請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95632
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林峯輝 | zh_TW |
dc.contributor.advisor | Feng-Hui Lin | en |
dc.contributor.author | 林羿芸 | zh_TW |
dc.contributor.author | Yi-Yun Lin | en |
dc.date.accessioned | 2024-09-15T16:13:00Z | - |
dc.date.available | 2024-09-16 | - |
dc.date.copyright | 2024-09-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 1. Alqahtani, M.Q., Tooth-bleaching procedures and their controversial effects: A literature review. The Saudi dental journal, 2014. 26(2): p. 33-46.
2. Theobald, A.H . The impact of the popular media on cosmetic dentistry. New Zealand Dental Journal, 2006. 102(3): p. 58. 3. Odioso, L., R. Gibb, and R. Gerlach, Impact of demographic, behavioral, and dental care utilization parameters on tooth color and personal satisfaction. Compendium of continuing education in dentistry.(Jamesburg, NJ: 1995). Supplement, 2000(29): p. S35-41; quiz S43. 4. Kapadia, Y. and V. Jain, Tooth staining: A review of etiology and treatment modalities. Acta Sci Dent Sci, 2018. 2(6): p. 67-70. 5. Sarrett, D.C., Tooth whitening today. The Journal of the American Dental Association, 2002. 133(11): p. 1535-1538. 6. Carey, C.M., Tooth whitening: what we now know. Journal of Evidence Based Dental Practice, 2014. 14: p. 70-76. 7. Basting, R.T . Clinical comparative study of the effectiveness of and tooth sensitivity to 10% and 20% carbamide peroxide home-use and 35% and 38% hydrogen peroxide in-office bleaching materials containing desensitizing agents. Operative dentistry, 2012. 37(5): p. 464-473. 8. Scheid, R.C., Woelfel's dental anatomy. 2012: Lippincott Williams & Wilkins. 9. Hailu, F.A., Y.A. Hailu, and T.A. Hailu, Dental anatomy and physiology of human tooth and the consequences of pathogenic microbiota on the oral cavity. Journal of Clinical Case Studies Reviews & Reports, 2020. 2(5): p. 1-7. 10. Clark, E.B., An analysis of tooth color. The Journal of the American Dental Association (1922), 1931. 18(11): p. 2093-2103. 11. Joiner, A., Tooth colour: a review of the literature. Journal of dentistry, 2004. 32: p. 3-12. 12. Hattab, F.N., M.A. Qudeimat, and H.S. AL‐RIMAWI, Dental discoloration: an overview. Journal of Esthetic and Restorative Dentistry, 1999. 11(6): p. 291-310. 13. Sánchez, A.R., R.S. Rogers III, and P.J. Sheridan, Tetracycline and other tetracycline‐derivative staining of the teeth and oral cavity. International journal of dermatology, 2004. 43(10): p. 709-715. 14. Bevelander, G., G.K. Rolle, and S.Q. Cohlan, The effect of the administration of tetracycline on the development of teeth. Journal of dental research, 1961. 40(5): p. 1020-1024. 15. Dayan, D., Tooth discoloration-extrinsic and intrinsic factors. Quintessence Int Dent Dig, 1983. 14: p. 195-199. 16. NORDBÖ, H . Iron staining of the acquired enamel pellicle after exposure to tannic acid or chlorhexidine: preliminary report. European Journal of Oral Sciences, 1982. 90(2): p. 117-123. 17. Waerhaug, M . Comparison of the effect of chlorhexidine and CuSO4 on plaque formation and development of gingivitis. Journal of clinical periodontology, 1984. 11(3): p. 176-180. 18. Silva, J . All-ceramic crowns and extended veneers in anterior dentition: a case report with critical discussion. The American Journal of Esthetic Dentistry, 2011. 6: p. 60-70. 19. Sheets, C.G. and T. Taniguchi, Advantages and limitations in the use of porcelain veneer restorations. The Journal of prosthetic dentistry, 1990. 64(4): p. 406-411. 20. Agustín-Panadero, R . Zirconia in fixed prosthesis. A literature review. Journal of clinical and experimental dentistry, 2014. 6(1): p. e66. 21. Koller, B., W. Att, and J.-R. Strub, Survival rates of teeth, implants, and double crown-retained removable dental prostheses: A systematic literature review. International Journal of Prosthodontics, 2011. 24(2). 22. Peumans, M . Porcelain veneers: a review of the literature. Journal of dentistry, 2000. 28(3): p. 163-177. 23. Pini, N.P . Advances in dental veneers: materials, applications, and techniques. Clinical, cosmetic and investigational dentistry, 2012: p. 9-16. 24. Farias-Neto, A . Tooth preparation for ceramic veneers: when less is more. International Journal of Esthetic Dentistry, 2019. 14(2). 25. Shannon, H . Characterization of enamel exposed to 10% carbamide peroxide bleaching agents. Quintessence international, 1993. 24(1). 26. Matis, B.A . The efficacy and safety of a 10% carbamide peroxide bleaching gel. Quintessence International, 1998. 29(9). 27. Dahl, J. and U. Pallesen, Tooth bleaching—a critical review of the biological aspects. Critical Reviews in Oral Biology & Medicine, 2003. 14(4): p. 292-304. 28. Kwon, S.R. and P.W. Wertz, Review of the mechanism of tooth whitening. Journal of esthetic and restorative dentistry, 2015. 27(5): p. 240-257. 29. Price, R.B., M. Sedarous, and G.S. Hiltz, The pH of tooth-whitening products. JOURNAL-CANADIAN DENTAL ASSOCIATION, 2000. 66(8): p. 421-426. 30. Cartagena, A.F . In-office bleaching effects on the pulp flow and tooth sensitivity–case series. Brazilian oral research, 2015. 29: p. 1-6. 31. NATHANSON, D., Vital tooth bleaching: sensitivity and pulpal considerations. The Journal of the American Dental Association, 1997. 128: p. 41S-44S. 32. Kielbassa, A.M . Tooth sensitivity during and after vital tooth bleaching: A systematic review on an unsolved problem. Quintessence international, 2015. 46(10). 33. Markowitz, K., Pretty painful: why does tooth bleaching hurt? Medical hypotheses, 2010. 74(5): p. 835-840. 34. Yu, H . Effects of bleaching agents on dental restorative materials: A review of the literature and recommendation to dental practitioners and researchers. Journal of Dental Sciences, 2015. 10(4): p. 345-351. 35. Marson, F.C . Clinical evaluation of in-office dental bleaching treatments with and without the use of light-activation sources. Operative dentistry, 2008. 33(1): p. 15-22. 36. Soares, D.G . Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy. Journal of dentistry, 2014. 42(2): p. 185-198. 37. Bharti, R. and K. Wadhwani, Spectrophotometric evaluation of peroxide penetration into the pulp chamber from whitening strips and gel: An in vitro study. Journal of conservative dentistry: JCD, 2013. 16(2): p. 131. 38. Sato, C . Tooth bleaching increases dentinal protease activity. Journal of dental research, 2013. 92(2): p. 187-192. 39. Efeoglu, N., D.J. Wood, and C. Efeoglu, Thirty-five percent carbamide peroxide application causes in vitro demineralization of enamel. Dental Materials, 2007. 23(7): p. 900-904. 40. Spencer, P . Molecular structure of acid-etched dentin smear layers-in situ study. Journal of dental research, 2001. 80(9): p. 1802-1807. 41. Kawamoto, K. and Y. Tsujimoto, Effects of the hydroxyl radical and hydrogen peroxide on tooth bleaching. Journal of endodontics, 2004. 30(1): p. 45-50. 42. de Freitas, P.M . Monitoring of demineralized dentin microhardness throughout and after bleaching. American Journal of Dentistry, 2004. 17(5): p. 342-346. 43. Santini, A . The effect of a 10% carbamide peroxide bleaching agent on the phosphate concentration of tooth enamel assessed by Raman spectroscopy. Dental Traumatology, 2008. 24(2): p. 220-223. 44. Coceska, E . Enamel alteration following tooth bleaching and remineralization. Journal of microscopy, 2016. 262(3): p. 232-244. 45. Kossatz, S . Effect of light activation on tooth sensitivity after in-office bleaching. Operative dentistry, 2011. 36(3): p. 251-257. 46. Kugel, G . Clinical trial assessing light enhancement of in‐office tooth whitening. Journal of Esthetic and Restorative Dentistry, 2009. 21(5): p. 336-347. 47. Alomari, Q. and E. El Daraa, A randomized clinical trial of in-office dental bleaching with or without light activation. J contemp dent pract, 2010. 11(1): p. E017-24. 48. Pinto, C.F . Peroxide bleaching agent effects on enamel surface microhardness, roughness and morphology. Brazilian oral research, 2004. 18: p. 306-311. 49. Demarco, F.F . Erosion and abrasion on dental structures undergoing at-home bleaching. Clinical, cosmetic and investigational dentistry, 2011: p. 45-52. 50. Mundra, S . Hardness, friction and wear studies on hydrogen peroxide treated bovine teeth. Tribology International, 2015. 89: p. 109-118. 51. Latimer, J., Notes from the discussion of the Society of Dental Surgeons in the city of New York. Dent Cosmos, 1968. 10: p. 257-268. 52. Atkinson, C., Fancies and some facts. Dental Cosmos, 1892. 34: p. 968-72. 53. Harlan, A., The dental pulp, its destruction, and methods of treatment of teeth discolored by its retention in the pulp chamber or canals. Dental Cosmos, 1891. 33: p. 137-41. 54. Kirk, E., The chemical bleaching of teeth. Dent Cosmos, 1889. 31: p. 273-283. 55. Fischer, G., The bleaching of discolored teeth with H_2O_2. Dent Cosmos, 1911. 53: p. 246-247. 56. Spasser, H.F., A simple bleaching technique using sodium perborate. NY State Dent. J., 1961. 27: p. 332-334. 57. Langsten, R.E . Higher‐concentration carbamide peroxide effects on surface roughness of composites. Journal of Esthetic and Restorative Dentistry, 2002. 14(2): p. 92-96. 58. Broome, J., At-home use of 35% carbamide peroxide bleaching gel: a case report. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995), 1998. 19(8): p. 824-829. 59. Cuppini, M . In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching. Dental materials journal, 2019. 38(1): p. 68-74. 60. Calderone, J.B. and G.H. Jacobs, Regional variations in the relative sensitivity to UV light in the mouse retina. Visual neuroscience, 1995. 12(3): p. 463-468. 61. Androvič, L., J. Bartáček, and M. Sedlák, Recent advances in the synthesis and applications of azo initiators. Research on Chemical Intermediates, 2016. 42: p. 5133-5145. 62. Fujita, S., M. Suzuki, and T. Suzuki, Structure-activity relationships in the induction of hepatic drug metabolism by azo compounds. Xenobiotica, 1984. 14(7): p. 565-568. 63. Walker, R., The metabolism of azo compounds: a review of the literature. Food and Cosmetics Toxicology, 1970. 8(6): p. 659-676. 64. Whitmore, M. and J. Wilberforce, Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. Journal of loss prevention in the process industries, 1993. 6(2): p. 95-101. 65. Oltu, Ü. and S. Gürgan, Effects of three concentrations of carbamide peroxide on the structure of enamel. Journal of oral rehabilitation, 2000. 27(4): p. 332-340. 66. Mokhlis, G.R . A clinical evaluation of carbamide peroxide and hydrogen peroxide whitening agents during daytime use. The Journal of the American Dental Association, 2000. 131(9): p. 1269-1277. 67. Abouassi, T., M. Wolkewitz, and P. Hahn, Effect of carbamide peroxide and hydrogen peroxide on enamel surface: an in vitro study. Clinical oral investigations, 2011. 15: p. 673-680. 68. Safitri, F.I., D. Nawangsari, and D. Febrina. Overview: Application of carbopol 940 in gel. in International Conference on Health and Medical Sciences (AHMS 2020). 2021. Atlantis Press. 69. Li, Z.-G., Measurement of signaling molecules calcium ion, reactive sulfur species, reactive carbonyl species, reactive nitrogen species, and reactive oxygen species in plants, in Plant signaling molecules. 2019, Elsevier. p. 83-103. 70. Engmann, J., C. Servais, and A.S. Burbidge, Squeeze flow theory and applications to rheometry: A review. Journal of non-newtonian fluid mechanics, 2005. 132(1-3): p. 1-27. 71. King, K.A. and W.G. DeRijk, Variations of L* a* b* values among Vitapan® classical shade guides. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 2007. 16(5): p. 352-356. 72. Alshethri, S., Evaluation of color changes in the Vitapan Classical Shade Guide after disinfection. Operative dentistry, 2014. 39(3): p. 317-324. 73. Luo, M.R., Cielab, in Encyclopedia of color science and technology. 2023, Springer. p. 251-257. 74. Ly, B.C.K . Research techniques made simple: cutaneous colorimetry: a reliable technique for objective skin color measurement. Journal of Investigative Dermatology, 2020. 140(1): p. 3-12. e1. 75. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018. 76. Zhou, W . Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications, 2007: p. 1-40. 77. Winchell, H., The Knoop microhardness tester as a mineralogical tool. American Mineralogist: Journal of Earth and Planetary Materials, 1945. 30(9-10): p. 583-595. 78. Poskus, L.T . Cytotoxicity of current adhesive systems: in vitro testing on cell culture of L929 and balb/c 3T3 fibroblasts. Revista Odonto Ciência, 2009. 24(2): p. 129-134. 79. Hubel, A., Parameters of cell freezing: implications for the cryopreservation of stem cells. Transfusion medicine reviews, 1997. 11(3): p. 224-233. 80. Helgason, C.D. and C.L. Miller, Basic cell culture protocols. 2005: Totowa, NJ.: Humana Press. 81. Phelan, M.C. and G. Lawler, Cell counting. Current protocols in cytometry, 1997(1): p. A. 3A. 1-A. 3A. 4. 82. Han, X . Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology, 2011. 287(1-3): p. 99-104. 83. Smith, S.M . A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. PloS one, 2011. 6(11): p. e26908. 84. Kumar, P., A. Nagarajan, and P.D. Uchil, Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harbor Protocols, 2018. 2018(6): p. pdb. prot095497. 85. Darzynkiewicz, Z., X. Li, and J. Gong, Assays of cell viability: discrimination of cells dying by apoptosis. Methods in cell biology, 1994. 41: p. 15-38. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95632 | - |
dc.description.abstract | 牙齒染色問題主要源於飲食、生活方式和年齡等因素,近年來,愈來愈多人為了追求完美的面部表情與笑容,傾向牙醫師尋求專業的牙齒美白治療,然而,傳統的過氧化物類牙齒美白劑大多使用高濃度的過氧化氫(Hydroxy peroxide, H2O2),在其分解過程中產生的過氧化物常常導致患者牙齒敏感(Tooth sensitivity)、脫礦(Demineralization)和機械強度下降等問題。為了克服這些不良效應,本研究旨在開發一種新型的牙齒美白劑,以偶氮化合物作為關鍵成分。這種新型美白劑的設計目標在於減輕傳統美白劑中的過氧化物成分造成的副作用,同時實現有效且安全的美白效果。因此,本研究挑選偶氮二異丁腈(2,2′-Azobis(2-methylpropionitrile), AIBN)作為熱敏劑,用於引發自由基反應,偶氮二異丁腈的優點在於具有優越的氧化能力,可以針對長鏈色素分子進行氧化,達到色素降解的效果,並且預期於分解過程中的含氮自由基並不會與牙齒中的有機與無機物質發生反應,同時降低對牙齒組織的影響,並使用4 wt%之過氧化醯胺作為氧氣來源,用以引發活性氧分子循環產生,加強長鏈色素分子的氧化反應。因此本研究預期可使用偶氮化合物的牙齒美白劑能夠減輕傳統牙齒美白過程中的副作用。此外,通過比較傳統過氧化氫漂白劑和偶氮化合物漂白劑的效果,分析了新型漂白劑在牙齒美白效果上的優勢。目前實驗結果表示,偶氮化合物漂白劑在CIELAB顏色分析中的色差數值顯著上升,∆E值差異達到了25.67,與對照組有明顯差異,證實本研究製備之牙齒漂白劑可以有效地漂白牙齒。在牙齒漂白前後牙釉質表面分析中,經由SEM觀察牙齒表面形貌,可以發現不同於HP漂白處理後的牙齒表面有明顯損傷,本研究製備之牙齒漂白劑可以維持牙齒平坦的表面形貌,顯示牙齒表面仍然保持整體的完整性,降低漂白處理之脫礦現象。在細胞毒性測試中顯示,本研究所製備之牙齒漂白劑是一種低細胞毒性之材料。因此,本研究中所開發的偶氮化合物材料作為牙齒美白劑有其之優勢與前景所在。 | zh_TW |
dc.description.abstract | Tooth staining is mainly caused by factors such as diet, lifestyle and age. In recent years, more and more people tend to seek professional tooth whitening treatments from dentists in order to pursue perfect facial expressions and smiles, however, most of the traditional peroxide-based tooth whiteners use a high concentration of Hydrogen peroxide (H2O2), which produces peroxides during its decomposition process. During the decomposition process, peroxides are produced, which often lead to problems such as tooth sensitivity, demineralization, and loss of mechanical strength. To overcome these undesirable effects, the present study aimed to develop a novel tooth whitening agent using azo compounds as key components. This new whitening agent is designed to reduce the side effects caused by the peroxide components in conventional whitening agents, while achieving effective and safe whitening results. Therefore, in this study, azobisisobutyronitrile (2,2′-Azobis(2-methylpropionitrile), AIBN) was selected as a thermosensitizer to trigger the free radical reaction. The advantage of azobisisobutyronitrile is that it has superior oxidizing ability, which can be oxidized against long-chain pigment molecules, and achieve pigmentation degradation, and it is expected that the nitrogenous free radicals will not be mixed with those in the teeth in the process. It is also expected that the nitrogen-containing free radicals during the decomposition process will not react with the organic and inorganic substances in the teeth, and the effect on the dental tissues will be reduced. 4 wt% of carbamide peroxide was used as the source of oxygen, which was used to trigger the cyclic generation of reactive oxygen molecules to enhance the oxidation of the long-chain pigment molecules. Therefore, it is expected that the use of azo compounds as tooth whitening agents can reduce the side effects of conventional tooth whitening processes. In addition, by comparing the effects of conventional hydrogen peroxide bleaching agents with those of azo compound bleaching agents, the advantages of the new bleaching agents in terms of tooth whitening effects were analyzed. The current experimental results showed that the azo compound bleaching agent showed a significant increase in the color difference value in the CIELAB color analysis, and the difference in the ∆E value reached 25.67, which was significantly different from that of the control group, confirming that the tooth bleaching agent prepared in the present study can effectively bleach the teeth. In the surface analysis of enamel before and after bleaching, the surface morphology of the teeth was observed by SEM, and it was found that, unlike the HP bleaching treatment, the surface of the teeth was obviously damaged, and the dental bleach prepared in this study could maintain the flat surface morphology of the teeth, which demonstrated that the surface of the teeth still retained the overall integrity, and the demineralization of the bleaching treatment was reduced. The cytotoxicity test showed that the dental bleach prepared in this study is a low cytotoxic material. Therefore, the azo compound developed in this study will be advantageous and promising as tooth whitening agents. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:13:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-15T16:13:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
謝辭 I 中文摘要 II ABSTRACT III 目次 V 圖次 VII 表次 IX 公式目錄 X 縮寫目錄 XI 第一章 緒論 1 1.1 前言 1 1.2牙齒的解剖學構造 3 1.3牙齒染色的原因及分類 4 1.3.1內源性染色 5 1.3.2外源性染色 6 1.4牙齒美白之方式 7 1.4.1贋覆物治療 7 1.4.2美白劑治療 8 1.5牙齒美白劑潛在副作用 11 1.5.1牙齒敏感性 11 1.5.2牙齒脫礦 13 1.5.3牙齒表面粗糙度 14 1.6實驗目的 15 第二章 文獻回顧與理論基礎 16 2.1文獻回顧 16 2.2現行牙齒美白機制 18 2.3熱敏劑-偶氮二異丁腈 20 2.4氧氣來源-過碳酸醯胺 21 2.5增稠劑 – CARBOPOL® 940 23 2.6實驗設計原理 24 第三章 材料與方法 25 3.1實驗藥品 25 3.2實驗儀器 26 3.3材料性質分析 27 3.3.1牙齒漂白劑過氧化氫釋放測試 27 3.3.2牙齒漂白劑黏滯性分析 28 3.4實際牙齒漂白 29 3.4.1牙齒漂白 29 3.4.2牙釉質表面形貌觀察 32 3.5生物相容性測試 35 3.5.1細胞凍存 35 3.5.2解凍細胞與更換培養液 36 3.5.3細胞計數 36 3.5.4材料萃取液製備 37 3.5.5 LDH細胞毒性測試 37 3.5.6 Live/dead 細胞存活染色 38 第四章 結果與討論 40 4.1牙齒漂白之顏色分析 40 4.2漂白前後牙釉質表面形貌觀察 42 4.3 生物相容性分析 44 4.3.1 LDH細胞毒性測試 44 4.3.2 Live/Dead 細胞存活染色 45 第五章 結論 46 第六章 參考資料 47 | - |
dc.language.iso | zh_TW | - |
dc.title | 偶氮化合物增強過碳酸醯胺在診間牙齒美白中的可行性研究 | zh_TW |
dc.title | The Feasibility Study of Azo Compound to Enhance Carbamide Peroxide on In-office Dental Bleaching | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃義侑;林俊彬 | zh_TW |
dc.contributor.oralexamcommittee | Yi-You Huang;Chun-Pin Lin | en |
dc.subject.keyword | 牙齒漂白,過氧化物,偶氮化合物,牙科美學, | zh_TW |
dc.subject.keyword | dental bleaching,peroxide,azo compounds,dental aesthetics, | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202402313 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。