on signal sign and amplitude. Analyst, 147(19), 4197-4205.
Potty, A. S., Kourentzi, K., Fang, H., Jackson, G. W., Zhang, X., Legge, G. B., & Willson, R. C. (2009). Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers: Original Research on Biomolecules, 91(2), 145-156.
Purohit, B., Kumar, A., Mahato, K., & Chandra, P. (2020). Smartphone-assisted personalized diagnostic devices and wearable sensors. Current Opinion in Biomedical Engineering, 13, 42-50.
Qian, J., Jiang, L., Yang, X., Yan, Y., Mao, H., & Wang, K. (2014). Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst, 139(21), 5587-5593.
Radi, A.-E., Acero Sánchez, J. L., Baldrich, E., & O'Sullivan, C. K. (2005). Reusable impedimetric aptasensor. Analytical chemistry, 77(19), 6320-6323.
Rassaei, L., Singh, P. S., & Lemay, S. G. (2011). Lithography-based nanoelectrochemistry. In: ACS Publications.
Renaud, J.-P., Chung, C.-W., Danielson, U. H., Egner, U., Hennig, M., Hubbard, R. E., & Nar, H. (2016). Biophysics in drug discovery: impact, challenges and opportunities. Nature reviews Drug discovery, 15(10), 679-698.
Roda, A., Michelini, E., Zangheri, M., Di Fusco, M., Calabria, D., & Simoni, P. (2016). Smartphone-based biosensors: A critical review and perspectives. TrAC Trends in Analytical Chemistry, 79, 317-325.
Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747-1763.
Shim, J. S., Rust, M. J., & Ahn, C. H. (2013). A large area nano-gap interdigitated electrode array on a polymer substrate as a disposable nano-biosensor. Journal of Micromechanics and Microengineering, 23(3), 035002.
Steel, A. B., Herne, T. M., & Tarlov, M. J. (1998). Electrochemical quantitation of DNA immobilized on gold. Analytical chemistry, 70(22), 4670-4677.
Tasset, D. M., Kubik, M. F., & Steiner, W. (1997). Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of molecular biology, 272(5), 688-698.
Tertis, M., Leva, P. I., Bogdan, D., Suciu, M., Graur, F., & Cristea, C. (2019). Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosensors and Bioelectronics, 137, 123-132.
Villalonga, A., Pérez-Calabuig, A. M., & Villalonga, R. (2020). Electrochemical biosensors based on nucleic acid aptamers. Analytical and Bioanalytical Chemistry, 412, 55-72.
Wang, X., Hao, Z., Olsen, T. R., Zhang, W., & Lin, Q. (2019). Measurements of aptamer–protein binding kinetics using graphene field-effect transistors. Nanoscale, 11(26), 12573-12581.
Weng, J.-H., Lai, C.-Y., & Chen, L.-C. (2019). Microfluidic amperometry with two symmetric Au microelectrodes under one-way and shuttle flow conditions. Electrochimica Acta, 297, 118-128.
White, R. J., Phares, N., Lubin, A. A., Xiao, Y., & Plaxco, K. W. (2008). Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir, 24(18), 10513-10518.
Wilson, W. D. (2002). Analyzing biomolecular interactions. Science, 295(5562), 2103-2105.
Wu, Y., Midinov, B., & White, R. J. (2019). Electrochemical aptamer-based sensor for real-time monitoring of insulin. ACS sensors, 4(2), 498-503.
Yadav, J., Thakur, M., Yadav, K., Sharma, M., & Dubey, K. K. (2019). Aptasensor-Possible Design and Strategy for Aptamer Based Sensor. In Aptamers (pp. 133-154): Springer.
Yang, L., Guiseppi-Wilson, A., & Guiseppi-Elie, A. (2011). Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels. Biomedical microdevices, 13(2), 279-289.
Yang, L., Li, Y., & Erf, G. F. (2004). Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia c oli O157: H7. Analytical chemistry, 76(4), 1107-1113.
Zhang, Y., Figueroa-Miranda, G., Zafiu, C., Willbold, D., Offenhäusser, A., & Mayer, D. (2019). Amperometric aptasensor for amyloid-β oligomer detection by optimized stem-loop structures with an adjustable detection range. ACS sensors, 4(11), 3042-3050.
Zhang, Z., Yang, W., Wang, J., Yang, C., Yang, F., & Yang, X. (2009). A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta, 78(4-5), 1240-1245.
Zheng, X., Bi, C., Li, Z., Podariu, M., & Hage, D. S. (2015). Analytical methods for kinetic studies of biological interactions: A review. Journal of pharmaceutical and biomedical analysis, 113, 163-180.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95637-
dc.description.abstract生物分子交互作用分析可謂是生醫研究中不可或缺的一環,其得以分析生物分子之間的親和力與動力學特性。雖然現今已發展出許多不同的即時分析技術,但大多數的分析儀器均受限於其量測原理而具有造價高昂、體積龐大的限制,有鑑於此,發展一可攜式且易於操作的技術有助於促進相關研究,如新藥與新型療法的開發。此研究以適體為例,固定於即時電化學阻抗分析平台表面以演示其與目標分子間的親和力與動力學特性分析。首先,製程與量測條件於標準金電極上進行調校與最適化,使用高離子強度的固定化環境(1 M磷酸鹽緩衝溶液)與較具彈性的間隔物(寡去氧胸苷)作為適體與電極間連接,可以提昇結合阻抗響應;進行阻抗量測時則需使用帶負電之氧化還原電子對(赤/黃血鹽)。以上的條件將進一步運用於發展之平台,此平台藉指叉狀電極將結合訊號轉換為電化學阻抗訊號,並能以終點感測、即時感測,共兩種不同量測模式進行分析。指叉狀電極晶片針對兩不同目標蛋白,包含凝血酶與黏蛋白-1 SEA單元,進行親和力分析。修飾有HTDQ29適體的晶片可選擇性地辨認其目標分子凝血酶,且其量測得之解離常數(18.4 nM)與以酵素酶聯寡核苷酸分析法量測得之解離常數(17.6 nM)十分相近;修飾有K1R4.2適體的晶片同樣也可選擇性地辨認其目標分子黏蛋白-1 SEA單元,相較之下,其量測得之解離常數(3.90 nM)與遠小於以表面電漿共振分析法量測得之解離常數(72.0 nM),可能是量測環境中流場的有無所導致。指叉狀電極微流體晶片則能達成親和力與動力學特性分析,在此,一固定的交流電頻率被選用以進行即時阻抗量測,在此頻率下所對應的阻抗大小與電荷轉移阻抗相似,同時其值不受到流率之影響,而流動式適體固定化也可在此晶片上達成,而即時阻抗分析的重複性、專一性及劑量依存性也被驗證。在動力學特性分析結果的部分,此平台上量測得凝血酶與HTDQ29適體的結合速率常數為2.40×105 M-1sec-1,而解離速率常數為8.12×10-3 sec-1;惟以此電化學法量測得之解離速率常數與表面電漿共振分析法量測得之解離速率常數有近十倍的差異,可能是由於表面電漿共振分析法所使用的CM5晶片的流道高度較低、清洗強度較強(CM5晶片:40 μm;指叉狀電極微流體晶片:100 μm)。而親和力分析結果則藉由不同濃度的凝血酶對應其穩態阻抗響應,量測得之解離常數為24.3 nM,略高於在指叉狀電極晶片的分析結果。本論文提出一微型化、易於操作之電化學分析法,未來可運用於各式不同分析物的交互作用分析,並與可攜式電化學分析儀整合,可望有助於生物物理與生物分析方法相關研究之推展。zh_TW
dc.description.abstractBiomolecular interaction analysis (BIA) is one of the most essential parts in biomedical research, as the specific binding between biomolecules is substantial to biological processes. Although many real-time techniques have been currently used, most of the instrument is costly and bulky due to their detection modes. Therefore, a portable and easy-to-operate technique would boost the development of new drugs and therapies. In this thesis, an electrochemical impedance platform is built up, and aptamer is applied as recognition probe to demonstrate kinetics and affinity analysis. First of all, optimal fabrication and measurement conditions are tuned on standard gold electrode (SGE). With higher ionic strength of immobilization buffer (1 M phosphate buffer), using a flexible linkage between aptamer and electrode (oligo(dT) spacer), and negative-charged redox mediators (ferri/o-cyanide), its response signal can be improved. These conditions are further applied on the developed platform. This platform transduces the impedance signal with an interdigitated array (IDA) electrode and is able to be applied in two different measurement modes: endpoint detection via IDA electrode chip and real-time detection via IDA microfluidic chip. Affinity analysis is demonstrated on IDA electrode chip by two model proteins, thrombin and MUC1 SEA domain. The HTDQ29 aptamer-modified chip selectively detects thrombin; moreover, the measured KD (18.4 nM) is very closed to the KD of enzyme-linked oligonucleotide assay (ELONA) (17.6 nM). The K1R4.2 aptamer-modified chip also selectively detects MUC1 SEA domain. In contrast, the measured KD (3.90 nM) is far smaller than the KD of surface plasmon resonance (SPR) (72.0 nM), which could result from its flowing condition. Kinetics and affinity analysis are then demonstrated on IDA microfluidic chip. A fixed fAC whose impedance resembles Rct is chosen for impedance monitoring because of its independency on flow rate. In situ immobilization is achieved, and its repeatability, specificity, and dose-dependency are verified. The kinetics analysis of thrombin and HTDQ29 aptamer shows that the association rate constant (kon) is 2.40×105 M-1sec-1 and that the dissociation rate constant (koff) is 8.12×10-3 sec-1; nevertheless, there is 10-fold difference in koff between this electrochemical assay and SPR method. It could be attributed to the wash stringency caused by a lower channel height of CM5 chip (CM5 chip: 40 μm; IDA microfluidic chip: 100 μm). Affinity analysis can be done by correlating the steady-state response of different concentration of thrombin. The measured KD is 24.3 nM, which is slightly higher than the one measured on IDA electrode chip (18.4 nM). This thesis proposes miniaturize and simple-to-make electrochemical bioassays, which could be applied on various analytes and integrated with portable device in the future. It is believed to be beneficial to promote the research regarding to biophysics and bioanalytical methods.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:14:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:14:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
Table of contents ix
List of Figures xii
List of Tables xv
Frequent Abbreviations xvi
Major Symbols xvii
Chapter 1 Introduction 1
1.1 Description of Research Topic 1
1.2 Research Background 2
1.3 Research Motivation 4
1.4 Research Aims 7
1.5 Research Design 9
Chapter 2 Literature Review 11
2.1 Approaches to Enhance an Electrochemical Aptasensor 11
2.2 Symmetric Microelectrode-based Sensor Development 16
2.3 Real-time Microfluidic Electrochemical Platform 20
2.4 Real-time Techniques for Biomolecular Interaction Analysis 23
Chapter 3 Materials and Methods 28
3.1 Reagents and Materials 28
3.2 Instruments and Equipment 32
3.3 Aptamer-modified Electrode Fabrication and Characterization 33
3.3.1 Aptamer-modified SGE fabrication 33
3.3.2 Electrochemical characterization of a three-electrode system 34
3.3.3 Aptamer-modified IDA electrode chip design and fabrication 37
3.3.4 Electrochemical characterization of a two-electrode system 43
3.4 Endpoint Assays for Affinity Analysis 46
3.4.1 Impedimetric response evaluation on aptamer-modified electrode 46
3.4.2 Enzyme-linked oligonucleotide assay (ELONA) 48
3.5 Real-time Assays for Kinetics and Affinity Analysis 50
3.5.1 Impedimetric response continuous monitoring via IDA microfluidic chip 50
3.5.2 Surface Plasmon Resonance 51
Chapter 4 Results and Discussion 53
4.1 Optimal Fabrication and Measurement of an Aptamer-modified Electrode 53
4.1.1 Probe density effect on aptamer-modified SGE 55
4.1.2 Spacer effect on aptamer-modified SGE 60
4.1.3 Redox mediators effect on aptamer-modified SGE 69
4.2 Endpoint Electrochemical Bioassay on an IDA Electrode Chip 75
4.2.1 Applying IDA diffusion element in Randles circuit 76
4.2.2 Affinity analysis of thrombin 80
4.2.3 Affinity analysis of MUC1 86
4.3 Real-time Electrochemical Bioassay on an IDA Microfluidic Chip 90
4.3.1 Electrochemical characterization of an IDA microfluidic chip 90
4.3.2 Repeatability and specificity validation on an IDA microfluidic chip 96
4.3.3 Kinetics and affinity analysis of thrombin 101
Chapter 5 Conclusions 107
5.1. Conclusions 107
5.2. Future Work 110
Reference 111
Supplementary Materials 118
S.1 Aptamer probe density quantification 118
S.1.1 Detailed calculation of aptamer probe density by chronocoulometry 118
S.1.2 Chronocoulometry measurements on aptamer-modified electrodes 119
S.2 EIS characterization of aptamer-modified SGEs 121
S.2.1 Nyquist plot of aptamer-modified SGEs using different spacers 121
S.2.2 Nyquist plot of aptamer-modified SGEs using different redox mediators 123
S.3 Electrochemical characterization of IDA electrode chips 125
S.3.1 Fabrication and sensing of aptamer-modified IDA electrode chip 125
S.3.2 Fabrication of aptamer-modified IDA microfluidic chip 127
S.4 Tuning real-time impedance measurement on IDA microfluidic chip 129
S.5 Aptamer-protein kinetics analysis by SPR method 131
S.6 MUA-modification on SGE 132
-
dc.language.isoen-
dc.title基於指叉狀電極阻抗量測之適體結合動力學與親和力分析研究zh_TW
dc.titleAptamer Binding Kinetics and Affinity Analysis Using Interdigitated Array-based Impedance Measurementen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭宗記;魏培坤;周家復;莊旻傑zh_TW
dc.contributor.oralexamcommitteeTzong-Jih Cheng;Pei-Kuen Wei;Chia-Fu Chou;Min-Chieh Chuangen
dc.subject.keyword生物分子交互作用分析,適體,指叉狀電極,即時分析法,電化學,阻抗,zh_TW
dc.subject.keywordbiomolecular interaction analysis (BIA),aptamer,interdigitated array (IDA) electrode,real-time,electrochemistry,impedance,en
dc.relation.page132-
dc.identifier.doi10.6342/NTU202402195-
dc.rights.note未授權-
dc.date.accepted2024-07-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved