Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95584
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李岳聯zh_TW
dc.contributor.advisorYueh-Lien Leeen
dc.contributor.author陳怡蓁zh_TW
dc.contributor.authorYi-Chen Chenen
dc.date.accessioned2024-09-12T16:10:54Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. Fang, H.-F., Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago. Renewable Energy, 2014. 67: p. 237-241.
2. Yue, C.-D., C.-M. Liu, and E.M. Liou, A transition toward a sustainable energy future: feasibility assessment and development strategies of wind power in Taiwan. Energy Policy, 2001. 29(12): p. 951-963.
3. 經濟部能源局,風力發電推動方案,2017
4. Díaz, H., et al., Market needs, opportunities and barriers for the floating wind industry. Journal of Marine Science and Engineering, 2022. 10(7): p. 934.
5. Myhr, A., et al., Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renewable energy, 2014. 66: p. 714-728.
6. Butterfield, S., et al., Engineering challenges for floating offshore wind turbines. 2007, National Renewable Energy Lab.(NREL), Golden, CO (United States).
7. Ma, K.-T., et al., Mooring system engineering for offshore structures. 2019: Gulf Professional Publishing.
8. McCafferty, E., Introduction to corrosion science. 2010: Springer Science & Business Media.
9. Jiang, Z., Installation of offshore wind turbines: A technical review. Renewable and Sustainable Energy Reviews, 2021. 139: p. 110576.
10. Thiagarajan, K. and H. Dagher, A review of floating platform concepts for offshore wind energy generation. Journal of offshore mechanics and Arctic engineering, 2014. 136(2): p. 020903.
11. Vázquez, K., R. Rodríguez, and M. Esteban, Inventory proposal for monopiles in offshore wind farms. Ocean Engineering, 2022. 247: p. 110741.
12. DN, V., DNVGL-RP-0416: Corrosion protection for wind turbines. DNV GL, Oslo, Norway, 2016.
13. DNV-RP-0416
14. Erdogan, C. and G. Swain, Conceptual sacrificial anode cathodic protection design for offshore wind monopiles. Ocean Engineering, 2021. 235: p. 109339.
15. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. NACE, 1966.
16. Roh, H.-S., Kinetics of polarization mechanisms. Journal of The Electrochemical Society, 2013. 160(9): p. H519.
17. Perez, N. and N. Perez, Kinetics of activation polarization. Electrochemistry and corrosion science, 2016: p. 101-150.
18. NORSOK-M-501
19. Wrobel, L.C. and P. Miltiadou, Genetic algorithms for inverse cathodic protection problems. Engineering analysis with boundary elements, 2004. 28(3): p. 267-277.
20. Amaya, K. and S. Aoki, Effective boundary element methods in corrosion analysis. Engineering Analysis with Boundary Elements, 2003. 27(5): p. 507-519.
21. 陳國銘, et al., 陰極防蝕電位對鋼材氫脆化影響評估. Journal of Chinese Corrosion Engineering, 2019. 33(3): p. 9-17.
22. Veritas, D.N., Cathodic protection design. Recommended Practice DNV-RP-B401, 2010.
23. Jones, D.A., Principles and prevention. Corrosion, 1996. 2: p. 168.
24. Ashworth, V., 4.18. Principles of cathodic protection. Shreir’s Corros; Elsevier: New York, NY, USA, 2010: p. 2747-2762.
25. Hossen, A., R. Mahmud, and A. Islam, Minimization of corrosion in aquatic environment–a review. Int J Hydro, 2023. 7(1): p. 9-16.
26. Francis, P., Cathodic Protection. National Physical Laboratory, 2007: p. 1.
27. Von Baeckmann, W., W. Schwenk, and W. Prinz, Handbook of cathodic corrosion protection. 1997: Elsevier.
28. Montoya, R., O. Rendon, and J. Genesca, Mathematical simulation of a cathodic protection system by finite element method. Materials and corrosion, 2005. 56(6): p. 404-411.
29. Jia, J., et al., Evaluation of the BEASY program using linear and piecewise linear approaches for the boundary conditions. Materials and Corrosion, 2004. 55(11): p. 845-852.
30. Zamani, N., J. Chuang, and J. Porter, BEM simulation of cathodic protection systems employed in infinite electrolytes. International Journal for Numerical Methods in Engineering, 1987. 24(3): p. 605-620.
31. Yan, J.F., et al., Mathematical modeling of cathodic protection using the boundary element method with a nonlinear polarization curve. Journal of the Electrochemical Society, 1992. 139(7): p. 1932.
32. Santiago, J. and J. Telles, On boundary elements for simulation of cathodic protection systems with dynamic polarization curves. International Journal for Numerical Methods in Engineering, 1997. 40(14): p. 2611-2627.
33. Adey, R.A. and S.M. Niku, Computer modelling of galvanic corrosion. 1988: ASTM International.
34. Abootalebi, O., et al., Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method. Corrosion Science, 2010. 52(3): p. 678-687.
35. Baynham, J. and T. Froome. Interference between sacrificial CP systems in the marine environment. in NACE CORROSION. 2016. NACE.
36. Baynham, J. and T. Froome. Comparison of resistance to cathode with resistance to ground in the marine environment. in NACE CORROSION. 2018. NACE.
37. DeGiorgi, V.G., S.A. Wimmer, and N.R.L.W. DC, Evaluation of Computational Codes for Underwater Hull Analysis Model Applications. 2014.
38. Veritas, D., Cathodic Protection Design, Recommended Practice DNV-RP-B401. 2010, DNV Oslo, Norway.
39. Ivanov, G., I.-J. Hsu, and K.-T. Ma, Design Considerations on Semi-Submersible Columns, Bracings and Pontoons for Floating Wind. Journal of Marine Science and Engineering, 2023. 11(9): p. 1663.
40. Froome, T. and J.M. Baynham. Assessing Interference Between Sacrificial Anodes on Anode Sleds. in NACE CORROSION. 2013. NACE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95584-
dc.description.abstract台灣西部沿海擁有開發離岸發電之潛能,位處於亞熱帶的台灣,高溫高濕度高鹽分形成高腐蝕環境,海上結構物受腐蝕影響程度大,故腐蝕防治為離岸風電中相當重要的一環。因台灣西部沿海近岸淺水區開發逐漸飽和,未來將往近海深水區作為離岸風場開發區域,離岸風機平台也由結構較為簡單之固定式水下基礎轉變至幾何形狀較為複雜之浮動式平台,如半潛式平台(Semi- submersible)。離岸風機腐蝕防治方法主要有腐蝕餘裕量設計、塗層系統及陰極防蝕。其中,陰極保護受海水溫度、鹽度及溶氧量等因素影響,此設計較其他防蝕方法困難和複雜。故為了解浸沒於水下結構物是否能受到完整的陰極防蝕保護,本實驗採用邊界元素法(Boundary element method)為基礎的模擬軟體- Beasy CP來模擬浮動式平台水下基礎受陰極防蝕系統的保護情形,並透過模擬來找出其保護效力最佳之設計。研究結果可得出陰極及陽極之間的距離在0.5公尺處且陽極塊交錯擺放可獲得較好的防蝕效果。而陰極防蝕系統中陽極塊的擺放恐會造成干擾的情形發生,而降低防蝕效果。於任何結構物下的陽極塊之間擺放距離小於3公尺將會抑制陽極塊保護電流的釋放。而陽極干擾情形又會隨著陰極結構物大小改變發生位置也會有所不同。zh_TW
dc.description.abstractThe western coast of Taiwan has the potential to develop offshore wind power. However, Taiwan is located in subtropical which is a highly corrosive environment caused by high temperature, high humidity and high salinity. Offshore structures are greatly affected by corrosion without question. Therefore, corrosion prevention is an important part of offshore wind turbine. The development of offshore wind turbines has gradually transferred from shallow-water areas to deep-water areas. The supported structure of offshore floating wind turbine is more complicated than fixed structure, such as jacket. Offshore wind turbine corrosion prevention methods mainly include corrosion allowance design, coating system and cathodic corrosion protection. Among them, cathodic protection is affected by factors such as seawater temperature, salinity and dissolved oxygen, and its design is more difficult than other methods. In order to know whether the submerged underwater structure is completely protected by cathodic protection, this research uses the simulation software Beasy CP based on the boundary element method to simulate the cathodic protection situation of the floating platform and design the most suitable corrosion protection. The research results indicated that when the distance between the cathode and the anode is 0.5 m and the anode blocks are staggered placed could achieve better protection. The placement of the anode in the cathodic protection system may cause anode interference and reduce the cathodic protection effect. Placing the anode blocks less than 3 meters apart under any structure will inhibit the release of the anode block protection current. The anode interference situation will also vary as the size of the cathode structure changes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:10:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:10:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 II
摘要 III
Abstract IV
目次 VI
圖次 VIII
表次 XI
一、 前言 1
二、 文獻回顧 3
2.1 離岸風機 3
2.2 腐蝕機制 7
2.2.1 腐蝕熱力學 7
2.2.2 腐蝕動力學 11
2.3 腐蝕防治方法 13
2.3.1 腐蝕餘裕量設計 14
2.3.2 塗層系統 14
2.3.3 陰極防蝕 15
2.4 陰極防蝕之數值模擬 21
2.4.1 邊界元素法 22
三、 研究方法與步驟 28
3.1 Beasy CP 模擬軟體 28
3.2 極化曲線之取得 32
3.3 設計模型 38
3.4 參考規範 42
四、 研究結果與討論 46
4.1 陽極塊表面積影響 46
4.2 陽極塊擺放位置影響 49
4.3 陽極與陰極之間距離影響 51
4.4 陽極干擾 53
4.5 陰極防蝕初步設計 73
五、 結論 77
六、 未來展望 78
參考文獻 79
-
dc.language.isozh_TW-
dc.subject腐蝕防治zh_TW
dc.subject浮式風機平台zh_TW
dc.subject陰極防蝕zh_TW
dc.subject離岸風電zh_TW
dc.subject邊界元素法zh_TW
dc.subject陽極干擾zh_TW
dc.subjectAnode interferenceen
dc.subjectOffshore wind turbineen
dc.subjectFloating wind turbine platformen
dc.subjectCorrosion preventionen
dc.subjectCathodic protectionen
dc.subjectBoundary element methoden
dc.title半潛式浮台水下基礎之陰極防蝕設計與評估zh_TW
dc.titleDesign and evaluation of cathodic corrosion protection for semi-submersible underwater foundationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊舜涵;李偉任;蔡承洋zh_TW
dc.contributor.oralexamcommitteeShun-Han Yang;Wei-Jen Li;Cheng-Yang Tsaien
dc.subject.keyword離岸風電,浮式風機平台,腐蝕防治,陰極防蝕,邊界元素法,陽極干擾,zh_TW
dc.subject.keywordOffshore wind turbine,Floating wind turbine platform,Corrosion prevention,Cathodic protection,Boundary element method,Anode interference,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202403944-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2026-09-01-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-09-01
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved