請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華 | zh_TW |
| dc.contributor.advisor | Ming-Hua Mao | en |
| dc.contributor.author | 賴郁宜 | zh_TW |
| dc.contributor.author | Yu-Yi Lai | en |
| dc.date.accessioned | 2024-09-15T16:09:50Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | [1] W. R. Hunter, T. C. Holloway, P. K. Chatterjee and A. F. Tasch, "A new edge-defined approach for submicrometer MOSFET fabrication," in IEEE Electron Device Letters, vol. 2, no. 1, pp. 4-6, 1981.
[2] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, no. 2, pp. 149–152, 2003. [3] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon vertically integrated nanowire field effect transistors,” Nano Lett., vol. 6, no. 5, pp. 973–977, 2006. [4] J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching,” Adv. Funct. Mater., vol. 24, no. 1, pp. 106–116, 2014. [5] Y. Chen et al., “Fabricating and controlling silicon zigzag nanowires by diffusion-controlled metal-assisted chemical etching method,” Nano Lett., vol. 17, no. 7, pp. 4304–4310, 2017. [6] I. Park, Z. Li, A. P. Pisano, and R. S. Williams, “Top-down fabricated silicon nanowire sensors for real-time chemical detection,” Nanotechnology, vol. 21, no. 1, p. 015501, 2010. [7] A. Fasoli and W. I. Milne, “Overview and status of bottom-up silicon nanowire electronics,” Mater. Sci. Semicond. Process., vol. 15, no. 6, pp. 601–614, 2012. [8] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, “Capacitive humidity sensor design based on anodic aluminum oxide,” Sens. Actuators B Chem., vol. 141, no. 2, pp. 441–446, 2009. [9] X. Liu, R. Wang, T. Zhang, Y. He, J. Tu, and X. Li, “Synthesis and characterization of mesoporous indium oxide for humidity-sensing applications,” Sens. Actuators B Chem., vol. 150, no. 1, pp. 442–448, 2010. [10] Z. M. Rittersma, “Recent achievements in miniaturised humidity sensors—a review of transduction techniques,” Sens. Actuators A Phys., vol. 96, no. 2–3, pp. 196–210, 2002. [11] Y. Sakai, Y. Sadaoka, and M. Matsuguchi, “Humidity sensors based on polymer thin films,” Sens. Actuators B Chem., vol. 35, no. 1–3, pp. 85–90, 1996. [12] M. Odlyha, G. M. Foster, N. S. Cohen, C. Sitwell, and L. Bullock, “Microclimate monitoring of indoor environments using piezoelectric quartz crystal humidity sensors,” J. Environ. Monit., vol. 2, no. 2, pp. 127–131, 2000. [13] A. Wolfgang, “More-than-Moore white paper,” 2010. [14] Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B, vol. 107, no. 15, pp. 3340–3343, 2003. [15] K. Zhou, Z. Zhao, and Z. Wang, “Fabrication of silicon nanowire pH sensors using high output, low cost sidewall mask technology,” in 2017 IEEE SENSORS, 2017. [16] R. Guo, L. Qi, L. Xu, and H. Zou, “Fabrication of sub-50 nm nanochannel array by an angle forming lift-off method,” J. Manuf. Process., vol. 75, pp. 584–592, 2022. [17] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, vol. 88, pp. 1–20, 2003. [18] K. Zhou, Z. Zhao, L. Pan, and Z. Wang, “Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology,” Sens. Actuators B Chem., vol. 279, pp. 111–121, 2019. [19] R. Lee et al., “Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor,” Jpn. J. Appl. Phys. (2008), vol. 56, no. 12, p. 124001, 2017. [20] S. Choi, I. Park, Z. Hao, H. Y. N. Holman, and A. P. Pisano, "Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors," Applied Physics a-Materials Science & Processing, vol. 107, no. 2, pp. 421-428, May 2012. [21] P. Namdari, H. Daraee, and A. Eatemadi, “Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications,” Nanoscale Res. Lett., vol. 11, no. 1, p. 406, 2016. [22] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, no. 5533, pp. 1289-1292, Aug 2001. [23] F. Patolsky and C. M. Lieber, “Nanowire nanosensors,” Mater. Today (Kidlington), vol. 8, no. 4, pp. 20–28, 2005. [24] W. A. Za, “Fabrication and Characterization of Back-Gate Controlled Silicon Nanowire based Field-effect pH Sensor,” in 2019 IEEE International Conference on Sensors and Nanotechnology, IEEE, 2019. [25] J. Y. Oh, H.