請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95560完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍 | zh_TW |
| dc.contributor.advisor | Ya-Ping Chiu | en |
| dc.contributor.author | 李浩正 | zh_TW |
| dc.contributor.author | Hao-Cheng Lee | en |
| dc.date.accessioned | 2024-09-11T16:30:42Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Pan, Y. et al. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2–WSe2 Heterobilayers. Nano Letters 18, 1849-1855 (2018). https://doi.org/10.1021/acs.nanolett.7b05125
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71-75 (2019). https://doi.org/10.1038/s41586-019-0975-z Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nature Physics 16, 1093-1096 (2020). https://doi.org/10.1038/s41567-020-0958-x Tilak, N., Li, G., Taniguchi, T., Watanabe, K. & Andrei, E. Y. Moiré Potential, Lattice Relaxation, and Layer Polarization in Marginally Twisted MoS2 Bilayers. Nano Letters 23, 73-81 (2023). https://doi.org/10.1021/acs.nanolett.2c03676 Price, C. C., Frey, N. C., Jariwala, D. & Shenoy, V. B. Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures. ACS Nano 13, 8303-8311 (2019). https://doi.org/10.1021/acsnano.9b03716 Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nature Physics 17, 720-725 (2021). https://doi.org/10.1038/s41567-021-01174-7 Li, E. et al. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nature Communications 12, 5601 (2021). https://doi.org/10.1038/s41467-021-25924-6 Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials 19, 861-866 (2020). https://doi.org/10.1038/s41563-020-0708-6 Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nature Materials 20, 480-487 (2021). https://doi.org/10.1038/s41563-020-00873-5 Naik, M. H. & Jain, M. Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. Physical Review Letters 121, 266401 (2018). https://doi.org/10.1103/PhysRevLett.121.266401 Naik, M. H., Maity, I., Maiti, P. K. & Jain, M. Kolmogorov–Crespi Potential For Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices. The Journal of Physical Chemistry C 123, 9770-9778 (2019). https://doi.org/10.1021/acs.jpcc.8b10392 Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Physical Review Letters 124, 206101 (2020). https://doi.org/10.1103/PhysRevLett.124.206101 Naik, M. H., Kundu, S., Maity, I. & Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Physical Review B 102, 075413 (2020). https://doi.org/10.1103/PhysRevB.102.075413 Waters, D. et al. Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS2-WSe2 Heterobilayers. ACS Nano 14, 7564-7573 (2020). https://doi.org/10.1021/acsnano.0c03414 Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nature Nanotechnology 15, 592-597 (2020). https://doi.org/10.1038/s41565-020-0682-9 Maity, I., Naik, M. H., Maiti, P. K., Krishnamurthy, H. R. & Jain, M. Phonons in twisted transition-metal dichalcogenide bilayers: Ultrasoft phasons and a transition from a superlubric to a pinned phase. Physical Review Research 2, 013335 (2020). https://doi.org/10.1103/PhysRevResearch.2.013335 Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted WSe2 bilayers. Physical Review B 104, 125440 (2021). https://doi.org/10.1103/PhysRevB.104.125440 Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nature Materials 20, 1100-1105 (2021). https://doi.org/10.1038/s41563-021-00960-1 Li, Y. et al. Soliton Disentangling and Ferroelectric Hysteresis in Bilayer MoS2 Nanostructures with Reconstructed Moiré Superlattices. ACS Applied Nano Materials 5, 17461-17467 (2022). https://doi.org/10.1021/acsanm.2c03150 20 Angeli, M. & MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proceedings of the National Academy of Sciences 118, e2021826118 (2021). https://doi.org/doi:10.1073/pnas.2021826118 Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Scientific Reports 11, 13422 (2021). https://doi.org/10.1038/s41598-021-92710-1 Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nature Materials 22, 992-998 (2023). https://doi.org/10.1038/s41563-023-01595-0 Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures. Nature Communications 14, 6200 (2023). https://doi.org/10.1038/s41467-023-41773-x Stolz, S. et al. Layer-dependent Schottky contact at van der Waals interfaces: V-doped WSe2 on graphene. npj 2D Materials and Applications 6, 66 (2022). https://doi.org/10.1038/s41699-022-00342-4 Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650-654 (2021). https://doi.org/10.1038/s41586-021-03874-9 Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. Physical Review Letters 121, 026402 (2018). https://doi.org/10.1103/PhysRevLett.121.026402 Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nature Communications 11, 2153 (2020). https://doi.org/10.1038/s41467-020-16056-4 Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology 17, 390-395 (2022). https://doi.org/10.1038/s41565-022-01072-w Kim, D. S. et al. Electrostatic moiré potential from twisted hexagonal boron nitride layers. Nature Materials 23, 65-70 (2024). https://doi.org/10.1038/s41563-023-01637-7 Joseph, S. & Barrett, R. (Academic Press San Diego CA, 1993). Feenstra, R. M., Stroscio, J. A. & Fein, A. P. Tunneling spectroscopy of the Si(111)2 × 1 surface. Surface Science 181, 295-306 (1987). https://doi.org/https://doi.org/10.1016/0039-6028(87)90170-1 Feenstra, R. M. Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Physical Review B 50, 4561-4570 (1994). https://doi.org/10.1103/PhysRevB.50.4561 Feenstra, R. M., Lee, J. Y., Kang, M. H., Meyer, G. & Rieder, K. H. Band gap of the Ge(111)c(2X8) surface by scanning tunneling spectroscopy. Physical Review B 73, 035310 (2006). https://doi.org/10.1103/PhysRevB.73.035310 Prietsch, M., Samsavar, A. & Ludeke, R. Structural and electronic properties of the Bi/GaP(110) interface. Physical Review B 43, 11850-11856 (1991). https://doi.org/10.1103/PhysRevB.43.11850 Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. (University Science Books, 1997). Park, J. H. et al. Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers. ACS Nano 10, 4258-4267 (2016). https://doi.org/10.1021/acsnano.5b07698 Zhao, Z.-Y. & Liu, Q.-L. Study of the layer-dependent properties of MoS2 nanosheets with different crystal structures by DFT calculations. Catalysis Science & Technology 8, 1867-1879 (2018). https://doi.org/10.1039/C7CY02252B Chu, Y.-H. et al. One-dimensional bandgap modulation at continuous few-layer MoS2 steps. Applied Physics Letters 121 (2022). https://doi.org/10.1063/5.0117436 Zhao, W. et al. Origin of Indirect Optical Transitions in Few-Layer MoS2, WS2, and WSe2. Nano Letters 13, 5627-5634 (2013). https://doi.org/10.1021/nl403270k Zheng, Y. J. et al. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides. ACS Nano 10, 2476-2484 (2016). https://doi.org/10.1021/acsnano.5b07314 Chen, P.-Y. et al. Tunable Moiré Superlattice of Artificially Twisted Monolayers. Advanced Materials 31, 1901077 (2019). https://doi.org/10.1002/adma.201901077 Tran, K., Choi, J. & Singh, A. Moiré and beyond in transition metal dichalcogenide twisted bilayers. 2D Materials 8, 022002 (2021). https://doi.org/10.1088/2053-1583/abd3e7 Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nature Materials 20, 945-950 (2021). https://doi.org/10.1038/s41563-021-00923-6 Molino, L. et al. Ferroelectric Switching at Symmetry-Broken Interfaces by Local Control of Dislocations Networks. Advanced Materials 35, 2207816 (2023). https://doi.org/10.1002/adma.202207816 Donegá, C. d. M. Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews 40, 1512-1546 (2011). https://doi.org/10.1039/C0CS00055H Rabouw, F. T. & de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry 374, 58 (2016). https://doi.org/10.1007/s41061-016-0060-0 Jin, H. et al. Size dependence in two-dimensional lateral heterostructures of transition metal dichalcogenides. Journal of Materials Chemistry C 7, 3837-3842 (2019). https://doi.org/10.1039/C9TC00063A Wei, W., Dai, Y., Niu, C. & Huang, B. Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells. Scientific Reports 5, 17578 (2015). https://doi.org/10.1038/srep17578 Pavelich, R. L. & Marsiglio, F. The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics. American Journal of Physics 83, 773-781 (2015). https://doi.org/10.1119/1.4923026 Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Physical Review B 98, 224102 (2018). https://doi.org/10.1103/PhysRevB.98.224102 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95560 | - |
| dc.description.abstract | 過渡金屬二硫族化物因其可調的電子特性和原子級薄層結構而備受關注。通過控制堆疊條件,扭轉堆疊的雙層過渡金屬二硫族化物(twisted bilayer transition metal dichalcogenides, tb-TMD)可以產生多元的光電性質及元件應用。在微小的扭轉角度(< 3°)下,莫列超晶格會發生重構,形成相稱堆疊區域和狹窄域壁。重構後的相稱堆疊區域中,兩層材料之間不再有晶格錯位,其電子特性應相似於完美堆疊的雙層系統。
然而,晶格重構會使材料的能帶結構具有顯著的空間分布,形成莫列位能。此奈米尺度的位能變化會限制載子的水平移動,可能引起能帶修正。因此,若要清楚解析tb-TMD上各區域的電性,除了考慮堆疊方式外,也需要考慮環境中的位能對重費米子的侷限效應。侷限效應對能帶的修正與區域尺寸有關,但tb-TMD中的各區域能帶位置與區域尺寸之間的關係卻很少被討論。 我們使用掃描穿隧顯微鏡和掃描穿隧能譜(STM/STS)在高定向熱解析石墨(HOPG)基板上測量小角度扭轉堆疊之雙層二硒化鎢的電性分布,觀察不同莫列週期下導帶邊緣和價帶邊緣的能量位置,並依各種堆疊區域進行分析。結果顯示,能隙大小與莫列週期之間存在相關性,這為尺寸相關的量子侷限效應提供證據。 我們的研究展示了莫列週期與各區域尺寸及電性之間的關聯,從而對二維材料中量子侷限效應有了更全面的理解,為扭轉堆疊二維材料的設計提供新的指引。 | zh_TW |
| dc.description.abstract | Transition metal dichalcogenides (TMD) have garnered massive attention due to their tunable electronic properties and atomically thin layer structure. By controlling the stacking conditions, diverse optoelectronic properties and device applications can be achieved in twisted bilayer TMD (tb-TMD). At a small twist angle (<3°), structural reconstruction leads to the formation of commensurate domains and domain walls (DW) in tb-TMD. In these commensurate regions, the lattices in the two layers align, resembling the properties of perfectly aligned bilayer systems.
However, lattice reconstruction enhances a nanoscale moiré potential, affecting carrier transport and causing band modifications. To thoroughly analyze the electronic structure in various tb-TMD regions, it is essential to consider both the stacking configuration and the confinement effects on heavy fermions. While the size effect of confinement is well-recognized, the specific relationship between band position and domain size in tb-TMD has rarely been discussed. We used scanning tunneling microscopy/spectroscopy (STM/STS) to measure current curves under varying moiré periods of marginally twisted bilayer WSe2 on a highly ordered pyrolytic graphite (HOPG) substrate. Our observations of the conduction and valence band edges, analyzed for each domain category, reveal that band gaps correlate with their moiré periods, evidencing size-dependent confinement. This study demonstrates the correlation between moiré period, domain size, and electronic properties in moiré superlattices. It enhances the understanding of quantum confinement effects in two-dimensional materials, offering prospective guidance for the engineering of twisted bilayer two-dimensional materials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:30:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:30:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文審定書 i
謝辭 ii 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES viii LIST OF ABBREVIATIONS ix Chapter 1 Introduction and Motivation 1 1.1 Transition Metal Dichalcogenide Bilayer System 1 1.2 Lattice Reconstruction 2 1.3 Layer Polarization 4 1.4 Quantum Confinement 5 1.5 Motivations 6 Chapter 2 Experiment Method 8 2.1 Scanning Tunneling Microscopy 8 2.1.1 Tunneling Mechanism 8 2.1.2 Local Density of States (LDOS) 10 2.1.3 Band Edge Determination 11 Chapter 3 Experimental Instrument 14 3.1 Room-Temperature STM (RT-STM) 14 3.2 Ultra-High Vacuum (UHV) System 14 3.3 STM Scanning System 15 Chapter 4 Experimental Results and Discussion 17 4.1 Sample Information and Identification 17 4.2 Moiré Superlattices of Twisted Bilayer WSe2 20 4.2.1 STM Topography 20 4.2.2 STS Measurements of Moiré Superlattices 21 4.3 Varying-period Region 25 4.4 Band Edge Mapping and Period-dependent Analysis 27 4.5 Regions of Quantum Confinement 30 4.6 Size-dependent Band Edge 32 Chapter 5 Conclusion 35 Reference 37 Supplementary Information 42 | - |
| dc.language.iso | en | - |
| dc.subject | 扭轉雙層二硒化鎢 | zh_TW |
| dc.subject | 過渡金屬二硫族化物 | zh_TW |
| dc.subject | 莫列位能 | zh_TW |
| dc.subject | 量子侷限 | zh_TW |
| dc.subject | 晶格重構 | zh_TW |
| dc.subject | transition metal dichalcogenides | en |
| dc.subject | quantum confinement | en |
| dc.subject | lattice reconstruction | en |
| dc.subject | twisted bilayer WSe2 | en |
| dc.subject | moiré potential | en |
| dc.title | 探討扭轉重構之莫列超晶格中的原子級空間尺寸量子侷限效應 | zh_TW |
| dc.title | Atomically Spatial Size-Dependent Quantum Confinement in Twist-Reconstructed Moiré Superlattices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張嘉升;陳宜君 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Seng Chang;Yi-Chun Chen | en |
| dc.subject.keyword | 過渡金屬二硫族化物,莫列位能,扭轉雙層二硒化鎢,晶格重構,量子侷限, | zh_TW |
| dc.subject.keyword | transition metal dichalcogenides,moiré potential,twisted bilayer WSe2,lattice reconstruction,quantum confinement, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202403202 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
