Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95621
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰zh_TW
dc.contributor.advisorSnow H. Tsengen
dc.contributor.author周昱廷zh_TW
dc.contributor.authorYu-Ting Chouen
dc.date.accessioned2024-09-15T16:08:46Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation1. Padgilwar, S., Recent Drug Advances in the Management of Diabetes Complications: An Overview. Tuijin Jishu/Journal of Propulsion Technology. 44(4): p. 2023.
2. Mahrouseh, N., Policy surveillance of prevention and treatment of type 2 diabetes mellitus across the member states of the European Union.
3. Golden, G.J., et al., Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. bioRxiv, 2024: p. 2024.04. 23.590798.
4. Addissouky, T.A., et al., Type 1 diabetes mellitus: retrospect and prospect. Bulletin of the National Research Centre, 2024. 48(1): p. 42.
5. Yadav, R.N., Association of Diabetes and New Incidence of Tuberculosis: Evidence Study. Socio-Scientific Interaction in Diabetes and Cancer and Its Management, 2023: p. 228.
6. Barrozo, E.R., et al., Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy. American Journal of Obstetrics and Gynecology, 2024.
7. Shahrbabaki, S.S., X. Liu, and M. Baumert, Finger pulse plethysmography predicts gestational hypertension, preeclampsia and gestational diabetes. Journal of Hypertension, 2024: p. 10.1097.
8. Yu, J., et al., Demand and Requirements for a Digital Healthcare System to Manage Gestational Diabetes in Patients and Healthcare Professionals: A Cross-sectional Survey. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 2024. 61: p. 00469580241252569.
9. Gong, Y., et al., Heterogeneity of Gestational Diabetes and Risk for Adverse Pregnancy Outcome: A Cohort Study.
10. Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice, 2019. 157: p. 107843.
11. Willcox, M.L., et al., Effectiveness of medicinal plants for glycaemic control in type 2 diabetes: an overview of meta-analyses of clinical trials. Frontiers in Pharmacology, 2021. 12: p. 777561.
12. Rutledge, S.A., Diabetes self-management education programs in nonmetropolitan counties—United States, 2016. MMWR. Surveillance Summaries, 2017. 66.
13. Omba, E., Community-based diabetes programs: a qualitative and quantitative study among African American diabetics of New York City. Int J Diabetes Metab Disord, 2024. 9(1): p. 01-09.
14. Assessment, N.C., Northwell Health 2019 Community Health Needs Assessment.
15. Gómez-Peralta, F., Clinical Research on Type 2 Diabetes and Its Complications. 2023: MDPI-Multidisciplinary Digital Publishing Institute.
16. So, C.-F., et al., Recent advances in noninvasive glucose monitoring. Medical devices: evidence and research, 2012: p. 45-52.
17. Bagchi, D. and S. Nair, Nutritional and therapeutic interventions for diabetes and metabolic syndrome. 2018: Academic Press.
18. Alsunaidi, B., et al., A review of non-invasive optical systems for continuous blood glucose monitoring. Sensors, 2021. 21(20): p. 6820.
19. Villena Gonzales, W., A.T. Mobashsher, and A. Abbosh, The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors, 2019. 19(4): p. 800.
20. Gusev, M., et al., Noninvasive glucose measurement using machine learning and neural network methods and correlation with heart rate variability. Journal of Sensors, 2020. 2020(1): p. 9628281.
21. Tang, L., et al., Non-invasive blood glucose monitoring technology: a review. Sensors, 2020. 20(23): p. 6925.
22. Sakudo, A., Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clinica Chimica Acta, 2016. 455: p. 181-188.
23. Bagha, S. and L. Shaw, A real time analysis of PPG signal for measurement of SpO2 and pulse rate. International journal of computer applications, 2011. 36(11): p. 45-50.
24. Shokrekhodaei, M. and S. Quinones, Review of non-invasive glucose sensing techniques: optical, electrical and breath acetone. Sensors, 2020. 20(5): p. 1251.
25. Singh, K., et al., Molar extinction coefficients of some carbohydrates in aqueous solutions. Pramana, 2002. 58: p. 521-528.
26. Haxha, S. and J. Jhoja, Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics Journal, 2016. 8(6): p. 1-11.
27. Li, Y., et al. A low-cost drift-free optical-inertial hybrid motion capture system for high-precision human pose detection. in 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). 2019. IEEE.
28. Satter, S., et al., EMD-Based Noninvasive Blood Glucose Estimation from PPG Signals Using Machine Learning Algorithms. Applied Sciences, 2024. 14(4): p. 1406.
29. Deng, H., et al. Research on estimation of blood glucose based on PPG and deep neural networks. in IOP Conference Series: Earth and Environmental Science. 2021. IOP Publishing.
30. Susana, E. and K. Ramli. Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology. in 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering. 2021. IEEE.
31. Haque, C.A., T.-H. Kwon, and K.-D. Kim, Cuffless blood pressure estimation based on Monte Carlo simulation using photoplethysmography signals. Sensors, 2022. 22(3): p. 1175.
32. Zhu, C. and Q. Liu, Review of Monte Carlo modeling of light transport in tissues. Journal of biomedical optics, 2013. 18(5): p. 050902-050902.
33. Badiola, I., et al. Monte Carlo simulation-based analysis of unobtrusive PPG monitoring through clothes. in 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS). 2023. IEEE.
34. Patwardhan, S.V., A.P. Dhawan, and P.A. Relue, Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions. IEEE transactions on biomedical engineering, 2005. 52(7): p. 1227-1236.
35. Nilsson, H. and G.E. Nilsson. Monte Carlo simulations of light interaction with blood vessels in human skin in the red-wavelength region. in Optical Diagnostics of Biological Fluids III. 1998. SPIE.
36. Pushkareva, A. and O. Kozyreva. Monte Carlo mathematical modeling of the interactions between light and skin tissue of newborns. in Optical Interactions with Tissue and Cells XXVIII. 2017. SPIE.
37. Al-Halawani, R., M. Qassem, and P.A. Kyriacou, Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography. Scientific Reports, 2024. 14(1): p. 8145.
38. Welch, A.J. and M.J. Van Gemert, Optical-thermal response of laser-irradiated tissue. Vol. 2. 2011: Springer.
39. Kurt, B. and M. Gulsoy. Optical and thermal response of laser irradiated tissue. in 2009 14th National Biomedical Engineering Meeting. 2009. IEEE.
40. Bressler, R.S. and C.H. Bressler, Functional anatomy of the skin. Clinics in podiatric medicine and surgery, 1989. 6(2): p. 229-246.
41. Boonya-Ananta, T., et al., Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI). Scientific reports, 2021. 11(1): p. 2570.
42. Marti, D., et al., MCmatlab: an open-source, user-friendly, MATLAB-integrated three-dimensional Monte Carlo light transport solver with heat diffusion and tissue damage. Journal of biomedical optics, 2018. 23(12): p. 121622-121622.
43. Saputra, D.A. and J.R. Khana, Design and Development of Esp32-Based Non-Invasive Blood Sugar Level Measurement Equipment. 2023.
44. Bhuyan, M.H., A Modern Review of the Non-Invasive Continuous Blood Glucose Measuring Devices and Techniques for Remote Patient Monitoring System. International Journal of Biomedical and Biological Engineering, 2022. 16(2): p. 1-21.
45. Yadav, J., et al., Investigations on multisensor-based noninvasive blood glucose measurement system. Journal of Medical Devices, 2017. 11(3): p. 031006.
46. Hina, A. and W. Saadeh, Noninvasive blood glucose monitoring systems using near-infrared technology—A review. Sensors, 2022. 22(13): p. 4855.
47. Hossain, S., et al. Estimation of blood glucose from PPG signal using convolutional neural network. in 2019 IEEE international conference on biomedical engineering, computer and information technology for health (BECITHCON). 2019. IEEE.
48. Reddy, G., et al., A Novel Deep Learning Approach for Non-invasive Blood Glucose Measurement from Photoplethysmography Signals, in Advances in Communication, Devices and Networking: Proceedings of ICCDN 2021. 2022, Springer. p. 377-386.
49. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.
50. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
51. Qin, C., et al., Cuff-less blood pressure prediction based on photoplethysmography and modified ResNet. Bioengineering, 2023. 10(4): p. 400.
52. Yang, Y., et al., Non-invasive Blood Glucose Detection System with Infrared Pulse Sensor and Hybrid Feature Neural Network. IEEE Sensors Journal, 2024.
53. Alaeddine, H. and M. Jihene, Deep residual network in network. Computational Intelligence and Neuroscience, 2021. 2021(1): p. 6659083.
54. Wang, R., et al., Deep residual network framework for structural health monitoring. Structural Health Monitoring, 2021. 20(4): p. 1443-1461.
55. Ahn, N., B. Kang, and K.-A. Sohn. Fast, accurate, and lightweight super-resolution with cascading residual network. in Proceedings of the European conference on computer vision (ECCV). 2018.
56. Clarke, W.L., The original Clarke error grid analysis (EGA). Diabetes technology & therapeutics, 2005. 7(5): p. 776-779.
57. Sengupta, S., et al., Clarke error grid analysis for performance evaluation of glucometers in a tertiary care referral hospital. Indian Journal of Clinical Biochemistry, 2022: p. 1-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95621-
dc.description.abstract本研究利用光體積變化描記(PPG)訊號與深度學習技術,開發非侵入式血糖監測系統。首先使用蒙地卡羅方法(Monte Carlo Method)模擬光子在皮膚內的傳播路徑,以確定光源(LED)與光偵測器(PD)之間的最佳距離。接著,我們開發了血糖量測原型機,利用Arduino結合心率感測晶片(MIKROE 2036)捕捉三種波長(950 nm, 660 nm, 525 nm)的PPG訊號,並進行數據預處理。在深度學習部分,我們使用多層感知器(MLP)、卷積神經網絡(CNN)、殘差神經網絡(ResNet)模型,基於50位受試者提供的250筆三分鐘訊號數據建立血糖預測模型。此外,該系統設計了專為雲端運算而優化的軟體架構,使血糖監控不僅限於單一設備,能夠在任何支援的設備上實時且連續的監控血糖水平。這種便捷和安全的血糖管理方案為糖尿病患者提供了更加有效的健康管理工具。zh_TW
dc.description.abstractThis study develops a non-invasive blood glucose monitoring system using photoplethysmography (PPG) signals and deep learning technology. Initially, the Monte Carlo Method was used to simulate the photon propagation paths in the skin to determine the optimal distance between the light source (LED) and the photodetector (PD). Subsequently, we developed a blood glucose measurement prototype, utilizing Arduino combined with the heart rate sensing chip (MIKROE 2036) to capture PPG signals at three wavelengths (950 nm, 660 nm, 525 nm) and perform data preprocessing. In the deep learning phase, we employed Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Residual Neural Network (ResNet) models to build blood glucose prediction models based on 250 three-minute signal data samples from 50 subjects. Additionally, the system was designed with a cloud computing-optimized software architecture, enabling real-time and continuous blood glucose monitoring on any supported device, beyond a single device. This convenient and secure blood glucose management solution provides diabetes patients with a more effective health management tool.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:08:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:08:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview of Diabetes 1
1.2 Current Invasive Methods for Diabetes Monitoring 2
1.3 Our Non-Invasive Diabetes Monitoring Approach 3
Chapter 2 Literature Review 5
2.1 Introduction to PPG Technology 5
2.1.1 Principles of PPG Technology 5
2.1.2 Physiological Characteristics Affecting the PPG Waveform 6
2.1.3 Blood Oxygen Measurement Applications of PPG 7
2.1.4 Current Challenges 9
2.2 Application of Deep Learning in Glucose Estimation 11
2.3 Experimental Procedures 12
Chapter 3 Optimizing PPG Signal Quality with Monte Carlo Method 14
3.1 Monte Carlo Method 14
3.1.1 Introduction 14
3.1.2 Principle 15
3.2 Model 21
3.2.1 Skin Model 21
3.2.2 Light Source and Detector 24
3.3 Methodology 25
3.3.1 Heartbeat Cycles 25
3.3.2 Photon Number 27
3.3.3 Impact of BMI on Skin Model 28
3.3.4 Operating Environment 29
3.4 Simulation Results and Discussion 30
3.4.1 PPG Simulation 30
3.4.2 Optimal Distance Between Light Source and Detector for Different BMIs 31
Chapter 4 System Architecture and Data Collection 35
4.1 Hardware Design 35
4.1.1 Microcontroller Unit 36
4.1.2 Sensor 37
4.1.3 Circuit Wiring and Connections 39
4.1.4 Enclosure 40
4.2 Software Design 41
4.3 Recruitment and Data Collection Procedure for PPG Signals 43
4.3.1 Composition of Subjects 43
4.3.2 Experiment process 44
4.4 Data Preprocessing 45
4.4.1 Noise Removal 46
4.4.2 Data Cleaning 56
4.4.3 Signal Transformation 59
4.4.4 Signal Resampling 60
4.4.5 Data Preprocessing Method 62
4.5 Deep Learning 63
4.5.1 MLP (Multilayer Perceptron) 64
4.5.2 CNN (Convolution Neural Network) 66
4.5.3 ResNet (Residual Network) 70
4.5.4 Assessing Deep Learning Models' Accuracy with EGA 72
4.5.5 Assessing Deep Learning Models' Interpretability with Different Data Segmentation Strategies 74
4.6 Cloud Deployment of Models 75
Chapter 5 Result and Discussion 77
5.1 Data Collection 77
5.2 Deep Learning 78
5.2.1 Random Data Split 78
5.2.2 Glucose-Level-Based Split 92
5.2.3 Subject-Based Split 94
5.2.4 Model Performance 96
5.3 Cloud Deployment of Models 97
Chapter 6 Conclusion 100
6.1 Comprehensive Evaluation for PPG-Based Blood Glucose Estimation 100
6.2 Current Capabilities and Future Work 101
REFERENCE 104
-
dc.language.isoen-
dc.subject蒙地卡羅法zh_TW
dc.subject連續監測zh_TW
dc.subject雲端運算zh_TW
dc.subject血糖量測zh_TW
dc.subject光體積變化描記圖zh_TW
dc.subject光學模擬zh_TW
dc.subject深度學習zh_TW
dc.subjectCloud Computingen
dc.subjectPhotoplethysmographyen
dc.subjectMonte Carlo Methoden
dc.subjectOptical Simulationen
dc.subjectDeep Learningen
dc.subjectBlood Glucose Measurementen
dc.subjectContinuous Glucose Measurementen
dc.title利用光體積變化描記訊號與深度學習技術於非侵入式雲端血糖連續監測系統zh_TW
dc.titleContinuous Non-Invasive Glucose Monitoring System Using PPG Signals and Deep Learning on the Clouden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor蘇國棟zh_TW
dc.contributor.coadvisorGuo-Dung Suen
dc.contributor.oralexamcommittee于天立zh_TW
dc.contributor.oralexamcommitteeTian-Li Yuen
dc.subject.keyword光體積變化描記圖,蒙地卡羅法,光學模擬,深度學習,血糖量測,連續監測,雲端運算,zh_TW
dc.subject.keywordPhotoplethysmography,Monte Carlo Method,Optical Simulation,Deep Learning,Blood Glucose Measurement,Continuous Glucose Measurement,Cloud Computing,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202403864-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-07
7.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved