請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95630完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允中 | zh_TW |
| dc.contributor.advisor | Jonathan Lee | en |
| dc.contributor.author | 鍾昀諺 | zh_TW |
| dc.contributor.author | Yun-Yen Chung | en |
| dc.date.accessioned | 2024-09-15T16:12:20Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | [1] N. Arora. pytorch_influence_functions, 2019.
[2] J. Bae, N. Ng, A. Lo, M. Ghassemi, and R. Grosse. If influence functions are the answer, then what is the question? arXiv preprint arXiv:2209.05364, 2022. [3] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 1885-1894, 2017. [4] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017. [5] R.-S. Liou. Auto build user interface from task model. Master’s thesis, National Taiwan University, Taipei, Taiwan, 2023. [6] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019. [7] D. Team. Deepspeed configuration json documentation. https://www.deepspeed.ai/docs/config-json/, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95630 | - |
| dc.description.abstract | 在軟體專案的開發過程中,我們通常會在收到需求後撰寫軟體規格書,然後進行軟體設計和實作。這整個流程非常耗時且需要大量人力。為了解決這一問題,我們致力於開發一個任務自動化系統,以實現整個流程的自動化。在這過程中,產生任務模型(Task Model)是一個關鍵步驟。任務模型是一種可以用來表示使用者操作和系統反應的工具,用於描述系統功能和交互行為。
我的主要任務是自動化從使用案例規格到任務模型生成的過程。由於使用案例規格中的任務具有多樣性和複雜性,很難通過規則的方法生成完全對應的任務模型資訊,因此機器學習技術是必不可少的。我們特別重視自然語言處理(NLP)的應用,因為我們的任務涉及到文本的預測和分類問題。生成的任務模型可以用於後續的前端介面設計和網路應用程式開發,從而提高整個開發流程的效率和質量。 | zh_TW |
| dc.description.abstract | In the software project development process, we usually write software specification documents after getting the requirements, followed by software design and implementation. This entire process is very time-consuming and requires significant human resources. To solve this problem, we are committed to developing a task automation system to simplify the entire process. Generating task models is a key step in this process. Task models are tools used to represent user actions and system responses, which are essential for describing system functionalities and interaction behaviors.
My primary task is to automate the process from use case specifications to task model generation. Due to the diversity and complexity of tasks within use case specifications, it is challenging to generate fully corresponding task model information through rule-based methods. Consequently, machine learning techniques are essential. We particularly focus on the application of natural language processing (NLP) because our task involves text prediction and classification issues. The generated task models can be employed for subsequent front-end interface design and web application development, thereby enhancing the efficiency and quality of the entire development process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:12:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:12:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures x List of Tables xiv Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Task Model 3 2.2 Concur Task Tree (CTT) 3 2.3 T5 Model 4 2.4 Influence Function 5 Chapter 3 Task Model Generation 7 3.1 TaskModel Introduction 7 3.2 Alternative and Exception Flows in TaskModel 11 Chapter 4 T5 Model 13 4.1 Introduction 13 4.2 Parameter Settings 13 4.2.1 Environmental Parameters 14 4.2.2 Training Hyperparameters 14 4.3 Training 14 4.3.1 Task Training 15 4.3.2 Task Type Training 16 4.3.3 Extra Attribute Training 18 4.3.4 Temporal Operator Training 20 4.3.5 Interaction Task Training 22 4.3.6 Imbalanced Data 23 4.3.7 Training Results 24 4.4 Prediction Process 24 4.4.1 Step1: Task Prediction 25 4.4.2 Step2: Task Types Prediction 26 4.4.3 Step3: Task Category Generation 27 4.4.4 Step4: Extra Attributes Prediction 28 4.4.5 Step5: ChildrenIDs and Links Generation 29 4.4.6 Step6: Temporal Operators Prediction 30 4.4.7 Step7: Extend Relationship Use Cases Generation 31 4.4.8 Step8: Interaction Tasks Prediction 32 4.4.9 Step9: Complete Use Case CTT and Main CTT Generation 32 Chapter 5 Influence Function 35 5.1 The Introduction of Influence Function 35 5.2 Sequence Diagram 36 5.3 Cuda Out of Memory Issue 37 5.4 Restraint 38 5.5 Experiment 38 5.5.1 Accuracy Comparison Between Good and Bad Data Across Different Intervals 39 5.5.2 Retraining the Model after Removing Low-Scoring Data 42 Chapter 6 Conclusion and Future Work 43 6.1 Conclusion 43 6.2 Future Work 44 References 45 Appendix A - Class Diagram 46 A.1 Class Diagram 46 Appendix B - Case Study 47 B.1 InventorySystem 47 B.1.1 Use Case:[Log into the system] 47 B.1.2 Use Case:[Register an Account] 50 B.1.3 Use Case:[View Assets] 52 B.1.4 Use Case:[Edit Asset] 54 B.1.5 Use Case:[Add a new asset] 56 B.1.6 Use Case:[View Requests] 58 B.1.7 Use Case:[Create a Request] 60 B.1.8 Use Case:[Create an Advanced Request] 62 B.1.9 Use Case:[Modify Asset State] 64 B.1.10 Use Case:[Approve a Request] 66 B.1.11 Use Case:[Reject a Request] 68 B.1.12 Main CTT 70 | - |
| dc.language.iso | en | - |
| dc.subject | 使用案例規格 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 使用者需求 | zh_TW |
| dc.subject | 任務模型 | zh_TW |
| dc.subject | Use Case Specification | en |
| dc.subject | Task Model | en |
| dc.subject | User Requirements | en |
| dc.subject | Machine Learning | en |
| dc.title | 藉由機器學習模型自動將使用案例規格轉換為任務模型 | zh_TW |
| dc.title | Auto-Transform Use Case Specifications to Task Models Using Machine Learning Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建宏;蘇木春;鄭永斌;王小璠 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hung Liu;Mu-Chun Su;Yung-Pin Cheng;Hsiao-Fan Wang | en |
| dc.subject.keyword | 任務模型,使用者需求,機器學習,使用案例規格, | zh_TW |
| dc.subject.keyword | Task Model,User Requirements,Machine Learning,Use Case Specification, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202404066 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 13.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