-J. Jang, W.-J. Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane,” Sens. Actuators B Chem., vol. 171–172, pp. 238–243, 2012. [26] N. F. Luc and P. De Rooij, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface,” IEEE Transactions on electron devices, vol. 30, pp. 1263–1270, 1983. [27] T.-M. Pan and K.-M. Liao, “Comparison of structural and sensing characteristics of Pr2O3 and PrTiO3 sensing membrane for pH-ISFET application,” Sens. Actuators B Chem., vol. 133, no. 1, pp. 97–104, 2008. [28] T. Ytterdal, Y. Cheng, and T. A. Fjeldly, Device modeling for analog and RF CMOS circuit design. John Wiley & Sons, 2003. [29] R. E. G. van Hal, J. C. T. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters,” Sens. Actuators B Chem., vol. 24, no. 1–3, pp. 201–205, 1995. [30] D. P. Tran, B. Wolfrum, R. Stockmann, A. Offenhäusser, and B. Thierry, “Fabrication of locally thinned down silicon nanowires,” J. Mater. Chem. C Mater. Opt. Electron. Devices, vol. 2, no. 26, pp. 5229–5234, 2014 [31] R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng., vol. 13, no. 1, pp. 80–88, 2003. [32] Y.-J. Hung, S.-L. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 4, pp. 869–877, 2011. [33] Y.-C. Lin et al., “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices,” Nano Lett., vol. 8, no. 3, pp. 913–918, 2008. [34] D. A. Neamen, Semiconductor physics and devices, 4th ed. Maidenhead, England: McGraw Hill Higher Education, 2011. [35] 羅亦軒, “使用側壁遮罩法製備奈米線感測器”, 國立臺灣大學碩士論文(2022) [36] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys., vol. 68, no. 3, pp. 1272–1281, 1990. [37] J. Jang et al., “Effect of liquid gate bias rising time in pH sensors based on Si nanowire ion sensitive field effect transistors,” Solid State Electron., vol. 140, pp. 109–114, 2018 [38] W. H. Lee et al., “Characterization and capacitive modeling of target concentration-dependent subthreshold swing in silicon nanoribbon biosensors,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 587–589, 2014. [39] P. G. Fernandes et al., “Effect of Back-Gate biasing on floating electrolytes in silicon-on-insulator-based nanoribbon sensors,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 447–449, 2012. [40] A. Gao, P. Dai, N. Lu, T. Li, and Y. Wang, “Optimization of silicon nanowire based field-effect pH sensor with back gate control,” in The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2013. [41] M. Awais, H. Mousa, and K. Teker, “Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET),” J. Mater. Sci.: Mater. Electron., vol. 32, no. 3, pp. 3431–3436, 2021. [42] P. Dai, A. Gao, N. Lu, T. Li, and Y. Wang, “A Back-Gate controlled silicon nanowire sensor with sensitivity improvement for DNA and pH detection,” Jpn. J. Appl. Phys. (2008), vol. 52, no. 12R, p. 121301, 2013. [43] J.-H. Ahn et al., “A pH sensor with a double-gate silicon nanowire field-effect transistor,” Appl. Phys. Lett., vol. 102, no. 8, p. 083701, 2013. [44] F. Gasparyan, I. Zadorozhnyi, H. Khondkaryan, A. Arakelyan, and S. Vitusevich, “Photoconductivity, pH sensitivity, noise, and channel length effects in Si nanowire FET sensors,” Nanoscale Res. Lett., vol. 13, no. 1, p. 87, 2018. [45] Y. Chen, X. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, “Silicon-based nanoelectronic field-effect pH sensor with local gate control,” Appl. Phys. Lett., vol. 89, no. 22, p. 223512, 2006. [46] Y. Liang, J. Huang, P. Zang, J. Kim, and W. Hu, “Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response,” Appl. Surf. Sci., vol. 322, pp. 202–208, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95623 | - |
| dc.description.abstract | 於本篇論文中,我們以側壁遮罩法(Sidewall Mask Technology)製作矽奈米線元件,將元件作為感測器的應用,並藉由液態閘極(Liquid-Gate)的控制以提高感測靈敏度。透過側壁遮罩法的製程,我們利用傳統的黃光微影技術,搭配圖案反轉(image reversal)、SU8平坦化及側壁遮罩的最佳參數,製成品質良好的奈米線陣列。當奈米線尺寸微縮後,在相同大小的感測區域內可提高奈米線密度,進而增加量測靈敏度。
完成奈米線製程後,我們做pH酸鹼溶液的量測。首先,將元件視為一個電阻(resistor),在滴上不同pH值的酸鹼溶液後,量奈米線兩端金屬電極之間的電流-電壓特性曲線(I-V curve)。接著,在pH溶液中放入一端電極,形成液態閘極(Liquid-Gate)的架構,量測其電性變化趨勢,並針對施加液態閘極的延遲時間和積分時間對元件特性的影響做測試。最後,計算出酸鹼響應度,兩端點電阻式靈敏度為31%⁄pH,而加上液態閘極後靈敏度獲得大幅提升至55%⁄pH,我們分析其中的原理與變化趨勢,再與文獻上的結果做比較。 | zh_TW |
| dc.description.abstract | In this paper, we adopt Sidewall Mask Technology for fabricating silicon nanowire devices, applying these devices as sensors, and enhancing their sensitivity through the control of a liquid gate. By employing the sidewall mask process, we utilize conventional photolithography, coupled with image reversal, SU8 planarization, and optimized sidewall masking parameters to produce high-quality nanowire arrays. By reducing the dimensions of the nanowires, we increase the density within the same sensing area, thereby enhancing the measurement sensitivity.
After completing the nanowire fabrication, we conducted measurements in pH solutions. Initially, we treated the device as a resistor, measuring the current-voltage (I-V) characteristics of the nanowires after applying various pH solutions. Subsequently, we placed one electrode in the pH solution to create a Liquid-Gate configuration and measured the electrical property trends. We also investigated the effects of the delay and integration times of applying the liquid gate on the device characteristics. Finally, we calculated the pH response ratio, the endpoint resistive sensitivity was 31% per pH, which significantly increased to 55% per pH with the control of the liquid gate. We analyze the underlying principles and trends of these changes and compare them with results from the literature. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:09:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:09:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 x 第一章 序論 1 1.1 積體電路的改革與發展 1 1.2 側壁遮罩法與奈米線元件 2 1.3 奈米線的製備 4 1.3.1 Top-Down由上而下製程 4 1.3.2 Bottom-Up由下而上製程 6 1.4 奈米線感測器應用 7 1.4.1 酸鹼感測器 7 1.4.2 濕度感測器 8 1.5 研究動機 9 1.6 論文架構 10 第二章 理論介紹 11 2.1 側壁遮罩法Sidewall Mask Technology 11 2.2 光阻圖案反轉Image Reversal Photoresist 14 2.3 液態閘極 Liquid-Gate 15 2.4 奈米線酸鹼感測器機制與原理 18 第三章 元件製程與實驗方法 21 3.1 晶圓與材料的採用 21 3.2 元件製程 23 3.2.1 圖案反轉 23 3.2.2 SU8平坦化 26 3.2.3 奈米線陣列形成 30 3.2.4 製作電極與保護層 31 第四章 量測結果與討論 34 4.1 元件電流-電壓特性 34 4.2 pH酸鹼量測架構 35 4.3 矽奈米線電晶體pH酸鹼感測器量測結果 37 4.3.1 兩端點電阻式量測 37 4.3.2 液態閘極量測 40 4.3.3 時間對響應的影響 43 第五章 結論 48 5.1 總結 48 5.2 未來方向 48 參考文獻 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 酸鹼感測器 | zh_TW |
| dc.subject | 液態閘極 | zh_TW |
| dc.subject | 測壁遮罩法 | zh_TW |
| dc.subject | 矽奈米線 | zh_TW |
| dc.subject | pH sensor | en |
| dc.subject | Silicon nanowire | en |
| dc.subject | Sidewall Mask Technology | en |
| dc.subject | Liquid-Gate | en |
| dc.title | 具液態閘極控制並以側壁遮罩法製備之奈米線感測器 | zh_TW |
| dc.title | Liquid-Gate-Controlled Silicon Nanowire Sensor Fabricated by Sidewall Mask Technology | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林浩雄;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Hsiung Lin;I-Chun Cheng | en |
| dc.subject.keyword | 矽奈米線,測壁遮罩法,液態閘極,酸鹼感測器, | zh_TW |
| dc.subject.keyword | Silicon nanowire,Sidewall Mask Technology,Liquid-Gate,pH sensor, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202403382 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
