Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95581
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳日騰zh_TW
dc.contributor.advisorRih-Teng Wuen
dc.contributor.author王海威zh_TW
dc.contributor.authorHai-Wei Wangen
dc.date.accessioned2024-09-12T16:09:50Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationClive Briffett. The performance of external wall systems in tropical climates. Energy and Buildings, 16(3-4):917–924, January 1991.
Ting-Jui Lu. A research study on the solution to spalling of exterior wall tiles of high-rise apartment buildings. Technical report, Architecture and Building Research Institute, Ministry of the Interior, ROC (Taiwan), 2011.
Yao-Tsu Chang. The research of building external wall tiles deterioration diagnosis–case study of national taiwan university school building. Master’s thesis, National Taiwan University, Taiwan, 2013.
Sy-Jye Guo. The research of building siding health check and renovation assessment system. Technical report, Architecture and Building Research Institute, Ministry of the Interior, ROC (Taiwan), 2011.
Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98–136, June 2014.
Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in the wild. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 891–898, 2014.
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding, 2016.
Yann. Lecun, Léon. Bottou, Yoshua. Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks, 2014.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions, 2014.
Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation, 2015.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018.
Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention network for scene segmentation, 2019.
Tongle Fan, Guanglei Wang, Yan Li, and Hongrui Wang. Ma-net: A multi-scale attention network for liver and tumor segmentation. IEEE Access, 8:179656–179665, 2020.
Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin, and Hong Liu. Expectation-maximization attention networks for semantic segmentation, 2019.
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation, 2016.
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, 2017.
Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn, 2018.
Stephen L. H. Lau, Edwin K. P. Chong, Xu Yang, and Xin Wang. Automated pavement crack segmentation using u-net-based convolutional neural network. IEEE Access, 8:114892–114899, 2020.
Chengjia Han, Tao Ma, Ju Huyan, Xiaoming Huang, and Yanning Zhang. Crackw-net: A novel pavement crack image segmentation convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 23(11):22135–22144, 2022.
Dongho Kang, Sukhpreet S. Benipal, Dharshan L. Gopal, and Young-Jin Cha. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning. Automation in Construction, 118:103291, October 2020.
Yuki Kondo and Norimichi Ukita. Crack segmentation for low-resolution images using joint learning with super- resolution. In 2021 17th International Conference on Machine Vision and Applications (MVA), pages 1–6, 2021.
Ting-Yan Wu, Rih-Teng Wu, Ping-Hsiung Wang, Tzu-Kang Lin, and Kuo-Chun Chang. Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks. Engineering Structures, 286:116130, July 2023.
Rih-Teng Wu, Ankush Singla, Mohammad R. Jahanshahi, Elisa Bertino, Bong Jun Ko, and Dinesh Verma. Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures. Computer-Aided Civil and Infrastructure Engineering, 34(9):774–789, May 2019.
Jacob J. Lin, Amir Ibrahim, Shubham Sarwade, and Mani Golparvar-Fard. Bridge inspection with aerial robots: Automating the entire pipeline of visual data capture, 3d mapping, defect detection, analysis, and reporting. Journal of Computing in Civil Engineering, 35(2), March 2021.
Atiqur Rahman, Zheng Yi Wu, and Rony Kalfarisi. Semantic deep learning integrated with rgb feature-based rule optimization for facility surface corrosion detection and valuation. Journal of Computing in Civil Engineering, 35(6), November 2021.
Yu Xie, Fangrui Zhu, and Yanwei Fu. Main-secondary network for defect segmentation of textured surface images. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 3520–3529, 2020.
Bo Chen, Hua Zhang, Guijin Wang, Jianwen Huo, Yonglong Li, and Linjing Li. Automatic concrete infrastructure crack semantic segmentation using deep learning. Automation in Construction, 152:104950, August 2023.
Chao Xiang, Jingjing Guo, Ran Cao, and Lu Deng. A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios. Automation in Construction, 152:104894, August 2023.
Wenjun Wang and Chao Su. Semi-supervised semantic segmentation network for surface crack detection. Automation in Construction, 128:103786, August 2021.
Zhi-hong Wang, Shao-bo Wang, Li-rong Yan, and Yu Yuan. Road surface state recognition based on semantic segmentation. Journal of Highway and Transportation Research and Development (English Edition), 15(2):88–94, June 2021.
Bin Yu, Xiangcheng Meng, and Qiannan Yu. Automated pixel-wise pavement crack detection by classification-segmentation networks. Journal of Transportation Engineering, Part B: Pavements, 147(2):04021005, June 2021.
Yuhan Jiang, Sisi Han, and Yong Bai. Building and infrastructure defect detection and visualization using drone and deep learning technologies. Journal of Performance of Constructed Facilities, 35(6), December 2021.
Seung-Nam Yu, Jae-Ho Jang, and Chang-Soo Han. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Automation in Construction, 16(3):255–261, May 2007.
Kai Zhu, Wenjing Cao, Chenhao Ran, and Bohong Gu. A novel automatic crack classification algorithm of 3-d woven composites based on deep-learning u-net model. Engineering Fracture Mechanics, 289:109488, September 2023.
Feng Guo, Jian Liu, Chengshun Lv, and Huayang Yu. A novel transformer-based network with attention mechanism for automatic pavement crack detection. Construction and Building Materials, 391:131852, August 2023.
Carlos Canchila, Shanglian Zhou, and Wei Song. Hyperparameter optimization and importance ranking in deep learning–based crack segmentation. Journal of Computing in Civil Engineering, 38(2), March 2024.
Sudhir Babu Patel, Pranjal Bisht, and Krishna Kant Pathak. Semantic segmentation of cracks on masonry surfaces using deep-learning techniques. Practice Periodical on Structural Design and Construction, 29(2), May 2024.
Okeke Stephen, Uchenna Joseph Maduh, and Mangal Sain. A machine learning method for detection of surface defects on ceramic tiles using convolutional neural networks. Electronics, 11(1), 2022.
Gerivan Santos Junior, Janderson Ferreira, Cristian Millán-Arias, Ramiro Daniel, Alberto Casado Junior, and Bruno J. T. Fernandes. Ceramic cracks segmentation with deep learning. Applied Sciences, 11(13), 2021.
Ren-Yi Kung, Nai-Hsin Pan, Charles C.N. Wang, and Pin-Chan Lee. Application of deep learning and unmanned aerial vehicle on building maintenance. Advances in Civil Engineering, 2021:1–12, April 2021.
Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition, 2015.
Minh-Tu Cao. Drone-assisted segmentation of tile peeling on building façades using a deep learning model. Journal of Building Engineering, 80:108063, 2023.
Stamos Katsigiannis, Saleh Seyedzadeh, Andrew Agapiou, and Naeem Ramzan. Deep learning for crack detection on masonry façades using limited data and transfer learning. Journal of Building Engineering, 76:107105, 2023.
Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using deep learning, 2017.
Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning, 2020.
Abhishek Dutta and Andrew Zisserman. The VIA annotation software for images, audio and video. In Proceedings of the 27th ACM International Conference on Multimedia. ACM, October 2019.
Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset, 2018.
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and An drew Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June 2010.
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125–1134, 2017.
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks, 2019.
Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huaying Hao, Yitian Zhao, Tianyang Zhang, Shenghua Gao, and Jiang Liu. CE-net: Context encoder network for 2d medical image segmentation. IEEE Transactions on Medical Imaging, 38(10):2281–2292, oct 2019.
Leonardo Rundo, Changhee Han, Yudai Nagano, Jin Zhang, Ryuichiro Hataya, Carmelo Militello, Andrea Tangherloni, Marco S. Nobile, Claudio Ferretti, Daniela Besozzi, Maria Carla Gilardi, Salvatore Vitabile, Giancarlo Mauri, Hideki Nakayama, and Paolo Cazzaniga. Use-net: incorporating squeeze-and-excitation blocks into u-net for prostate zonal segmentation of multi-institutional mri datasets, 2019.
Huazhu Fu, Jun Cheng, Yanwu Xu, Damon Wing Kee Wong, Jiang Liu, and Xi-aochun Cao. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37(7):1597–1605, jul 2018.
Li Huang, Cheng Chen, Juntong Yun, Ying Sun, Jinrong Tian, Zhiqiang Hao, Hui Yu, and Hongjie Ma. Multi-scale feature fusion convolutional neural network for indoor small target detection. Frontiers in Neurorobotics, 16, May 2022.
Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: A nested u-net architecture for medical image segmentation, 2018.
Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019.
Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks, 2020.
Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.
Yulong Chen, Zilong Zhu, Zhijie Lin, and Youmei Zhou. Building surface crack detection using deep learning technology. Buildings, 13(7), 2023.
Maxim Berman, Amal Rannen Triki, and Matthew B. Blaschko. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, 2018.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019.
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
Zoé Lambert, Caroline Petitjean, Bernard Dubray, and Su Ruan. Segthor: Segmen tation of thoracic organs at risk in ct images, 2019.
Davood Karimi and Septimiu E. Salcudean. Reducing the hausdorff distance in med ical image segmentation with convolutional neural networks, 2019.
Jue Jiang, Yu-Chi Hu, Chia-Ju Liu, Darragh Halpenny, Matthew D. Hellmann, Joseph O. Deasy, Gig Mageras, and Harini Veeraraghavan. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Transactions on Medical Imaging, 38(1):134–144, January 2019.
Wenguan Wang, Tianfei Zhou, Fisher Yu, Jifeng Dai, Ender Konukoglu, and Luc Van Gool. Exploring cross-image pixel contrast for semantic segmentation, 2021.
Yuyuan Liu, Choubo Ding, Yu Tian, Guansong Pang, Vasileios Belagiannis, Ian Reid, and Gustavo Carneiro. Residual pattern learning for pixel-wise out-of-distribution detection in semantic segmentation, 2023.
Matej Grcić, Petra Bevandić, and Siniša Šegvić. Densehybrid: Hybrid anomaly detection for dense open-set recognition, 2022.
Nazir Nayal, Mısra Yavuz, João F. Henriques, and Fatma Güney. Rba: Segmenting unknown regions rejected by all, 2023.
Yingda Xia, Yi Zhang, Fengze Liu, Wei Shen, and Alan Yuille. Synthesize then compare: Detecting failures and anomalies for semantic segmentation, 2020.
Giancarlo Di Biase, Hermann Blum, Roland Siegwart, and Cesar Cadena. Pixel-wise anomaly detection in complex driving scenes, 2021.
Yu Tian, Yuyuan Liu, Guansong Pang, Fengbei Liu, Yuanhong Chen, and Gustavo Carneiro. Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes, 2022.
Silvio Galesso, Max Argus, and Thomas Brox. Far away in the deep space: Dense nearest-neighbor-based out-of-distribution detection, 2023.
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2015.
Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579–2605, 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95581-
dc.description.abstract磁磚為台灣建物常見之外牆飾材,但其經常會因老化和環境因素而產生表面劣化,造成磁磚碎片剝落等問題。而剝落的碎片對鄰近人行道上的行人和車輛造成損傷的案例屢見不鮮。近年來不少研究使用深度學習及電腦視覺的方式來對外牆進行結構健檢,其中不乏針對磁磚外牆的脫落以及破損的檢測,而現今的主流方法為使用具人工標記的圖片資料集進行監督式訓練,然而監督式方法需要大量破壞的資料及相應的標記數據,使得資料集的構築十分費時費力,尤其是需要像素級標註的語意分割資料集,這也使得相較於傳統的語意分割資料集,該領域的資料較為有限。因此在本研究中,我們設計了一個名為Multi-Scale Branch Fusion UNet (MBF-UNet)的深度學習模型,該模型使用多個不同感受野(receptive field)的分支來增加影像資訊以解決由於資料量過少而引起的過度擬合問題,數據分析顯示此模型架構在我們設計的六個指標中都能有著最好的表現及較低較穩定的標準差。此外我們還提出了一種新式無監督訓練方法,使得我們在訓練過程中不需要任何剝落的標註資料,甚至不需要剝落的圖像,就能使模型辨識出建物圖片上的磁磚剝落,此法基於不確定性評估的概念,以一個不含剝落的已標注房屋資料集對模型進行訓練使其熟悉正常房屋外觀,訓練後模型將對剝落區域產生較高不確定性因為訓練資料不包含剝落,該不確定性即可被評估並輸出異常分數,另外我們還研發了一種剝落生成技術,能夠在正常的房屋影像中添加人工生成剝落以促進模型訓練,數據分析顯示在AUC, AP及FPR95分數中,此方法可優於其他方法18.4%, 46.6%及31.7%。對比於傳統的監督式學習,此無監督式學習法能將資料及建構時間從200小時減少至1小時,換算成工資約台幣36600元。此研究有助於基礎設施監測的應用,並提高磁磚剝落檢測的資料效率。zh_TW
dc.description.abstractExterior wall deterioration, particularly tile spalling, is a common consequence of aging and environmental degradation in urban environments. These structural impairments pose significant threats to public safety, particularly for pedestrians and vehicles on sidewalks. In recent years, deep learning-based approaches have been leveraged in autonomous methods for building condition assessments owing to their capacity to identify structural anomalies. However, training a supervised learning model typically requires a large labeled dataset, which is often unavailable in engineering domain tasks. Therefore, in this study, we design a novel model called the Multi-Scale Branch Fusion UNet (MBF-UNet) for semantic segmentation of tile spalling. The MBF-UNet incorporates additional branches with different receptive fields and self-attention mechanisms to extract meaningful representations of surface damage. Statistical measures have demonstrated that the proposed MBF-UNet outperforms the state-of-the-art segmentation models in 6 general segmentation metrics. Additionally, we propose a new unsupervised learning framework for anomaly detection of tile spalling. There is no need of images that contains spalling or corresponding labels. The framework leverage uncertainty estimation by training a segmentation model with a labeled dataset consisting of known and given classes excluding spalling. After training, the model identifies spalling area as outlier pixels, i.e., the anomaly, due to higher uncertainty score. Besides, we develop a synthetic pattern namely Spalling Craft for outlier exposure to add some anomaly patterns into the inlier building images to enhance model performance. The proposed approach outperforms the state-of-the-art baselines by approximately 18.4%, 46.6% and 31.7% in AUC, AP and FPR95 score, respectively. Compared to supervised learning, our approach reduces the time of dataset construction from 200 hours to merely 1 hour, which is only 0.5% of the original labeling time, and saves approximately 36600 NTD in cost. The outcomes of our study will benefit practical application in infrastructure monitoring, enhancing data efficiency in tile spalling segmentation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:09:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:09:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation and Relevant Works 1
1.2 Contribution and Scope 6
Chapter 2 Dataset 8
2.1 Supervised Learning 8
2.1.1 Labeled Dataset 8
2.2 Unsupervised Learning 10
2.2.1 Source Dataset 11
2.2.2 Target Dataset 11
2.2.3 Validation and Test Dataset 12
Chapter 3 Methodology 14
3.1 Supervised Learning 14
3.1.1 Overview 14
3.1.2 Network Architecture 15
3.1.3 Squeeze-and-Excitation Blocks 17
3.1.4 Atrous Convolution 18
3.1.5 Optimization Schemes 19
3.1.6 EfficientNet 20
3.1.7 Baseline Approaches in Segmentation 22
3.1.8 Baseline Approaches in Addressing Limited Data 23
3.1.9 Experiments 24
3.1.10 Evaluation Metrics 25
3.2 Unsupervised Learning 27
3.2.1 Overview 27
3.2.2 Training Framework 28
3.2.3 Spalling Craft 29
3.2.4 Contrastive Loss 31
3.2.5 Model Architecture 33
3.2.6 Experiments 33
3.2.7 Evaluation Metrics 35
3.2.8 Baseline Approaches 36
Chapter 4 Results and Discussions 38
4.1 Supervised Learning 38
4.1.1 Segmentation 38
4.1.2 Intermediate Layer Outputs 41
4.1.3 Comparisons of Baseline References in Addressing Limited Data 42
4.1.4 Effects of Optimization Scheme 44
4.1.5 Limitations 45
4.2 Unsupervised Learning 46
4.2.1 Comparison of Spalling-Synthetic Approaches 46
4.2.2 Contrastive Learning 48
4.2.3 Anomaly Segmentation 48
4.2.4 Label Efficiency 51
4.2.5 Limitations 55
Chapter 5 Conclusion 56
5.1 Conclusion 56
5.2 Future Work 57
References 59
-
dc.language.isoen-
dc.subject不確定性評估zh_TW
dc.subject磁磚剝落檢測zh_TW
dc.subject結構健檢zh_TW
dc.subject監督式學習zh_TW
dc.subject標籤效率zh_TW
dc.subject建物外牆檢測zh_TW
dc.subject無監督深度對比式學習zh_TW
dc.subjectstructural health monitoringen
dc.subjectunsupervised deep contrastive learningen
dc.subjectfaçade anomaly detectionen
dc.subjectlabel efficiencyen
dc.subjectsupervised learningen
dc.subjectuncertainty estimationen
dc.subjecttile spalling segmentationen
dc.title新型多尺度磁磚剝落分割模型與無監督式對比學習策略之研發zh_TW
dc.titleDevelopments of Multi-Scale Feature Fusion Network and Unsupervised Contrastive Learning Strategy for Tile Spalling Segmentationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國鎮;韓仁毓;林子剛zh_TW
dc.contributor.oralexamcommitteeKuo-Chun Chang;Jen-Yu Han;Tzu-Kang Linen
dc.subject.keyword結構健檢,監督式學習,標籤效率,建物外牆檢測,無監督深度對比式學習,不確定性評估,磁磚剝落檢測,zh_TW
dc.subject.keywordstructural health monitoring,supervised learning,label efficiency,façade anomaly detection,unsupervised deep contrastive learning,uncertainty estimation,tile spalling segmentation,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202403549-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved