Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜至剛zh_TW
dc.contributor.advisorChih-Kang Chiangen
dc.contributor.author陳文怡zh_TW
dc.contributor.authorWen-I Chenen
dc.date.accessioned2024-09-11T16:27:27Z-
dc.date.available2024-10-04-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-02-17-
dc.identifier.citation1.Lameire, N.H., et al., Acute kidney injury: an increasing global concern. Lancet, 2013. 382(9887): p. 170-9.
2. Mehta, R.L., et al., International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet, 2015. 385(9987): p. 2616-43.
3. Hill, N.R., et al., Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(7): p. e0158765.
4. Kovesdy, C.P., Epidemiology of chronic kidney disease: an update 2022. Kidney International Supplements, 2022. 12(1): p. 7-11.
5. Gansevoort, R.T., et al., Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet, 2013. 382(9889): p. 339-52.
6. United States Renal Data System, 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
7. Hoste, E.A.J., et al., Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 2018. 14(10): p. 607-625.
8. Makris, K. and L. Spanou, Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin Biochem Rev, 2016. 37(2): p. 85-98.
9. Rossaint, J. and A. Zarbock, Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol Nefrol, 2016. 68(1): p. 49-57.
10. Tögel, F. and C. Westenfelder, Recent advances in the understanding of acute kidney injury. F1000Prime Rep, 2014. 6: p. 83.
11. Basile, D.P., M.D. Anderson, and T.A. Sutton, Pathophysiology of acute kidney injury. Compr Physiol, 2012. 2(2): p. 1303-53.
12. Birkelo, B.C., N. Pannu, and E.D. Siew, Overview of Diagnostic Criteria and Epidemiology of Acute Kidney Injury and Acute Kidney Disease in the Critically Ill Patient. Clinical Journal of the American Society of Nephrology, 2022. 17(5): p. 717-735.
13. Paul M Palevsky, M., Definition and staging criteria of acute kidney injury in adults, in UpToDate, M. Gary C Curhan, ScD, Editor. 2022.
14. Lopes, J.A. and S. Jorge, The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J, 2013. 6(1): p. 8-14.
15. <KDIGO-2012-AKI-Guideline-English.pdf>.
16. Ferenbach, D.A. and J.V. Bonventre, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nature Reviews Nephrology, 2015. 11(5): p. 264-276.
17. Sato, Y., M. Takahashi, and M. Yanagita, Pathophysiology of AKI to CKD progression. Semin Nephrol, 2020. 40(2): p. 206-215.
18. Little, M.H. and P. Kairath, Does Renal Repair Recapitulate Kidney Development? J Am Soc Nephrol, 2017. 28(1): p. 34-46.
19. Rayego-Mateos, S., et al., Molecular Mechanisms of Kidney Injury and Repair. International Journal of Molecular Sciences, 2022. 23(3): p. 1542.
20. He, L., et al., AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney International, 2017. 92(5): p. 1071-1083.
21. Grande, M.T., et al., Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nature Medicine, 2015. 21(9): p. 989-997.
22. Yang, L., et al., Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nature Medicine, 2010. 16(5): p. 535-543.
23. Lovisa, S., et al., Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med, 2015. 21(9): p. 998-1009.
24. Wu, C.F., et al., Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol, 2013. 182(1): p. 118-31.
25. Qi, R. and C. Yang, Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death & Disease, 2018. 9(11): p. 1126.
26. Meng, X.M., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nat Rev Nephrol, 2016. 12(6): p. 325-38.
27. Gu, Y.Y., et al., Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol, 2020. 8: p. 123.
28. Gewin, L.S., Transforming Growth Factor-β in the Acute Kidney Injury to Chronic Kidney Disease Transition. Nephron, 2019. 143(3): p. 154-157.
29. Sureshbabu, A., S.A. Muhsin, and M.E. Choi, TGF-β signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol, 2016. 310(7): p. F596-f606.
30. Xu, P., J. Liu, and R. Derynck, Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett, 2012. 586(14): p. 1871-84.
31. Poniatowski Ł, A., et al., Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm, 2015. 2015: p. 137823.
32. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003. 425(6958): p. 577-84.
33. Shi, Y., et al., Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell, 1998. 94(5): p. 585-94.
34. Stark, G.R. and W.R. Taylor, Analyzing the G2/M checkpoint. Methods Mol Biol, 2004. 280: p. 51-82.
35. Cianciolo Cosentino, C., et al., Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol, 2013. 24(6): p. 943-53.
36. Tang, J., et al., Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am J Pathol, 2013. 183(1): p. 160-72.
37. Jang, H.S., et al., Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys. Transplantation, 2008. 85(3): p. 447-55.
38. Ricardo, S.D., H. van Goor, and A.A. Eddy, Macrophage diversity in renal injury and repair. J Clin Invest, 2008. 118(11): p. 3522-30.
39. Lin, S.L., et al., Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A, 2010. 107(9): p. 4194-9.
40. Lee, S., et al., Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol, 2011. 22(2): p. 317-26.
41. Bonventre, J.V. and L. Yang, Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest, 2011. 121(11): p. 4210-21.
42. Wada, T., et al., Involvement of bone-marrow-derived cells in kidney fibrosis. Clinical and experimental nephrology, 2011. 15: p. 8-13.
43. Zeisberg, M. and J.S. Duffield, Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol, 2010. 21(8): p. 1247-53.
44. Humphreys, B.D., et al., Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol, 2010. 176(1): p. 85-97.
45. Levin, A. and P.E. Stevens, Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney International, 2014. 85(1): p. 49-61.
46. Bello, A.K., et al., Complications of chronic kidney disease: current state, knowledge gaps, and strategy for action. Kidney Int Suppl (2011), 2017. 7(2): p. 122-129.
47. August, P., Chronic Kidney Disease — Another Step Forward. New England Journal of Medicine, 2023. 388(2): p. 179-180.
48. Yan, M.T., C.T. Chao, and S.H. Lin, Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci, 2021. 22(18).
49. Burman, A., H. Tanjore, and T.S. Blackwell, Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol, 2018. 68-69: p. 355-365.
50. Navid, F. and R.A. Colbert, Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nature Reviews Rheumatology, 2017. 13(1): p. 25-40.
51. Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 2012. 13(2): p. 89-102.
52. Wiseman, R.L., J.S. Mesgarzadeh, and L.M. Hendershot, Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell, 2022. 82(8): p. 1477-1491.
53. Hetz, C. and F.R. Papa, The Unfolded Protein Response and Cell Fate Control. Mol Cell, 2018. 69(2): p. 169-181.
54. Park, S.M., T.I. Kang, and J.S. So, Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines, 2021. 9(7).
55. Yoshida, H., et al., A Time-Dependent Phase Shift in the Mammalian Unfolded Protein Response. Developmental Cell, 2003. 4(2): p. 265-271.
56. Yoshida, H., et al., XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. Cell, 2001. 107(7): p. 881-891.
57. Shoulders, M.D., et al., Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep, 2013. 3(4): p. 1279-92.
58. Luo, X., et al., Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. International Journal of Molecular Sciences, 2022. 23(5): p. 2746.
59. Erzurumlu, Y., et al., HERPUD1, a Member of the Endoplasmic Reticulum Protein Quality Control Mechanism, may be a Good Target for Suppressing Tumorigenesis in Breast Cancer Cells. Turk J Pharm Sci, 2023. 20(3): p. 157-164.
60. Lee, D., et al., Differential Requirement of Unfolded Protein Response Pathway for Calreticulin Expression in Caenorhabditis elegans. Journal of Molecular Biology, 2007. 372(2): p. 331-340.
61. Saito, Y., et al., Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. The EMBO journal, 1999. 18(23): p. 6718-6729.
62. Cybulsky, A.V., Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nature Reviews Nephrology, 2017. 13(11): p. 681-696.
63. Livingston, M.J. and Z. Dong, Autophagy in acute kidney injury. Semin Nephrol, 2014. 34(1): p. 17-26.
64. Zuk, A. and J.V. Bonventre, Acute Kidney Injury. Annu Rev Med, 2016. 67: p. 293-307.
65. Inagi, R., Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol, 2009. 112(1): p. e1-9.
66. Malhotra, J.D. and R.J. Kaufman, Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 2007. 9(12): p. 2277-93.
67. Chiang, C.K., et al., Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med, 2011. 17(11-12): p. 1295-305.
68. Mohammed-Ali, Z., et al., Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria. Sci Rep, 2017. 7: p. 41572.
69. Liu, S.-H., et al., Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget, 2016. 7(16).
70. Jao, T.M., et al., ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int, 2019. 95(3): p. 577-589.
71. Zhuang, A. and J.M. Forbes, Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy? J Endocrinol, 2014. 222(3): p. R97-111.
72. Cunard, R., Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J Clin Med, 2015. 4(4): p. 715-40.
73. Chandrika, B.B., et al., Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PloS one, 2015. 10(10): p. e0140025.
74. Cao, S.S. and R.J. Kaufman, Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal, 2014. 21(3): p. 396-413.
75. 吳家賢, XBP1 在急性腎損傷到慢性腎臟病扮演之角色, in 毒理學研究所. 2016, 國立臺灣大學. p. 1-90.
76. Chen, J.-H., et al., The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition. Journal of Biomedical Science, 2022. 29(1): p. 1-22.
77. Ishikawa, Y., et al., Spliced XBP1 rescues renal interstitial inflammation due to loss of Sec63 in collecting ducts. Journal of the American Society of Nephrology: JASN, 2019. 30(3): p. 443.
78. Ferrè, S., et al., Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney international, 2019. 96(6): p. 1359-1373.
79. Navarro-Betancourt, J.R., et al., Role of IRE1α in podocyte proteostasis and mitochondrial health. Cell Death Discovery, 2020. 6(1): p. 128.
80. Grandjean, J.M.D., et al., Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol, 2020. 16(10): p. 1052-1061.
81. Madhavan, A., et al., Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat Commun, 2022. 13(1): p. 608.
82. Tanaka, T., M. Narazaki, and T. Kishimoto, IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 2014. 6(10): p. a016295.
83. Corre, I., D. Pineau, and S. Hermouet, Interleukin-8: an autocrine/paracrine growth factor for human hematopoietic progenitors acting in synergy with colony stimulating factor-1 to promote monocyte-macrophage growth and differentiation. Exp Hematol, 1999. 27(1): p. 28-36.
84. Li, Z.Y., et al., TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging (Albany NY), 2016. 8(10): p. 2337-2354.
85. Wu, D.T., et al., TGF-β Concentration Specifies Differential Signaling Profiles of Growth Arrest/Differentiation and Apoptosis in Podocytes. Journal of the American Society of Nephrology, 2005. 16(11): p. 3211-3221.
86. Chen, J.H., et al., The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition. J Biomed Sci, 2022. 29(1): p. 46.
87. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003. 425(6958): p. 577-584.
88. Lee, S.H., et al., The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1. Tuberc Respir Dis (Seoul), 2019. 82(1): p. 42-52.
89. Le Clef, N., et al., Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. PLoS One, 2016. 11(3): p. e0152153.
90. Liu, J., et al., Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight, 2017. 2(18).
91. Suh, Y., et al., Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene, 2013. 32(41): p. 4873-82.
92. Ishani, A., et al., Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol, 2009. 20(1): p. 223-8.
93. National Health Research Institute, T.S.o.N., 2022 Annual Report on Kidney Disease in Taiwan. 2023.
94. Chevalier, R.L., The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol, 2016. 311(1): p. F145-61.
95. Liu, Y., Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 2011. 7(12): p. 684-96.
96. Shu, S., et al., Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine, 2018. 37: p. 269-280.
97. Inagi, R., et al., Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol, 2008. 19(5): p. 915-22.
98. Fan, Y., et al., Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development. J Am Soc Nephrol, 2017. 28(7): p. 2007-2021.
99. Zhang, J., et al., Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discovery, 2021. 7(1): p. 44.
100. Li, W., et al., The P300/XBP1s/Herpud1 axis promotes macrophage M2 polarization and the development of choroidal neovascularization. J Cell Mol Med, 2021. 25(14): p. 6709-6720.
101. Shen, B., et al., Macrophages regulate renal fibrosis through modulating TGFβ superfamily signaling. Inflammation, 2014. 37(6): p. 2076-84.
102. Kaps, L., et al., pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proceedings of the National Academy of Sciences, 2022. 119(12): p. e2122310119.
103. Martinon, F., et al., TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol, 2010. 11(5): p. 411-8.
104. Chevalier, R.L., M.S. Forbes, and B.A. Thornhill, Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int, 2009. 75(11): p. 1145-1152.
105. Kezić, A., N. Stajic, and F. Thaiss, Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. Journal of Immunology Research, 2017. 2017: p. 6305439.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95550-
dc.description.abstract急性腎損傷(AKI)的定義為在短時間內腎功能急遽惡化。雖然腎臟有適應性修復的能力,但嚴重的損傷也可能引發異常的修復,造成不可逆轉的損害,最終導致慢性腎臟病(CKD)和末期腎臟病(ESRD)。最近的研究揭示了導致從AKI過渡到CKD的異常修復的各種機制。例如腎小管上皮細胞因為停滯於細胞週期之G2/M期,進而增強纖維化因子的表達。

內質網壓力活化與腎臟疾病進展密切相關。當發生內質網壓力時,未摺疊蛋白反應(Unfolded protein response, UPR)會啟動來維護內質網蛋白質穩態。未摺疊蛋白反應的不同途徑中,肌醇需求酶1α(Inositol-requiring enzyme 1α, IRE1α)的磷酸化會促進X-box結合蛋白(X-box binding protein, XBP1)RNA截切成splicing form XBP1 (XBP1s),促進適應性未摺疊蛋白反應,進而增強蛋白質折疊能力和內質網蛋白質降解。

先前研究已證實適應性UPR調節因子-XBP1s在急性腎損傷至慢性腎臟病轉變中扮演關鍵角色,當XBP1s表現缺損下,將造成更嚴重的腎損傷後纖維化進展;此外,XBP1基因敲除會導致受損的腎小管上皮細胞不完全修復。基於以上研究基礎,提出XBP1s選擇性活化可能作為腎損傷後治療策略之假說。

為了驗證該假說,本研究將利用選擇性XBP1s激活劑-IXA4以評估腎損傷後之治療效果及其詳細機轉。於細胞實驗中使用人類腎近曲小管上皮細胞(HK-2),透過TGF-β1模擬腎臟纖維化過程之微環境,並同時給予IXA4。結果顯示IXA4具有腎小管上皮細胞的保護效果,透過抑制由TGF-β1所引起的促纖維化、上皮間質轉化、促炎症以及G2/M細胞週期停滯。在動物實驗中,本研究使用單側缺血再灌流損傷和單側尿路阻塞的動物模型進行測試,以腹腔注射的方法施打IXA4。結果顯示,於單側缺血再灌注損傷的動物模型中,IXA4顯著減少了結締組織生長因子(CTGF)蛋白表現;於單側尿路阻塞的情況下,IXA4治療則無明顯改善纖維化之趨勢。

總而言之,IXA4活化XBP1剪接減輕由TGF-β引起的促纖維化過程、EMT和G2/M細胞週期停滯。在體內實驗中,IXA4在減緩腎臟進展方面有潛在作用,然而後續仍需要進一步研究探討IXA4在複雜的體內環境中的有效性。
zh_TW
dc.description.abstractAcute kidney injury (AKI) manifests as a swift deterioration in renal function within a brief timeframe. Although kidneys can adaptively repair functional losses, severe injuries may trigger maladaptive repair, causing irreversible damage and culminating in chronic kidney disease (CKD) and end-stage renal disease (ESRD). Recent research has uncovered various mechanisms of maladaptive repair that contribute to the transition from AKI to CKD. Mechanisms such as G2/M arrest of tubular epithelial cells, which results in heightened expression of pro-fibrotic factors.

Endoplasmic reticulum (ER) stress has been identified as a mediator of kidney disease progression. Upon ER stress, the unfolded protein responses (UPRs) are activated to maintain ER proteostasis. Among the different pathways of UPRs, inositol-requiring enzyme 1α (IRE1α)-mediated alternative splicing of X-box binding protein (XBP1) promotes adaptive UPRs by enhancing protein folding capacity and ER-associated protein degradation. Our recent work has demonstrated that the down-regulation of XBP1 promotes the transition from AKI to CKD. To translate this concept into clinical application, we applied IXA4, a selective XBP1s activator, in preclinical study.

Human kidney proximal tubular epithelial cells (HK-2) were treated with TGF-β to simulate the microenvironment of fibrotic kidneys, and IXA4 was co-administered for 48 hours. In animal models of unilateral ischemia-reperfusion injury (uIRI) and unilateral ureteral obstruction (UUO), mice received IXA4 treatment through intraperitoneal (ip) injections once daily during the specified time points.

In vitro experiments using HK-2 cells demonstrated that IXA4 treatment had positive effects. It reduced pro-fibrotic processes, epithelial-mesenchymal transition (EMT), pro-inflammation, and G2/M cell cycle arrest induced by TGF-β, a key factor in kidney disease progression. IXA4 was then tested in an AKI to CKD animal model-uIRI. IXA4 significantly decreased connective tissue growth factor (CTGF) protein expression, suggesting a potential reduction in fibrosis. In the case of UUO, IXA4 treatment had no effect in ameliorating renal fibrosis and EMT process.

XBP1 splicing promoted by IXA4 alleviated pro-fibrotic processes, EMT, and G2/M cell cycle arrest induced by TGF-β in vitro. Furthermore, when tested in vivo, IXA4 appeared to play a potential role in retarding uIRI caused kidney disease progression. These findings suggest that further research is required to fully understand the effectiveness of IXA4 in the complex in vivo environment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:27:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:27:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT vi
List of Abbreviation viii
CONTENTS x
Chapter 1 Introduction 1
1.1 Acute kidney injury (AKI) 2
1.1.1 The RIFLE criteria 3
1.1.2 The Acute Kidney Injury Network (AKIN) criteria 4
1.1.3 The Kidney Disease: Improving Global Outcomes (KDIGO) criteria 4
1.2 Repair mechanisms after AKI 5
1.2.1 Adaptive repair process of kidney injury 5
1.2.2 Maladaptive repair process of kidney injury 6
1.3 Chronic kidney disease (CKD) 8
1.4 Endoplasmic Reticulum Stress (ER stress) 9
1.4.1 PERK-eIF2α-ATF4 signaling 9
1.4.2 ATF6 signaling 10
1.4.3 IRE1-XBP1s 10
1.5 XBP1s as a transcription factor 11
1.6 ER stress in kidney disease 12
1.7 The role of IRE1/ XBP1s signaling in kidney disease 13
1.8 IXA4, a novel activator of IRE1/XBP1s Signaling 14
Chapter 2 Aims 17
Chapter 3 Materials and Methods 18
3.1 Cell Culture 18
3.2 In vitro TGF-β and IXA4 treatment 18
3.3 Experimental animal and animal models 18
3.3.1 Unilateral Ureteral Obstruction (UUO) 19
3.3.2 Unilateral Ischemia Reperfusion Injury (uIRI) 19
3.4 Picro-Sirius Red Staining 20
3.5 Immunofluorescence Staining 21
3.6 Protein extraction and western blot analysis 22
3.7 RNA extraction and quantitative real-time polymerase chain reaction (qPCR) analysis 24
3.8 Cell Cycle Analysis 26
3.9 Statistical Analysis 27
Chapter 4 Results 28
4.1 IXA4 activates IRE1/ XBP1s signaling in HK-2 cells 28
4.2 Amelioration of TGF-β-Induced Pro-Fibrotic Progression and EMT in HK-2 by IXA4 28
4.3 Attenuation of TGF-β-Induced Pro-Inflammatory Responses in HK-2 by IXA4 30
4.4 Mitigation of TGF-β-Induced G2/M Arrest in HK-2 Cells by IXA4 31
4.5 IXA4 Alleviated Effects of TGF-β via the Canonical Pathway 31
4.6 IXA4 Increased XBP1 splicing in liver, kidney cortex, and kidney medulla 32
4.7 IXA4 did not Reduce Fibrosis and EMT in the Progress of Interstitial Fibrosis Induced by UUO 32
4.8 IXA4 had no Obvious Effect on G2/M arrest in the Progress of Interstitial Fibrosis Induced by UUO 34
4.9 IXA4 Decreased Pro-Fibrotic Factor and EMT in the Progress of AKI to CKD induced by uIRI 35
Chapter 5 Discussion 36
Chapter 6 Conclusion and Future Prospects 40
Chapter 7 Figures 41
Figure 1. 41
Figure 2. 42
Figure 3. 44
Figure 4. 45
Figure 5. 47
Figure 6. 48
Figure 7. 49
Figure 8. 51
Figure 9. 53
Figure 10. 55
Figure 11. 57
Figure 12. 58
Figure 13. 61
Figure 14. 62
Figure 15. 64
Figure 16. 66
Chapter 8 References 68
-
dc.language.isoen-
dc.title選擇性誘導XBP1s 藥物--IXA4對腎臟的保護作用zh_TW
dc.titleProtective Effects of IXA4, a selective XBP1s inducer, on the Kidneyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉興華;趙家德;吳鎮天;藍國徵;許美鈴zh_TW
dc.contributor.oralexamcommitteeShing-Hwa Liu;Chia-Ter Chao;Cheng-Tien Wu;Kuo-Cheng Lan;Meei-Ling Sheuen
dc.subject.keyword慢性腎臟疾病,內質網壓力,XBP1s,IXA4,zh_TW
dc.subject.keywordchronic kidney disease,ER stress,XBP1s,IXA4,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202400646-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-17-
dc.contributor.author-college醫學院-
dc.contributor.author-dept毒理學研究所-
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved