Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95624
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成zh_TW
dc.contributor.advisorYuancheng Gungen
dc.contributor.author張筱敏zh_TW
dc.contributor.authorHsiao-Ming Changen
dc.date.accessioned2024-09-15T16:10:12Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationM. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955,2018.
G. D. Bensen, M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International,169(3):1239–1260, 06 2007. ISSN 0956-540X. doi: 10.1111/j.1365-246X.2007.03374.x.
C.-P. Chang, T.-Y. Chang, J. Angelier, H. Kao, J.-C. Lee, and S.-B. Yu. Strain and stress field in taiwan oblique convergent system: constraints from gps observation and tectonic data. Earth and Planetary Science Letters, 214(1-2):115–127, 2003. doi:10.1016/S0012-821X(03)00360-1.
E. T. Y. Chang, W.-T. Liang, and Y.-B. Tsai. Seismic shear wave splitting in upper crust characterized by Taiwan tectonic convergence. Geophysical Journal International, 177(3):1256–1264, 06 2009. ISSN 0956-540X. doi: 10.1111/j.1365-246X.2009.04110.x.
K.-X. Chen, K. M. Fischer, J. Hua, and Y. Gung. Imaging crustal melt beneath northeast japan with ps receiver functions. Earth and Planetary Science Letters, 537:116173,2020. ISSN 0012-821X. doi: 10.1016/j.epsl.2020.116173.
L.-W. Chen, Y.-N. Chen, Y. Gung, J.-C. Lee, and W.-T. Liang. Strong near-surface seismic anisotropy of taiwan revealed by coda interferometry. Earth and Planetary Science Letters, 475:224–230, 2017. doi: 10.1016/j.epsl.2017.07.016.
W.-S. Chen, K. D. Ridgway, C.-S. Horng, Y.-G. Chen, K.-S. Shea, and M.-G. Yeh. Strati45 graphic architecture, magnetostratigraphy, and incised-valley systems of the PliocenePleistocene collisional marine foreland basin of Taiwan. GSA Bulletin, 113(10):1249–1271, 10 2001. ISSN 0016-7606. doi: 10.1130/0016-7606(2001)113<1249:SAMAIV>2.0.CO;2.
L.-Y. Chiao and B.-Y. Kuo. Multiscale seismic tomography. Geophysical JournalInternational, 145(2):517–527, 05 2001. ISSN 0956-540X. doi: 10.1046/j.0956-540x.2001.01403.x.
L.-Y. Chiao and W.-T. Liang. Multiresolution parameterization for geophysical inverseproblems. GEOPHYSICS, 68(1):199–209, 2003. doi: 10.1190/1.1543207.
F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press,1998. ISBN 9780691001241.
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. pages 630–645, 2016.
B.-S. Huang, W.-G. Huang, W.-T. Liang, R.-J. Rau, and N. Hirata. Anisotropy beneath an active collision orogen of taiwan: Results from across islands array observations. Geophysical Research Letters, 33:L24302, 2006. doi: 10.1029/2006GL027844.
T.-Y. Huang, Y. Gung, B.-Y. Kuo, L.-Y. Chiao, and Y.-N. Chen. Layered deformation in the taiwan orogen. Science, 349:720–723, 2015.
S. Kaneshima. Origin of crustal anisotropy: Shear wave splitting studies in japan. Journal of Geophysical Research: Solid Earth, 95(B7):11121–11133, 1990. doi:10.1029/JB095iB07p11121.
V. I. Keilis-Borok. Recording, Identification, and Measurement of Surface Wave Parameters, pages 131–182. Springer Netherlands, Dordrecht, 1989. ISBN 978-94-009-0883-3. doi: 10.1007/978-94-009-0883-3_5.
H.-Y. Lee, Y. Gung, L.-W. Chen, W.-S. Chen, Y.-N. Chen, S.-J. Cai, H.-C. Chen, and C.-W. Liao. Strong variation of near-surface seismic anisotropy in taiwan and its geological implications. Earth and Planetary Science Letters, 620, 2023.
M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages3367–3375, 2015. doi: 10.1109/CVPR.2015.7298958.
C.-F. Liao and Y.-N. Chen. Characteristics of higher mode ambient noise rayleigh waves in taiwan: Insights from multicomponent interferometry. Seismological Research Letters,2024. submitted.
W.-Y. Liao, E.-J. Lee, D. Mu, P. Chen, and R.-J. Rau. ARRU Phase Picker: Attention Recurrent‐Residual U‐Net for Picking Seismic P‐ and S‐Phase Arrivals. Seismological Research Letters, 92(4):2410–2428, 03 2021. ISSN 0895-0695. doi: 10.1785/0220200382.
A. T. Lin, A. B. Watts, and S. P. Hesselbo. Cenozoic stratigraphy and subsidence history of the south china sea margin in the taiwan region. Basin Research, 15(4):453–478, 2003. doi: 10.1046/j.1365-2117.2003.00215.x.
J.-P. Montagner and H.-C. Nataf. A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91(B1):511–520, 1986. doi: 10.1029/JB091iB01p00511.
R.-J. Rau, W.-T. Liang, H. Kao, and B.-S. Huang. Shear wave anisotropy beneath the taiwan orogen. Earth and Planetary Science Letters, 177(3-4):177–192, 2000. ISSN 0012-821X. doi: 10.1016/S0012-821X(00)00058-3.
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, pages 234–241. Springer, 2015.
K. J. Seats, J. F. Lawrence, and G. A. Prieto. Improved ambient noise correlation functions using Welch′s method. Geophysical Journal International, 188(2):513–523, 02 2012. ISSN 0956-540X. doi: 10.1111/j.1365-246X.2011.05263.x.
R. Snieder and K. Wapenaar. Imaging with ambient noise. Physics Today, 63(9):44–49,09 2010. ISSN 0031-9228. doi: 10.1063/1.3490500.
L. Stehly, M. Campillo, and N. M. Shapiro. A study of the seismic noise from its longrange correlation properties. Journal of Geophysical Research, 111:B10306, 2006. doi:10.1029/2005JB004237.
R. L. Weaver. Information from seismic noise. Science, 307:1568–1569, 2005. doi:10.1126/science.1109834.
R. L. Weaver and O. I. Lobkis. Ultrasonics without a source: Thermal fluctuation correlations at mhz frequencies. Phys. Rev. Lett., 87:134301, Sep 2001. doi: 10.1103/PhysRevLett.87.134301.
K.-M. Yang, S.-T. Huang, J.-C. Wu, H.-H. Ting, and W.-W. Mei. Review and new insights on foreland tectonics in western taiwan. International Geology Review, 48(10):910–941, 2006. doi: 10.2747/0020-6814.48.10.910.
K.-M. Yang, R.-J. Rau, H.-Y. Chang, C.-Y. Hsieh, H.-H. Ting, S.-T. Huang, J.-C. Wu, and Y.-J. Tang. The role of basement-involved normal faults in the recent tectonics of western taiwan. Geological Magazine, 153(5-6):1166–1191, 2016. doi: 10.1017/S0016756816000637.
S. Yang, H. Zhang, N. Gu, J. Gao, J. Xu, J. Jin, J. Li, and H. Yao. Automatically Extracting Surface‐Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network. Seismological Research Letters, 93(3):1549–1563, 03 2022. ISSN 0895-0695. doi: 10.1785/0220210280.
H. Yao, G. Xu, L. Zhu, and X. Xiao. Mantle structure from inter-station rayleigh wave dispersion and its tectonic implication in western china and neighboring regions. Physics of the Earth and Planetary Interiors, 148(1):39–54, 2005. ISSN 0031-9201. doi:10.1016/j.pepi.2004.08.006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95624-
dc.description.abstract本研究旨在探索台灣地區平行應力方向的非均向性(Stress-Aligned Anisotropy ,SAA)的深度範圍。近期利用尾波干涉法研究的結果顯示,台灣的海岸平原近地表SAA與利用本地的淺層地震進行的剪切波分裂(Shear wave splitting, SWS)研究結果一致,然而,這與使用深震的SKS的SWS研究,以及從噪聲衍生的寬頻(4-20秒)雷利波導出的淺層地殼Vs非均向性模型並不完全吻合。這表明SAA很可能僅侷限於淺層地殼,儘管可以合理推估岩層中微裂縫將會因為圍壓隨著深度不斷增加而閉合,但台灣SAA存在的深度範圍仍有待探索。
本研究使用周遭噪訊成像法,利用臺灣西南部密集測站序列資料,建構該區域的三維速度構造模型。為了解析淺層構造,我們計算了測站對的交互相關函數,並聚焦於短週期(2-7秒)的雷利波。為了準確且有效地進行量測短週期的頻散曲線,我們採用了基於Yang et al.(2022)提出的機器學習演算法,並結合Liao et al.(2021)開發的循環殘差U型網絡(R2U-Net)進行訓練。模型訓練數據包括來自臺灣、日本和紐西蘭南島等不同地區計算的頻散圖,從而建立了一個更加高效且客觀的模型,並成功應用於本研究短週期表面波的頻散測量。
通過獲得的頻散數據,本研究採用以小波為基底函數的多尺度反演技術導出剪力波與方位非均向性的三維模型。結果顯示,密集的短週期表面波可以有效地解析淺層的SAA構造。在此三維模型中,臺灣西部海岸平原區的SAA深度範圍可延伸至6公里以下,變形前緣以東則漸轉為受構造主導的非均向性;結果也顯示SAA由淺層的西北-東南向隨著深度增加逐漸轉至東西向,這可能歸因於在該深度造山運動前即存在之東西走向的正斷層系統的影響。
zh_TW
dc.description.abstractIn this study, we aim to explore the depth range of stress-aligned anisotropy (SAA) in Taiwan. Our recent works using coda-interferometry (SWS) have shown that the near-surface SAA is consistent with shear-wave splitting studies employing local earthquakes. However, it contrasts with SWS studies using deep phase (SKS) and the shallow crustal Vs anisotropy model derived from noise-derived broad-band (4-20 s) Rayleigh waves. This suggests that SAA is likely confined to the uppermost crust. Despite micro-cracks assumed to be fully closed with increasing ambient stress at depths, the depth range of the SAA mechanism remains unclear.
Our approach involves noise tomography using short-period (2-7s) Rayleigh waves enhanced by multicomponent stacking technique. To measure the dispersion of the isolated fundamental mode Rayleigh waves accurately and effectively, we employ a modified machine learning algorithm bases on the algorithm proposed by Yang et al.(2022) We employ the Recurrent-Residual U-Net (R2U-Net) developed by Liao et al.(2021)for training. The model training data consist of dispersion diagrams from CCFs derived in various regions, including Taiwan, Japan, and the South Island of New Zealand. These data have enabled the development of a more efficient and objective model, which has been successfully applied to the study of short-period surface waves.
With the obtained dispersion data, we apply the wavelet-based multi-scale inversion technique to derive 3D models of Vs and Vs anisotropy .The results indicate that the depth of the SAA extends down to 6 kilometers and likely deeper. The area west of the deformation front is dominated by SAA, while the area to the east is influenced by Orogeny-Parallel Anisotropy (OPA). The direction of the SAA shifts from northwest-southeast to east-west with increasing depth, which is likely influenced by pre-existing normal fault systems oriented in the east-west direction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:10:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:10:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vii
圖次 ix
表次 xi
第一章 緒論 1
1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 周遭噪訊層析成像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 震波非均向性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 地體架構與區域地質 . . . . . . . . . . . . . . . . . . . . . . . . . . 3
第二章 資料簡介 8
第三章 理論背景與資料處理 10
3.1 理論背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 資料前處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 CCF 計算與疊加 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 表面波頻散分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 群速度測量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 相速度測量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
第四章 以機器學習挑選相速度曲線 19
4.1 卷積神經網路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 模型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 模型輸入輸出與訓練 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 模型結果與後處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
第五章 三維剪力波速度構造逆推 28
5.1 方位非均向性與表面波深度敏感度算核 . . . . . . . . . . . . . . . . 28
5.2 多重尺度小波逆推 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 三維速度模型建立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
第六章 結果與討論 33
6.1 R2U-Net 模型結果與驗證 . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 三維剪力波均向與非均向性模型 . . . . . . . . . . . . . . . . . . . . 34
6.2.1 模型恢復測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 模型成果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
第七章 結論 43
參考文獻 45
-
dc.language.isozh_TW-
dc.title利用機器學習量測表面波頻散探測SAA深度範圍zh_TW
dc.titleProbing the SAA depth range using ML-measured short-period dispersionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭本垣;李恩瑞;洪淑蕙;陳映年zh_TW
dc.contributor.oralexamcommitteeBan-Yuan Kuo;En-Jui Lee;Shu-Huei Hung;Ying-Nien Chenen
dc.subject.keyword周遭噪訊成像法,震波非均向性,機器學習,臺灣淺部地殼地震地體構造,zh_TW
dc.subject.keywordambient noise tomography,seismic anisotropy,machine learning,shallow seismic structure of southwestern Taiwan,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202404284-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2029-08-13-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
44.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved