Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author李威佑zh_TW
dc.contributor.authorWei-You Lien
dc.date.accessioned2024-09-12T16:18:09Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citation[1] IEA. "Renewable electricity capacity additions by technology and segment,2016-2028." https://www.iea.org/data-and-statistics/charts/renewable-electricity-capacity-additions-by-technology-and-segment-2016-2028 (accessed July, 2024).
[2] NREL. "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed July, 2024).
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-+,2009. doi: 10.1021/ja809598r.
[4] NREL. "Champion Photovoltaic Module Efficiency Chart." https://www.nrel.gov/pv/module-efficiency.html (accessed July, 2024).
[5] K. C. Shen, J. P. Hu, Z. F. Liang, J. B. Hu, H. L. Sun, Z. Jiang, and F. Song, "Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal," Crystals, vol. 8, no. 6, pp. 232,2018. doi: 10.3390/cryst8060232.
[6] Y. P. Fu, M. P. Hautzinger, Z. Y. Luo, F. F. Wang, D. X. Pan, M. M. Aristov, I. A. Guzei, A. L. Pan, X. Y. Zhu, and S. Jin, "Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction," ACS central science, vol. 5, no. 8, pp. 1377-1386,2019. doi: 10.1021/acscentsci.9b00367.
[7] C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, and M. Scheffler, "New tolerance factor to predict the stability of perovskite oxides and halides," Science advances, vol. 5, no. 2, pp. eaav0693,2019. doi: 10.1126/sciadv.aav0693.
[8] S. Chen, T. Bimenyimana, and M. Guli, "First-Principles Study on the Electronic Properties of Perovskites MASnaPb(1-a)XbY(3-b) (X, Y = Cl, Br, I)," Results in Physics, vol. 14, pp. 102408,2019. doi: 10.1016/j.rinp.2019.102408.
[9] P. Pradid, K. Sanglee, N. Thongprong, and S. Chuangchote, "Carbon Electrodes in Perovskite Photovoltaics," Materials (Basel), vol. 14, no. 20, pp. 5989,2021. doi: 10.3390/ma14205989.
[10] S. H. Reddy, F. Di Giacomo, and A. Di Carlo, "Low-Temperature-Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review," Advanced Energy Materials, vol. 12, no. 13, pp. 2103534,2022. doi: 10.1002/aenm.202103534.
[11] M. Stephen, K. Genevicius, G. Juska, K. Arlauskas, and R. C. Hiorns, "Charge transport and its characterization using photo-CELIV in bulk heterojunction solar cells," Polymer International, vol. 66, no. 1, pp. 13-25,2017. doi: 10.1002/pi.5274.
[12] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, vol. 342, no. 6156, pp. 341-344,2013. doi: 10.1126/science.1243982.
[13] S. Ryu, N. Y. Ha, Y. H. Ahn, J. Y. Park, and S. Lee, "Light intensity dependence of organic solar cell operation and dominance switching between Shockley-Read-Hall and bimolecular recombination losses," Scientific reports, vol. 11, no. 1, pp. 16781,2021. doi: 10.1038/s41598-021-96222-w.
[14] SEAWARD. "How does temperature and irradiance affect I-V curves?" https://www.seaward.com/gb/support/solar/faqs/00797-how-does-temperature-and-irradiance-affect-i-v-curves/ (accessed July, 2024).
[15] C. H. a. S. Bowden. "Quantum Efficiency." https://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency (accessed July, 2024).
[16] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, no. 3, pp. 982-988,2014. doi: 10.1039/c3ee43822h.
[17] G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, "CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector," The Journal of Physical Chemistry Letters, vol. 6, no. 19, pp. 3781-3786,2015. doi: 10.1021/acs.jpclett.5b01666.
[18] G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, and O. M. Bakr, "CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector," J Phys Chem Lett, vol. 6, no. 19, pp. 3781-6,2015. doi: 10.1021/acs.jpclett.5b01666.
[19] K. Mertens, Photovoltaics: fundamentals, technology, and practice. John Wiley & Sons, 2018.
[20] J. Zhang, W. Zhang, H. M. Cheng, and S. R. P. Silva, "Critical review of recent progress of flexible perovskite solar cells," Materials Today, vol. 39, pp. 66-88,2020. doi: 10.1016/j.mattod.2020.05.002.
[21] 黃超鵬, "全雷射燒蝕技術應用於空氣環境下狹縫式塗布法製造大面積鈣鈦礦太陽能電池模組之研究," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2021. doi: 10.6342/ntu202102110.
[22] C. Huang, C.-K. Guan, B.-Q. Lin, S.-H. Huang, B.-J. Huang, W.-F. Su, and L. Xu, "Effect of laser scribing on coating, drying, and crystallization of absorber layer of perovskite solar cells," Solar RRL, vol. 7, no. 4, pp. 2200945,2023. doi: 10.1002/solr.202200945.
[23] Z. Y. Yue, H. Guo, and Y. H. Cheng, "Toxicity of Perovskite Solar Cells," Energies, vol. 16, no. 10, pp. 4007,2023. doi: 10.3390/en16104007.
[24] D. H. Kim, J. B. Whitaker, Z. Li, M. F. A. M. van Hest, and K. Zhu, "Outlook and Challenges of Perovskite Solar Cells Toward Terawatt-Scale Photovoltaic Module Technology," Joule, vol. 2, no. 8, pp. 1437-1451,2018. doi: 10.1016/j.joule.2018.05.011.
[25] X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE Journal of Quantum Electronics, vol. 33, no. 10, pp. 1706-1716,1997. doi: 10.1109/3.631270.
[26] B. Kim, H. K. Nam, S. Watanabe, S. Park, Y. Kim, Y. J. Kim, K. Fushinobu, and S. W. Kim, "Selective Laser Ablation of Metal Thin Films Using Ultrashort Pulses," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, no. 3, pp. 771-782,2021. doi: 10.1007/s40684-020-00272-w.
[27] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nature communications, vol. 4, no. 1, pp. 2761,2013. doi: 10.1038/ncomms3761.
[28] F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, and T. M. Brown, "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates," Advanced Energy Materials, vol. 5, no. 8, pp. 1401808,2015. doi: 10.1002/aenm.201401808.
[29] W. Z. Xu, B. Chen, Z. Zhang, Y. Liu, Y. M. Xian, X. M. Wang, Z. F. Shi, H. Y. Gu, C. B. Fei, N. X. Li, M. A. Uddin, H. K. Zhang, L. T. Dou, Y. F. Yan, and J. S. Huang, "Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules," Nature Photonics, vol. 18, no. 4, pp. 379-387,2024. doi: 10.1038/s41566-023-01373-z.
[30] H. C. Weerasinghe, N. Macadam, J.-E. Kim, L. J. Sutherland, D. Angmo, L. W. Ng, A. D. Scully, F. Glenn, R. Chantler, and N. L. Chang, "The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions," Nature communications, vol. 15, no. 1, pp. 1656,2024. doi: 10.1038/s41467-024-46016-1.
[31] N. Ohashi, R. Kaneko, C. Sakai, Y. Wasai, S. Higuchi, K. Yazawa, H. Tahara, T. Handa, T. Nakamura, R. Murdey, Y. Kanemitsu, and A. Wakamiya, "Bilayer Indium Tin Oxide Electrodes for Deformation-Free Ultrathin Flexible Perovskite Solar Cells," Solar RRL, vol. 7, no. 13, pp. 2300221,2023. doi: 10.1002/solr.202300221.
[32] D. Yang, R. Yang, C. Zhang, T. Ye, K. Wang, Y. Hou, L. Zheng, S. Priya, and S. F. Liu, "Highest-Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Charge-Transfer," Advanced Materials, vol. 35, no. 32, pp. e2302484,2023. doi: 10.1002/adma.202302484.
[33] D. S. Lee, K. W. Kim, Y. H. Seo, M. H. Ann, W. Lee, J. Nam, J. Chung, G. Seo, S. Nam, B. S. Ma, T. S. Kim, Y. Kang, N. J. Jeon, J. Seo, and S. S. Shin, "Overcoming stability limitations of efficient, flexible perovskite solar modules," Joule, vol. 8, no. 5, pp. 1380-1393,2024. doi: 10.1016/j.joule.2024.02.008.
[34] P. Zhou, W. Li, T. Li, T. Bu, X. Liu, J. Li, J. He, R. Chen, K. Li, J. Zhao, and F. Huang, "Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells," Micromachines, vol. 8, no. 2, pp. 55,2017. doi: 10.3390/mi8020055.
[35] P. Kumar and A. K. Chauhan, "Highly Efficient Flexible Perovskite Solar Cells and Their Photo-Stability," Journal of Physics D: Applied Physics, vol. 53, no. 3, pp. 035101,2020. doi: 10.1088/1361-6463/ab4f07.
[36] J. S. Yeo, C. H. Lee, D. Jang, S. Lee, S. M. Jo, H. I. Joh, and D. Y. Kim, "Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales," Nano Energy, vol. 30, pp. 667-676,2016. doi: 10.1016/j.nanoen.2016.10.065.
[37] X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai, Z. Huang, M. Su, Y. Wang, M. Li, F. Li, X. Yao, F. Wang, W. Ma, Y. Chen, and Y. Song, "A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells," Joule, vol. 3, no. 9, pp. 2205-2218,2019. doi: 10.1016/j.joule.2019.06.011.
[38] Z. Huang, X. Hu, C. Liu, X. Meng, Z. Huang, J. Yang, X. Duan, J. Long, Z. Zhao, L. Tan, Y. Song, and Y. Chen, "Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer," Advanced Functional Materials, vol. 29, no. 37, pp. 1902629,2019. doi: 10.1002/adfm.201902629.
[39] H. Wang, Z. Huang, S. Xiao, X. Meng, Z. Xing, L. Rao, C. Gong, R. Wu, T. Hu, L. Tan, X. Hu, S. Zhang, and Y. Chen, "An in Situ Bifacial Passivation Strategy for Flexible Perovskite Solar Module with Mechanical Robustness by Roll-to-Roll Fabrication," Journal of Materials Chemistry A, vol. 9, no. 9, pp. 5759-5768,2021. doi: 10.1039/D0TA12067G.
[40] B. Fan, J. Xiong, Y. Zhang, C. Gong, F. Li, X. Meng, X. Hu, Z. Yuan, F. Wang, and Y. Chen, "A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate," Advanced Materials, vol. 34, no. 29, pp. e2201840,2022. doi: 10.1002/adma.202201840.
[41] X. Dai, Y. Deng, C. H. Van Brackle, S. Chen, P. N. Rudd, X. Xiao, Y. Lin, B. Chen, and J. Huang, "Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates," Advanced Energy Materials, vol. 10, no. 1, pp. 1903108,2020. doi: 10.1002/aenm.201903108.
[42] F. Jafarzadeh, L. A. Castriotta, F. De Rossi, J. Ali, F. Di Giacomo, A. Di Carlo, F. Matteocci, and F. Brunetti, "All-blade-coated flexible perovskite solar cells & modules processed in air from a sustainable dimethyl sulfoxide (DMSO)-based solvent system," Sustainable Energy & Fuels, vol. 7, no. 9, pp. 2219-2228,2023.
[43] L. A. Castriotta, R. Fuentes Pineda, V. Babu, P. Spinelli, B. Taheri, F. Matteocci, F. Brunetti, K. Wojciechowski, and A. Di Carlo, "Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area," ACS Applied Materials & Interfaces, vol. 13, no. 25, pp. 29576-29584,2021. doi: 10.1021/acsami.1c05506.
[44] T. Bu, S. Shi, J. Li, Y. Liu, J. Shi, L. Chen, X. Liu, J. Qiu, Z. Ku, Y. Peng, J. Zhong, Y. B. Cheng, and F. Huang, "Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules," ACS Applied Materials & Interfaces, vol. 10, no. 17, pp. 14922-14929,2018. doi: 10.1021/acsami.8b02624.
[45] T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y.-B. Cheng, and F. Huang, "Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module," Nature communications, vol. 9, no. 1, pp. 4609,2018. doi: 10.1038/s41467-018-07099-9.
[46] K. Li, J. Xiao, X. Yu, T. Li, D. Xiao, J. He, P. Zhou, Y. Zhang, W. Li, Z. Ku, J. Zhong, F. Huang, Y. Peng, and Y. Cheng, "An Efficient, Flexible Perovskite Solar Module Exceeding 8% Prepared with an Ultrafast PbI2 Deposition Rate," Scientific reports, vol. 8, no. 1, pp. 442,2018. doi: 10.1038/s41598-017-18970-y.
[47] S. Pisoni, F. Fu, R. Widmer, R. Carron, T. Moser, O. Groening, A. N. Tiwari, and S. Buecheler, "Impact of Interlayer Application on Band Bending for Improved Electron Extraction for Efficient Flexible Perovskite Mini-Modules," Nano Energy, vol. 49, pp. 300-307,2018. doi: 10.1016/j.nanoen.2018.04.056.
[48] F. Jafarzadeh, L. A. Castriotta, M. Legrand, D. Ory, S. Cacovich, Z. Skafi, J. Barichello, F. De Rossi, F. Di Giacomo, A. Di Carlo, T. Brown, F. Brunetti, and F. Matteocci, "Flexible, Transparent, and Bifacial Perovskite Solar Cells and Modules Using the Wide-Band Gap FAPbBr(3) Perovskite Absorber," ACS Appl Mater Interfaces, vol. 16, no. 14, pp. 17607-17616,2024. doi: 10.1021/acsami.4c01071.
[49] 黃章栢, "奈秒脈衝雷射雕刻技術應用於可撓性鈣鈦礦太陽能電池模組的製造," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2023. doi: 10.6342/NTU202300227.
[50] 陳冠維, "開發與優化應用於鈣鈦礦太陽能電池之奈米銀線前電極的保護層," 碩士論文, 機械工程學系, 國立臺灣大學, 2023. doi: 10.6342/ntu202304458.
[51] 李招辰, "連續波雷射技術焊接奈米銀線薄膜應用於提升鈣鈦礦太陽能電池之效能," 碩士論文, 機械工程學系, 國立臺灣大學, 2023. doi: 10.6342/ntu202304459.
[52] G. Thériault. "The Beginner's Guide on Spot Size of Laser Beam." GENTEC ELECTRO-OPTICS, INC. https://www.gentec-eo.com/blog/spot-size-of-laser-beam (accessed July, 2024).
[53] B. Turan and S. Haas, "Scribe Width Optimization of Absorber Laser Ablation for Thin-film Silicon Solar Modules," Journal of Laser Micro / Nanoengineering, vol. 8, pp. 234-243,2013. doi: 10.2961/jlmn.2013.03.0009.
[54] J. H. Yoon, J. K. Park, W. M. Kim, J. Lee, H. Pak, and J. h. Jeong, "Characterization of Efficiency-Limiting Resistance Losses in Monolithically Integrated Cu(In,Ga)Se2 Solar Modules," Scientific reports, vol. 5, no. 1, pp. 7690,2015. doi: 10.1038/srep07690.
[55] H. S. Jung, G. S. Han, N.-G. Park, and M. J. Ko, "Flexible perovskite solar cells," Joule, vol. 3, no. 8, pp. 1850-1880,2019.
[56] Y. Ma, Z. Lu, X. Su, G. Zou, and Q. Zhao, "Recent progress toward commercialization of flexible perovskite solar cells: from materials and structures to mechanical stabilities," Advanced Energy and Sustainability Research, vol. 4, no. 1, pp. 2200133,2023.
[57] R. Tian, S. Zhou, Y. Meng, C. Liu, and Z. Ge, "Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies," Advanced Materials, pp. e2311473,2024. doi: 10.1002/adma.202311473.
[58] T. Ma, B. Bhushan, H. Murooka, I. Kobayashi, and T. Osawa, "A novel technique to measure the poisson’s ratio and submicron lateral dimensional changes of ultrathin polymeric films," Review of scientific instruments, vol. 73, no. 4, pp. 1813-1820,2002. doi: 10.1063/1.1458062.
[59] J. Wang, F. Di Giacomo, J. Brüls, H. Gorter, I. Katsouras, P. Groen, R. A. Janssen, R. Andriessen, and Y. Galagan, "Highly efficient perovskite solar cells using non‐toxic industry compatible solvent system," Solar RRL, vol. 1, no. 11, pp. 1700091,2017.
[60] M. Dailey, Y. Li, and A. D. Printz, "Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies," ACS Omega, vol. 6, no. 45, pp. 30214-30223,2021. doi: 10.1021/acsomega.1c04814.
[61] J. Yang, W. P. Sheng, X. Li, Y. Zhong, Y. Su, L. C. Tan, and Y. W. Chen, "Synergistic Toughening and Self-Healing Strategy for Highly Efficient and Stable Flexible Perovskite Solar Cells," Advanced Functional Materials, vol. 33, no. 23, pp. 2214984,2023. doi: 10.1002/adfm.202214984.
[62] Z. Li, X. Wu, B. Li, S. Zhang, D. Gao, Y. Liu, X. Li, N. Zhang, X. Hu, and C. Zhi, "Sulfonated graphene aerogels enable safe‐to‐use flexible perovskite solar modules," Advanced Energy Materials, vol. 12, no. 5, pp. 2103236,2022. doi: 10.1002/aenm.202103236.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95607-
dc.description.abstract隨著電力需求的上升,且要逐步淘汰化石燃料,增加可再生能源的占比,太陽能固然成為了研究重點,近幾年鈣鈦礦太陽能電池從光電轉換效率由2.3 % 提升到26.1 %以趨近研究很久的矽基太陽能電池,做為第三代太陽能材料能在短時間內提升這麼多相信過不久就能超越矽基材料的太陽能。此外,鈣鈦礦太陽能電池為薄膜材料其重量輕、可彎曲、製作容易為主要發展,但要作為商業上使用需朝向大面積發展。
本實驗應用商業性價比高的奈秒脈衝雷射,透過全雷射雕刻技術研究在柔性鈣鈦礦鈦陽能模組上進行。
最後研究成果可再常見的柔性高分子聚合物Polyethylene Terephthalate (PET) 與Polyethylene Naphthalate (PEN) 利用旋轉塗佈,製作出有效面積約1 cm2,PEN柔性基板光電轉換效率為11.9 %,PET 柔性基板光電轉換效率為10.5 %,相較於小面積的標準片光電轉換效率PEN下降了8.9 %,PET只下降了3.1 %,可運用此技術進行商業化生產,在生產成本上具有絕佳的競爭優勢。
zh_TW
dc.description.abstractAs the demand for electricity rises and the gradual phasing out of fossil fuels becomes necessary, increasing the share of renewable energy has become a critical focus of research. In recent years, perovskite solar cells have seen their photoelectric conversion efficiency rise from 2.3% to 26.1%, approaching the efficiency of silicon-based solar cells that have been studied for a long time. As a third-generation solar material, perovskites have shown such rapid improvement in a short time, making it likely that they will soon surpass silicon-based solar cells. Furthermore, perovskite solar cells are thin-film materials that are lightweight, flexible, and easy to manufacture, making them ideal for development. However, for commercial use, large-area development is necessary.
This experiment employs cost-effective nanosecond pulse lasers, using full laser engraving technology to study flexible perovskite solar modules.
The final research results show that common flexible polymer substrates such as Polyethylene Terephthalate (PET) and Polyethylene Naphthalate (PEN), using spin coating, produced an effective area of approximately 1 cm². The photoelectric conversion efficiency of the PEN flexible substrate was 11.9%, while the PET flexible substrate had an efficiency of 10.5%. Compared to the small-area standard sheet photoelectric conversion efficiency, PEN decreased by 8.9% and PET only by 3.1%. This technique can be applied for commercial production, offering excellent competitive advantages in terms of production costs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:18:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:18:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xii
1 第一章 緒論 1
1.1 前言 1
1.2 鈣鈦礦太陽能電池介紹 4
1.2.1 鈣鈦礦材料介紹 4
1.2.2 鈣鈦礦太陽能元件結構 5
1.3 鈣鈦礦太陽能電池性質介紹 6
1.3.1 短路電流(Short Circuit Current, Jsc) 8
1.3.2 開路電壓(Open Circuit Voltage, Voc) 10
1.3.3 填充因子(Fill Factor, FF) 11
1.3.4 光電轉換效率(Photovoltaic Conversion Efficiency, PCE) 13
2 第二章 文獻回顧 15
2.1 柔性鈣鈦礦太陽能電池介紹 15
2.2 柔性鈣鈦礦太陽能電池模組性質介紹 16
2.2.1 串聯模組製程順序介紹 17
2.2.2 串聯模組設計介紹 18
2.2.3 模組雷射加工介紹 19
2.2.4 柔性鈣鈦礦太陽能電池模組介紹 21
2.3 研究動機 31
3 第三章 實驗流程與方法介紹 32
3.1 實驗方法 32
3.1.1 柔性基板製備流程 32
3.1.2 柔性鈣鈦礦電池模組製備流程 33
3.1.3 雷射製程開發流程 36
3.1.4 柔性鈣太電池元件製備 38
3.2 實驗藥品製備方式 39
3.2.1 PEDOT:PSS溶液 39
3.2.2 2PACz溶液 39
3.2.3 CH3NH3PbI3 鈣鈦礦前驅溶液 39
3.2.4 PC61BM溶液 39
3.2.5 PEI介面修飾層溶液 40
3.3 實驗雷射基台架設與介紹 41
3.3.1 脈衝雷射和光路設計 41
3.3.2 2D振鏡系統 43
3.3.3 精密微控定位走台 45
3.4 模組實驗分析方法介紹 46
3.4.1 雷射參數定義與量測方法 46
3.4.2 傳輸線法分析(Transfer Line Method, TLM) 50
4 第四章 實驗結果與討論 52
4.1 柔性基板之選擇 52
4.2 柔性基板透明導電薄膜之選擇 53
4.3 柔性鈣鈦礦太陽能模組雷射結果 58
4.3.1 P1線雷射參數 58
4.3.2 P2線雷射參數 62
4.3.3 P3線雷射參數 68
4.4 柔性太陽能電池光電轉換效率實驗結果 71
4.5 柔性鈣鈦礦太陽能模組彎曲測試 75
5 第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 77
參考文獻 78
6 附錄一 實驗用化學物質列表 85
7 附錄二 實驗儀器列表 87
-
dc.language.isozh_TW-
dc.subject奈秒脈衝雷射zh_TW
dc.subject全雷射雕刻zh_TW
dc.subject柔性鈣鈦礦太陽能模組zh_TW
dc.subjectall laser scribingen
dc.subjectflexible perovskite solar moduleen
dc.subjectnanosecond pulse laseren
dc.title奈秒脈衝雷射雕刻技術應用於不同柔性鈣鈦礦太陽能電池模組之研究zh_TW
dc.titleFlexible Perovskite Solar Modules on Polyethylene Terephthalate (PET) and Polyethylene Naphthalate (PEN) by Laser Patterning Technology Based on Nanosecond Pulsed Laseren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;黃秉鈞zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Bin-Juine Huangen
dc.subject.keyword柔性鈣鈦礦太陽能模組,奈秒脈衝雷射,全雷射雕刻,zh_TW
dc.subject.keywordflexible perovskite solar module,nanosecond pulse laser,all laser scribing,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202402059-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved