Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真zh_TW
dc.contributor.advisorChih-Chen Hsiehen
dc.contributor.author蔡皓程zh_TW
dc.contributor.authorHao-Cheng Caien
dc.date.accessioned2024-09-12T16:21:11Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation1. 高淂聿, 研究新型矽烷耦合劑對二氧化矽填充胎面膠之動態性能影響, in 化學工程學系. 2020, National Taiwan University.
2. 林聖憲. 重視輪胎、守護安全,米其林教你認識輪胎結構. 2012; Available from: https://am.u-car.com.tw/am/article/16761.
3. Heideman, G., et al., Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies. 2005. 95(6): p. 1388-1404.
4. Williams, M.L., R.F. Landel, and J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 1955. 77(14): p. 3701-3707.
5. Ikeda, Y., et al., Rubber Science. 2018: Springer.
6. Fröhlich, J., W. Niedermeier, and H.D. Luginsland, The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Composites Part a-Applied Science and Manufacturing, 2005. 36(4): p. 449-460.
7. Guth, E., THEORY OF FILLER REINFORCEMENT. Journal of Applied Physics, 1945. 16(1): p. 20-25.
8. Wolff, S. and J.B. Donnet, CHARACTERIZATION OF FILLERS IN VULCANIZATES ACCORDING TO THE EINSTEIN-GUTH-GOLD EQUATION. Rubber Chemistry and Technology, 1990. 63(1): p. 32-45.
9. Smallwood, H.M., Limiting law of the reinforcement of rubber. Journal of Applied Physics, 1944. 15(11): p. 758-766.
10. Freund, B. and W. Niedermeier, Molecular interpretation of the Payne-effect and influence of fillers. Kautschuk Gummi Kunststoffe, 1998. 51(6): p. 444-449.
11. Payne, A.R., The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. Journal of Applied Polymer Science, 1962. 6(21): p. 368-372.
12. Payne, A., R. Whittaker, and J. Smith, Effect of vulcanization on the low‐strain dynamic properties of filled rubbers. Journal of Applied polymer science, 1972. 16(5): p. 1191-1212.
13. Medalia, A., Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber chemistry and Technology, 1978. 51(3): p. 437-523.
14. Luginsland, H.D., J. Fröhlich, and A. Wehmeier, Influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber Chemistry and Technology, 2002. 75(4): p. 563-579.
15. Kraus, G., A carbon black structure-concentration equivalence principle. Application to stress-strain relationships of filled rubbers. Rubber Chemistry and Technology, 1971. 44(1): p. 199-213.
16. Medalia, A.I., MORPHOLOGY OF AGGREGATES .6. EFFECTIVE VOLUME OF AGGREGATES OF CARBON BLACK FROM ELECTRON MICROSCOPY . APPLICATION TO VEHICLE ABSORPTION AND TO DIE SWELL OF FILLED RUBBER. Journal of Colloid and Interface Science, 1970. 32(1): p. 115.
17. Smit, P., Glass transition in carbon black reinforced rubber. Rubber Chemistry and Technology, 1968. 41(5): p. 1194-1202.
18. Pliskin, I. and N. Tokita, BOUND RUBBER IN ELASTOMERS - ANALYSIS OF ELASTOMER-FILLER INTERACTION AND ITS EFFECT ON VISCOSITY AND MODULUS OF COMPOSITE SYSTEMS. Journal of Applied Polymer Science, 1972. 16(2): p. 473.
19. O'brien, J., et al., An NMR investigation of the interaction between carbon black and cis-polybutadiene. Macromolecules, 1976. 9(4): p. 653-660.
20. Fox, T.G., Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phs. Soc., 1952. 1: p. 123.
21. Berriot, J., et al., Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules, 2002. 35(26): p. 9756-9762.
22. Wolff, S., M.J. Wang, and E.H. Tan, SURFACE-ENERGY OF FILLERS AND ITS EFFECT ON RUBBER REINFORCEMENT .2. Kautschuk Gummi Kunststoffe, 1994. 47(12): p. 873-884.
23. Champagne, J., et al., Role of glassy bridges on the mechanics of filled rubbers under pressure. Macromolecules, 2020. 53(10): p. 3728-3737.
24. Heinrich, G. and H.B. Dumler, Wet skid properties of filled rubbers and the rubber—glass transition. Rubber chemistry and technology, 1998. 71(1): p. 53-61.
25. Choi, S.S., Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polymers for Advanced Technologies, 2002. 13(6): p. 466-474.
26. Mihara, S., Reactive processing of silica-reinforced tire rubber: new insight into the time-and temperature-dependence of silica rubber interaction. 2009.
27. Luginsland, H.D., Reactivity of the sulfur chains of the tetrasulfane silane Si 69 and the disulfane silane TESPD. Kautschuk Gummi Kunststoffe, 2000. 53(1-2): p. 10.
28. ten Brinke, J.W., et al., Mechanistic aspects of the role of coupling agents in silica-rubber composites. Composites Science and Technology, 2003. 63(8): p. 1165-1174.
29. Hasse, A., et al., Influence of the amount of diand polysulfane silanes on the crosslinking density of silica filled rubber compounds. Kautschuk Gummi Kunststoffe, 2002. 55(5): p. 236-243.
30. Tian, G., et al., Size-dependent adsorption and its application in determining the number of surfactant molecule adsorbed on multimodal SiO 2 particles by 2D-DCS. Analyst, 2018. 143(19): p. 4630-4637.
31. Yoon, B., et al., Dynamic viscoelasticity of silica-filled styrene-butadiene rubber/polybutadiene rubber (SBR/BR) elastomer composites. Composites Part B: Engineering, 2020. 187: p. 107865.
32. 林暉恩, 高性能綠色輪胎的非平衡動態混煉過程與分散劑反應性研究: 超小角 X 光分析. 2018.
33. 林恆毅, 開發適用於電動車之綠色輪胎:探討二氧化矽的層次聚集結構及新型添加劑提升動態性能之研究, in 化學工程學系. 2023, National Taiwan University.
34. 蘇裕昌, 界面活性劑的基礎及應用, in 漿紙技術. 2015. p. p.1-30.
35. Myers, D., Surfactant science and technology. 2020: John Wiley & Sons.
36. Zheng, X.F., et al., Effect of silica dispersed by special dispersing agents with green strategy on tire rolling resistance and energy consumption. Journal of Applied Polymer Science, 2022. 139(39): p. 14.
37. Glinka, C.J., Methods of X-ray and neutron scattering in polymer science. 2001, American Institute of Physics.
38. Takenaka, M., Analysis of structures of rubber-filler systems with combined scattering methods. Polymer Journal, 2013. 45(1): p. 10-19.
39. Kratky, O. and G. Porod, The dependence of the X-ray small-angle scattering on shape and size of colloidal particles in solution. Acta Phys. Austriaca, 1948. 2: p. 133-147.
40. University), I.S.A.A.C.S.C.M. The radial distribution functions: definitions. 2022 [cited 2024 July, 4]; Available from: http://isaacs.sourceforge.net/phys/rdfs.html.
41. Teixeira, J., Small-angle scattering by fractal systems. Journal of Applied Crystallography, 1988. 21(6): p. 781-785.
42. Guinier, A., et al., Small-angle Scattering of X-rays. 1955: Wiley New York.
43. Anderson, I.S., A.J. Hurd, and R.L. McGreevy, Neutron scattering applications and techniques. 2008: Springer.
44. Yamaguchi, D., et al., Hierarchically Self-Organized Dissipative Structures of Filler Particles in Poly(styrene-<i>ran</i>-butadiene) Rubbers. Macromolecules, 2017. 50(19): p. 7739-7759.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95617-
dc.description.abstract現代的汽車對輪胎性能的要求越來越高,也對節省能源及環境保護非常重視。目前小客車輪胎胎面多以加入二氧化矽奈米顆粒來提升性能,但是親水性的二氧化矽在疏水性的橡膠中會傾向聚集,會導致填充二氧化矽的效益變差,因此會加入矽烷耦合劑作為界面改性劑來降低二氧化矽的親水性。由於矽烷耦合劑價格較高,且使用時容易對環境造成汙染,所以本研究參考矽烷耦合劑的結構與功能使用同樣具有親水性與疏水性結構,且較便宜與環保的界面活性劑取代矽烷耦合劑作為界面改性劑。本研究使用了三種常見的非離子性界面活性劑,Triton X、Tween與Span。本研究主要探討改變胎面膠填充之二氧化矽的界面改性劑對二氧化矽顆粒之分散以及胎面膠動態機械性能的影響。輪胎的性能主要探討濕地抓地力(wet grip)、滾動阻力(rolling resistance)及剛性(stiffness)。並利用小角度X光散射(SAXS)以及潘恩效應(payne effect)分析胎面膠內二氧化矽的分散聚集結構對動態機械性能的關聯。
我們先使用了Triton X系列來確認界面活性劑對胎面膠的動態機械性能的提升確實有效。我們發現添加界面活性劑能有效分散二氧化矽。我們認為這是因為界面活性劑的親水基會與二氧化矽表面的矽烷醇基形成氫鍵,另一端的疏水基與橡膠親和力高,所以在受到應力時界面活性劑會與二氧化矽及橡膠產生摩擦損耗,因此提高濕地抓地力。而且界面活性劑還有阻擋玻璃態橡膠產生的效果,因此能降低滾動阻力。界面活性劑對二氧化矽的分散效果不如Si69,因此添加界面活性劑的胎面膠剛性高於添加Si69之胎面膠。本研究亦利用Triton X系列的界面活性劑,研究疏水基的數量對胎面膠的動態機械性質的影響,實驗結果顯示,界面活性劑疏水基越多摩擦損耗越多,濕地抓地力上升。對二氧化矽的分散效果也越好,因此剛性越低。以及阻擋玻璃態橡膠產生效果也越強,因此滾動阻力越低。
本研究亦利用Tween與Span來研究界面活性劑親水基與疏水基造成的影響。實驗結果顯示,界面活性劑疏水基越長分散效果越好,阻擋玻璃態橡膠產生效果也越好,能有效提高濕地抓地力與降低滾動阻力。界面活性劑疏水基上若具有雙鍵時,能夠與彼此產生交聯,提高二氧化矽間作用力,並能有效提升胎面膠的剛性並降低滾阻,同時擁有較好的化學穩定性,但同時也降低濕地抓地力。若界面活性劑親水基上可產生氫鍵數量較多,受到應力時產生的摩擦損耗較大,同時阻擋玻璃態橡膠效果也越好,因此提高濕地抓地力與降低滾動阻力。
最後根據本研究的結果,我們認為選擇界面活性劑作為二氧化矽界面改性劑的原則,應選擇親水基可產生氫鍵數量較多且立體障礙較小的結構,以及疏水基較長的界面活性劑,可以同時提升濕地抓地力、剛性及降低滾動阻力,提升車輛行駛時的安全性及提高能源使用效率,並達到降低成本以及保護環境的目標。
zh_TW
dc.description.abstractModern automobiles increasingly demand higher performance from tires, with a strong emphasis on energy saving and environmental protection. Currently, nano-sized silica particles are often added to passenger car tire tread to enhance its performance. However, hydrophilic silica tends to aggregate in hydrophobic rubber, reducing the effectiveness of silica filling. Therefore, silane coupling agents are added as interfacial modifiers to reduce the hydrophilicity of silica. Due to the high cost of silane coupling agents and their potential environmental pollution, this study explores the use of surfactants that are cheaper and more environmental friendly as replacements for silane coupling agents. This research uses three common nonionic surfactants: Triton X, Tween, and Span. The main focus is on the effect of changing the interfacial modifier for silica-filled tread on the dispersion of silica particles and the dynamic mechanical properties of the tread rubber. Tire performance of the tread is evaluated in terms of wet grip, rolling resistance, and stiffness. Small-angle X-ray scattering (SAXS) are used to analyze the dispersion and aggregation structure of silica within the tread rubber and its dynamic mechanical properties.
We first used the Triton X series to confirm the effectiveness of surfactants in improving the dynamic mechanical properties of tread rubber. We found that adding surfactants effectively helps silica dispersion. We believe this is because the hydrophilic groups of the surfactant form hydrogen bonds with the silanol groups on the silica surface, while the hydrophobic groups have a high affinity with rubber. Therefore, under stress, the surfactant generates frictional losses with both silica and rubber, increasing wet grip. Additionally, surfactants prevent the formation of glassy rubber between silica nanoparticles, reducing rolling resistance of the tread. The dispersion effect of surfactants on silica is not as good as that of Si69, the most popular silane coupling agent used for tread. However, stiffness of tread with added surfactants is higher than that with Si69. This study also explores the effect of the number of hydrophobic groups in Triton X series surfactants on the dynamic mechanical properties of tread rubber. The results show that the more hydrophobic groups a surfactant has, the more frictional losses it generates, increasing wet grip. The better dispersion of silica also results in less glassy rubber, further reducing rolling resistance.
This study also examines the effects of hydrophilic and hydrophobic groups in Tween and Span surfactants. The results show that longer hydrophobic groups improve silica dispersion and reduce glassy rubber formation, effectively increasing wet grip and reducing rolling resistance. If the hydrophobic groups of surfactants have double bonds, they may crosslink with each other, increasing the interactions between silica particles. This can effectively enhence the stiffness of the tread rubber and reduce rolling resistance, while also providing better chemical stability. However, this also reduces wet grip. If the hydrophilic groups of surfactants can form more hydrogen bonds with silica, they generate greater frictional losses under stress and better prevent glassy rubber formation, thus increasing wet grip and reducing rolling resistance.
Finally, based on the results of this study, we suggest that selecting surfactants as interfacial modifiers for silica reinforced tread should prioritize structures with hydrophilic groups capable of forming more hydrophilic bonds with silica nanoparticles, along with longer hydrophobic groups. This can simultaneously enhance wet grip, stiffness, and reduce rolling resistance, improving vehicle safety and energy efficiency while achieving cost reduction and environmental protection goals.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:21:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:21:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iv
目次 vi
圖次 ix
表次 xvi
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機與方向 2
Chapter 2 文獻回顧 3
2.1 橡膠效能分析 3
2.1.1 胎面膠組成及性能指標 3
2.1.2 動態機械性質分析 5
2.1.3 高分子動態機械性質與溫度關係-時間溫度疊加原理 7
2.1.4 填充橡膠強化理論 8
2.1.5 填料網絡與填料-高分子作用力對胎面膠結構影響 10
2.1.6 填料網絡對胎面膠之動態機械性質影響 14
2.2 矽烷耦合劑對胎面膠性質之影響 16
2.2.1 矽烷耦合劑與二氧化矽反應 16
2.2.2 矽烷耦合劑與橡膠反應 17
2.2.3 二氧化矽與橡膠的作用 18
2.2.4 矽烷耦合劑對胎面膠動態機械性能影響 19
2.3 以PEG取代矽烷耦合劑對胎面膠動態機械性質的影響 19
2.4 界面活性劑的作用 21
2.4.1 界面活性劑對二氧化矽填充天然橡膠之胎面膠的影響 22
2.5 小角度X光散射原理測量二氧化矽聚集體尺寸 23
2.5.1 測量角度與觀測尺度關係 24
2.5.2 小角X光散射原理:形狀因子與結構因子 25
2.5.3 碎形結構 28
2.6 研究構想 30
Chapter 3 實驗方法 34
3.1 實驗儀器 34
3.2 實驗材料 34
3.2.1 混煉實驗材料 34
3.3 實驗設計 36
3.3.1 無添加界面改性劑及添加Si69之標準品 36
3.3.2 界面活性劑對胎面膠可行性之驗證與疏水基數量影響-Triton X 36
3.3.3 界面活性劑的添加對胎面膠影響-Tween/Span 38
3.4 樣品製備 41
3.5 胎面膠機械性質及結構分析 41
3.5.1 小角度X光散射 41
3.6 潘恩效應分析 44
3.7 動態機械性質分析 44
Chapter 4 實驗結果與討論 46
4.1 以界面活性劑Triton X對胎面膠動態機械性質可行性驗證與疏水基數量影響 46
4.2 疏水基數量對胎面膠影響 48
4.2.1 界面活性劑與疏水基數量對二氧化矽聚集體尺寸影響 49
4.2.2 界面活性劑與疏水基數量對胎面膠動態機械性質影響 51
4.2.3 界面活性劑的添加對二氧化矽間作用力影響 55
4.2.4 Triton X系列效果比較 57
4.3 疏水基長度對胎面膠影響 59
4.3.1 疏水基長度對二氧化矽聚集體尺寸的影響 59
4.3.2 疏水基長度對動態機械性質影響 61
4.3.3 疏水基長度對二氧化矽間作用力影響 63
4.4 疏水基上雙鍵對胎面膠的影響 65
4.4.1 疏水基上雙鍵對二氧化矽聚集體尺寸影響 65
4.4.2 疏水基上雙鍵對胎面膠動態機械性質影響 67
4.4.3 疏水基上雙鍵對二氧化矽間作用力影響 69
4.5 不同親水基對胎面膠影響 71
4.5.1 不同親水基對二氧化矽聚集體尺寸影響 71
4.5.2 不同親水基對胎面膠動態機械性質影響 73
4.5.3 不同親水基對二氧化矽間作用力影響 75
4.5.4 Tween系列效果比較 77
4.5.5 Span系列效果比較 78
Chapter 5 結論 81
REFERENCE 84
-
dc.language.isozh_TW-
dc.title以界面活性劑取代矽烷耦合劑對二氧化矽填充胎面膠性質影響之研究zh_TW
dc.titleResearch on the effects of replacing silane with surfactants on the performance of silica-filled tread compoundsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor戴子安zh_TW
dc.contributor.coadvisorChi-An Daien
dc.contributor.oralexamcommittee邱文英;李宜桓zh_TW
dc.contributor.oralexamcommitteeWen-Yen Chiu;Yi-Huan Leeen
dc.subject.keyword界面活性劑,二氧化矽,胎面膠,動態機械性質分析儀(DMA),小角度X光散射(SAXS),zh_TW
dc.subject.keywordsurfactant,silica,tread,SAXS,DMA,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202402871-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-08-05-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved