Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 氣候變遷與永續發展國際學位學程(含碩士班、博士班)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫烜駿zh_TW
dc.contributor.advisorSyuan-Jyun Sunen
dc.contributor.author林立zh_TW
dc.contributor.authorLi Linen
dc.date.accessioned2024-09-15T16:12:40Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citation大井次三郎(1936)。金平亮三氏, 増補改版台湾樹木誌, 1936。 植物分類, 地理, 5(3), 217。
王文采(1992)。东亚植物区系的一些分布式样和迁移路线。植物分类学报, 30(1), 1-24。
王文采(1992)。东亚植物区系的一些分布式样和迁移路线 (续)。植物分类学报, 30(2), 97-117。
王荷生(1992)。植物區系地理。科學出版社。
冉挹芬(2012)。從生物多樣性資訊學觀點探討自然史博物館蒐藏數位化之應用。碩士論文。國立臺北藝術大學。臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5jxhey。
江鴻猷、曾喜育、邱清安、曾彥學(2014)。 樣本數量對最大熵物種分布模式 (MaxEnt) 準確度之影響: 以臺灣水青岡為例。林業研究季刊, 36(2), 101-113。
吳征鎰(2006)。种子植物分布区类型及其起源和分化。云南科技出版社。
应俊生、陈梦玲(2011)。中国植物地理。上海科學技術出版社。
沈中桴(1996)。臺灣的生物地理:1. 背景。臺灣省立博物館年刊39: 387-427。
沈中桴(1997)。臺灣的生物地理:2. 一些初步思考與研究。臺灣省立博物館年刊40: 361-450。
孟宏虎、宋以刚 (2023)。东南亚生物地理格局:回溯与思考。生物多样性,31,23261。
林奐宇、李祈德(2014)。森林植物的資料庫—談植物標本及其資訊效益之運用。台灣林業,40(4):35-40。
邱清安、徐憲生、林信輝(2014)。結合 GBIF 與 MaxEnt 預測臺灣赤楊之適宜生育地。Journal of Chinese Soil and Water Conservation, 45(3), 198-206.
金平亮三(1935)。樹木の地理的分布から見た紅頭嶼と比律賓との關係。日本林學會誌,17(7), 530-535。
柯啓樂(2023)。以深度學習架構建立物種分布模型。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/bym73h。
胡瓊(2013)。《現代農業科技》:珙桐特徵特性及其育苗移栽技術。《現代農業科技》雜誌社。
耿煊(1956)。植物分類及植物地理論叢:初集。国立臺灣大學。農學院實驗林。
張慶恩(1967)。蘭嶼之森林植物。台灣林業季凼。3(2):1-42。
郭怡良、林大利、莊馥蔓、丁宗蘇(2014)。東亞主要島嶼繁殖鳥類相的生物地理界線。生物多樣性研究, 16(1):33-50。
鹿野忠雄(1933)。紅頭嶼の動物地理學的研究 4 附ワーレス線北端の問題. Geographical Review of Japan, 9(8), 675-701.
曾文彬 (1993)。浅析台湾植物区系。厦门大学学报:自然科学版, 32(4), 480-483。
黃星凡(2011)。臺灣植物相之歷史生物地理學。國立臺灣博物館學刊,64(3),33-63。https://www.airitilibrary.com/Article/Detail?DocID=02570520-201109-201606060008-201606060008-33-63
葉恩佐(2023)。優化物種分布模型之應用。﹝博士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/854csw。
劉棠瑞、林則桐(1978)。臺灣天然林之羣落生態研究 (四) 蘭嶼植羣與植相之研究。臺灣省立博物館科學年刊, 21, 1-80。
應俊生、徐國士(2002)。中國台灣種子植物區系的性質、特點及其與大陸植物區系的關係。植物分類學報40: 1-51。
Bardon, L., Sothers, C., Prance, G. T., Malé, P. J. G., Xi, Z., Davis, C. C., ... & Chave, J. (2016). Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. American Journal of Botany, 103(6), 1089-1102.
Biswal, D. K., Debnath, M., Konhar, R., Yanthan, S., & Tandon, P. (2018). Phylogeny and biogeography of carnivorous plant family Nepenthaceae with reference to the Indian pitcher plant Nepenthes khasiana reveals an Indian subcontinent origin of Nepenthes colonization in South East Asia during the Miocene epoch. Frontiers in Ecology and Evolution, 6, 108.
Bramley, G., Trias-Blasi, A. & Wilford, R. (2023). The Kew Temperate Plant Families Identification Handbook. Kew Publishing Royal Botanic Gardens, Kew
Byng, J. W. (2014). The Flowering Plants Handbook: A practical guide to families and genera of the world. Plant Gateway Ltd.
Clarke, C., & Moran, J. A. (2016). Climate, soils and vicariance-their roles in shaping the diversity and distribution of Nepenthes in Southeast Asia. Plant and Soil, 403, 37-51.
Cox, C. B., Moore, P. D., & Ladle, R. J. (2016). Biogeography: an ecological and evolutionary approach. John Wiley & Sons.
Daly, D. C., Harley, M. M., Martínez-Habibe, M. C., & Weeks, A. (2010). Burseraceae. In Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae (pp. 76-104). Berlin, Heidelberg: Springer Berlin Heidelberg.
Doreen L. Smith (1966). Linaceae, Flora of Tropical East Africa.
Duvigneaud, P. (1961). Dipterocarpaceae, Flora Zambesiaca 1:2.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40(1), 677-697.
Fick, S.E. and R.J. Hijmans (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
Gallaher, T., Callmander, M. W., Buerki, S., & Keeley, S. C. (2015). A long distance dispersal hypothesis for the Pandanaceae and the origins of the Pandanus tectorius complex. Molecular phylogenetics and evolution, 83, 20-32.
Hepper, F. N. (1958). Connaraceae, Flora of West Tropical Africa 1:2.
Hsieh, C. F. (2002). Composition, Endemism and Phytogeographical Affinities of the Taiwan Flora. TAIWANIA, 47(4), 298-310. https://doi.org/10.6165/tai.2002.47(4).298
Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3), 299-310.
Hutchinson, J. and Dalziel, J. M. (1958). Urticaceae, Flora of West Tropical Africa 1:2.
Huxley, T. H. (1868). On the classification and distribution of the Alectoromorphae and Heteromorphae. In Proceedings of the zoological Society of London (Vol. 1868, p. 294).
Kalkman, C. (1955). A plant-geographical analysis of the Lesser Sunda Islands. Acta Botanica Neerlandica, 4(2), 200-225.
Kubota, Y., Kusumoto, B., Shiono, T., & Tanaka, T. (2017). Phylogenetic properties of Tertiary relict flora in the East Asian continental islands: imprint of climatic niche conservatism and in situ diversification. Ecography, 40(3), 436-447.
Li, H. L. 1957. The genetic affinities of the Formosan flora. Proceedings of the 8th Pacific Science Congress 4: 189-195.
Li, J. (2007). Flora of China. Harvard Papers in Botany, 13(2), 301-302.
Liao, C. C., & Chen, C. H. (2017). Investigation of floristic similarities between Taiwan and terrestrial ecoregions in Asia using GBIF data. Botanical Studies, 58, 1-17.
Lin, Y. S., Liao, J. R., Shiao, S. F., & Ko, C. C. (2021). Origin and potential expansion of the invasive longan lanternfly, Pyrops candelaria (Hemiptera: Fulgoridae) in Taiwan. Biology, 10(7), 678.
Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: a better measure than accuracy in comparing learning algorithms. In Advances in Artificial Intelligence: 16th Conference of the Canadian Society for Computational Studies of Intelligence, AI 2003, Halifax, Canada, June 11–13, 2003, Proceedings 16 (pp. 329-341). Springer Berlin Heidelberg.
Meimberg, H., Wistuba, A., Dittrich, P., & Heubl, G. (2001). Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biology, 3(2), 164-175.
Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069.
Metcalfe I (2013).ASIA | South-East, Reference Module in Earth Systems and Environmental Sciences, Elsevier. doi: 10.1016/B978-0-12-409548-9.02721-4.
Moran, J. A., Gray, L. K., Clarke, C., & Chin, L. (2013). Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate. Annals of Botany, 112(7), 1279-1291.
Nakamura, K., Suwa, R., Denda, T., & Yokota, M. (2009). Geohistorical and current environmental influences on floristic differentiation in the Ryukyu Archipelago, Japan. Journal of Biogeography, 36(5), 919-928.
Phillips, S. J. 2017. A Brief Tutorial on Maxent. Available from url:http://biodiversityinformatics.amnh.org/open_source/maxent/.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.
Pijl, L. (1982). Principles of dispersal in higher plants (No. Ed. 3, pp. x+-215). Berlin: Springer-Verlag.
Pompe Sven, Hanspach Jan, Badeck Franz, Klotz Stefan, Thuiller Wilfried and Kühn Ingolf (2008). Climate and land use change impacts on plant distributions in GermanyBiol. Lett.4564–567
Prance, G. T. (1984). Chrysobalanaceae. Flora Malesiana-Series 1, Spermatophyta, 10(1), 635-678.
Proctor, George R. (2012). Flora of the Cayman Isands (Second Edition). Royal Botanic Gardens, Kew
Robson, N. K. B. (1963). Ochnaceae, Flora Zambesiaca 2:1.
Schneider, J. V., Jungcurt, T., Cardoso, D., Amorim, A. M., Paule, J., & Zizka, G. (2022). Predominantly eastward long-distance dispersal in pantropical Ochnaceae inferred from ancestral range estimation and phylogenomics. Frontiers in Ecology and Evolution, 10, 813336.
Schouw, J. F. (1823). Grundzuge einer allgemeinen Pflanzengeographie (Vol. 1). G. Reimer.
Smith, A. R. (1988). Pandaceae. Flora of Tropical East Africa.
Takhtajan, A., Th.J. Crovello and A. Cronquist (1986). Floristic Regions of the World.
Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291-307.
Utteridge, T. M. A. and Jennings, L. V. S. (2022). Trees of New Guinea. Kew Publishing. Royal Botanic Gardens, Kew
Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods in Ecology and Evolution, 5(10), 1033-1042.
Weeks, A., Daly, D. C., & Simpson, B. B. (2005). The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Molecular phylogenetics and evolution, 35(1), 85-101.
Wei, B. O., Wang, R., Hou, K., Wang, X., & Wu, W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 16, e00477.
Wild, H. (1963). Burseraceae, Flora Zambesiaca 2:1.
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and distributions, 14(5), 763-773.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95631-
dc.description.abstract島嶼─海洋是東亞島弧及東南亞群島的主要地貌。此區過去的生物地理研究主要透過歷史來源解釋物種分布範圍,或透過物種名錄的比對劃分生物地理區域。本研究透過GBIF的出現紀錄和Worldclim的生物氣候圖層,以物種分布模型─Maxent模擬在此區域有不同分布情形植物科或屬的潛在分布與實際分布,釐清植物的分布的限制除了海洋外是否包含了氣候。結果發現多數東南亞的熱帶植物,包含: 橄欖科的六個屬、龍腦香科(Dipterocarpaceae)、金蓮木科(Ochnaeae)、豬籠草科(Nepenthaceae)和小盤木科(Pandaceae),在緯度較高的東亞沒有潛在分布,然而馬來西亞區內分布於特定亞區的植物:橄欖科的馬蹄果屬(Protium)、Scutinanthe、Haplolobus、Triomma皆在區內的其它亞區有潛在分布。以上結果符合兩個假說:1.分布於東南亞的熱帶植物,分布受到氣候所限制,適合的棲地不包含緯度較高的東亞;代表在大空間尺度下,氣候是植物分布的重要限制因子。2.僅分布於單一或部分生物地理亞區的植物,在其它區域依然存在潛在棲地,但因為海洋的阻隔無法擴散過去;代表在小空間尺度下,物理屏障對於植物分布的影響大於氣候。本研究透過物種分布模型模擬適合棲地,探討生物地理的區域間及區域內兩種空間尺度中植物的分布是受到氣候或是海洋限制,為東亞及東南亞不同地區之間的植物群差異提供一個新的解釋。zh_TW
dc.description.abstractIsland-ocean is the main landform of the East Asian island arc and the Southeast Asian archipelago. Past biogeographic studies in this area mainly explained species distribution ranges through historical sources, or divided biogeographic regions through comparisons of species lists. This study uses the occurrence records of GBIF and the bioclimatic layer of Worldclim to simulate the potential and actual distribution of plant families or genera with different distribution situations in this area, and using the species distribution model, Maxent to clarify the distribution limits of plants. It was found that most of the tropical plants in Southeast Asia, including: six genera of the family Buseraceae, Dipterocarpaceae, Ochnaeae, Nepenthaceae and Pandaceae, is no potential habitat in higher latitude regions in East Asia. However, plants distributed in specific subregions in Malaysia: Protium, Scutinanthe, Haplolobus, and Triomma of the Burseraceae family all have potential distribution in other subregions. The above results are consistent with two hypotheses:1. The distribution of tropical plants distributed in Southeast Asia is restricted by climate, and their suitable habitats do not include East Asia with higher latitudes;This means that climate is an important limiting factor for plant distribution at large spatial scales.2. Plants that are only distributed in a single or part of a biogeographic subregion still have potential habitats in other areas, but cannot spread because of the barriers of the ocean; This means that at small spatial scales, physical barriers have a greater impact on plant distribution than climate. This study uses a species distribution model to simulate suitable habitats and explores whether the distribution of plants at the inter-regional and intra-regional biogeographic spatial scales is restricted by climate or ocean, providing insights into the differences in flora between different regions in East Asia and Southeast Asia a new explanation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:12:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:12:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
目次 IV
圖次 VI
表次 VII
一、 前言 1
1.1 植物地理分區與分布類型 1
1.2 植物分布的形成 3
1.3東亞及東南亞的生物地理 4
1.4研究目的 8
二、 材料與方法 13
2.1植物分布資料 13
2.2氣候圖層資料 14
2.3模擬適合棲地 17
2.4準確度評估 17
三、 結果 18
3.1 分布預測圖簡介 18
3.2 潛在分布與實際分布之比較 19
3.3 各類群植物的分布預測結果 22
3.4 準確度評估 47
四、 討論 49
4.1 東南亞的熱帶植物是否能在東亞生長? 49
4.2 東亞及東南亞的植物分布屏障 50
4.3 不同類群植物的分布限制 52
4.4 結語 53
參考文獻 55
附錄一、研究植物介紹 62
附錄二、GBIF的植物出現紀錄資料 82
附錄三 Maxent的ROC與AUC 84
-
dc.language.isozh_TW-
dc.subject生物地理屏障zh_TW
dc.subject生物地理學zh_TW
dc.subject物種分布模型zh_TW
dc.subject氣候棲位zh_TW
dc.subjectMaxentzh_TW
dc.subjectMaxenten
dc.subjectbiogeographic barriersen
dc.subjectclimate nicheen
dc.subjectBiogeographyen
dc.subjectspecies distribution modelsen
dc.title植物的潛在分布與實際分布之比較— 以東亞及東南亞植物為例zh_TW
dc.titleThe comparison of potential and observed distributions of plants - A case study of plant taxa in East and Southeast Asiaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor胡哲明zh_TW
dc.contributor.coadvisorJer-Ming Huen
dc.contributor.oralexamcommittee柯佳吟;林奐宇zh_TW
dc.contributor.oralexamcommitteeChia-Ying Jessie Ko;Huan-YU Linen
dc.subject.keyword生物地理學,物種分布模型,Maxent,生物地理屏障,氣候棲位,zh_TW
dc.subject.keywordBiogeography,species distribution models,Maxent,biogeographic barriers,climate niche,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202403977-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept氣候變遷與永續發展國際學位學程-
顯示於系所單位:氣候變遷與永續發展國際學位學程(含碩士班、博士班)

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved