請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉浩澧 | zh_TW |
| dc.contributor.advisor | Hao-Li Liu | en |
| dc.contributor.author | 甄瀟 | zh_TW |
| dc.contributor.author | Xiao Zhen | en |
| dc.date.accessioned | 2024-09-11T16:26:13Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] H. L, “Modulation of the blood-brain barrier for drug delivery to brain,” *Pharmaceutics*, vol. 13(12), Nov 2021.
[2] J. Wang, Z. Li, M. Pan, M. Fiaz, Y. Hao, Y. Yan, L. Sun, and F. Yan, “Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases,” *Advanced Drug Delivery Reviews*, vol. 190, p. 114539, Nov 2022, epub 2022 Sep 15. [3] G. J. Pandit R, Chen L, “The blood-brain barrier: Physiology and strategies for drug delivery,” *Adv Drug Deliv Rev*, vol. 165-166, pp. 1–14, Nov 2020. [4] C. W. K. S. T. C. F. C. Y. C. L. H. Wu SK, Chu PC, “Characterization of different microbubbles in assisting focused ultrasound-induced blood-brain barrier opening,” *Sci Rep*, vol. 7, p. 46689, Apr 2017. [5] T. A. L. B. B.-Z. A. B. K. D. A. G. D. C. C. G. C. Andreone BJ, Chow BW, “Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis,” *Neuron*, vol. 94(3), no. e585, pp. 581–594, May 2017. [6] P. WM, “The blood-brain barrier: bottleneck in brain drug development,” *NeuroRx*, pp. 2(1):3–14, Jan 2005. [7] K.-W. Chen, K.-C. Wei, and H.-L. Liu, “Theranostic strategy of focused ultrasound-induced blood-brain barrier opening for CNS disease treatment,” *Front Pharmacol*, vol. 10, p. 86, Feb 2019. [8] M. Goldsmith, L. Abramovitz, and D. Peer, “Precision nanomedicine in neurodegenerative diseases,” *ACS Nano*, vol. 8, no. 3, pp. 1958–1965, 2014, pMID: 24660817. [9] R. S.-v. S. R. A. E. G. J. van Vliet EA, da Costa Araújo S, “Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy,” *Brain*, vol. 130, pp. 521–534, Feb 2007. [10] M. T. F. V. G. T. H. N. H. K. D. T. F. L. N. I. J. D. Marchi N, Angelov L, “Seizure-promoting effect of blood-brain barrier disruption,” *Epilepsia*, vol. 48(4), pp. 732–42, Apr 2007. [11] “Synergistic effect of cold mannitol and Na+/Ca2+ exchange blocker on blood–brain barrier opening,” *Biochemical and Biophysical Research Communications*, vol. 291, no. 3, pp. 669–674, 2002. [12] R. P. D. T. Lochhead JJ, Yang J, “Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders,” *Front Physiol*, vol. 11, p. 914, Aug 2020. [13] T. M. E.-S. S. van Vulpen M., Kal H.B., “Changes in blood-brain barrier permeability induced by radiotherapy: Implications for timing of chemotherapy?” (review) *Oncol. Rep*, vol. 9, pp. 683–688, 2002. [14] M. D. R. M.-W. K. Brown W.R., Thore C.R., “Vascular damage after fractionated whole-brain irradiation in rats,” *Radiat. Res*, vol. 164, pp. 662–668, 2005. [15] F. G. F. D.-J. R. Kodack D.P., Askoxylakis V., “Emerging strategies for treating brain metastases from breast cancer,” *Oncol. Rep*, vol. 27, pp. 163–175, 2015. [16] F.-F. C.-C. T. W. R. L. D. K. R. H. M. V. G. S. S. e. a. Le Pechoux C., Laplanche A., “Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase iii trial (pci99-01, eortc 22003-08004, rtog 0212 and ifct 99-01),” *Ann. Oncol. Off. J. Eur. Soc. Med Oncol*, vol. 22, pp. 1154–1163, 2011. [17] W. J.-M. C. Dietrich J., Monje M., “Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy,” *Oncologist*, vol. 13, pp. 1285–1295, 2008. [18] D. Emerich, R. Dean, C. Osborn, and R. Bartus, “The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: From concept to clinical evaluation,” *Clin. Pharmacokinet.*, vol. 40, pp. 105–123, 2001. [19] N. de Vries, J. Beijnen, W. Boogerd, and O. van Tellingen, “Blood-brain barrier and chemotherapeutic treatment of brain tumors,” *Expert Rev. Neurother.*, vol. 6, pp. 1199–1209, 2006. [20] R. Bartus, P. Elliott, R. Dean, N. Hayward, T. Nagle, M. Huff, P. Snodgrass, and D. Blunt, “Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7,” *Exp. Neurol.*, vol. 142, pp. 14–28, 1996. [21] E. Sanovich, R. Bartus, P. Friden, R. Dean, H. Le, and M. Brightman, “Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7,” *Brain Res.*, vol. 705, pp. 125–135, 1995. [22] K. Matsukado, T. Inamura, S. Nakano, M. Fukui, R. Bartus, and K. Black, “Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7,” *Neurosurgery*, vol. 39, pp. 125–133, 1996. [23] C. Borlongan and D. Emerich, “Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: Laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport,” *Brain Res. Bull.*, vol. 60, pp. 297–306, 2003. [24] K. Warren, R. Jakacki, B. Widemann, A. Aikin, M. Libucha, R. Packer, G. Vezina, G. Reaman, D. Shaw, and M. Krailo, “Phase ii trial of intravenous lobradimil and carboplatin in childhood brain tumors: A report from the children’s oncology group,” *Cancer Chemother. Pharmacol.*, vol. 58, pp. 343–347, 2006. [25] M. Prados, J. Schold, S.C., H. Fine, K. Jaeckle, F. Hochberg, L. Mechtler, M. Fetell, S. Phuphanich, L. Feun, and T.J. Janus, “A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma,” *Neuro Oncol.*, vol. 5, pp. 96–103, 2003. [26] J. Z. Wang, N. Xiao, Y. Z. Zhang, C. X. Zhao, X. H. Guo, and L. M. Lu, “Mfsd2a-based pharmacological strategies for drug delivery across the blood-brain barrier,” *Pharmacol. Res.*, vol. 104, pp. 124–131, 2016. [27] X. Ju, T. Miao, H. Chen, J. Ni, and L. Han, “Overcoming Mfsd2a-mediated low transcytosis to boost nanoparticle delivery to brain for chemotherapy of brain metastases,” *Adv. Healthc. Mater.*, vol. 10, p. e2001997, 2021. [28] A. Ben-Zvi, B. Lacoste, E. Kur, B. J. Andreone, Y. Mayshar, H. Yan, and C. Gu, “Mfsd2a is critical for the formation and function of the blood-brain barrier,” *Nature*, vol. 509, pp. 507–511, 2014. [29] M. Sweeney, Z. Zhao, A. Montagne, A. Nelson, and B. Zlokovic, “Blood-brain barrier: From physiology to disease and back,” *Physiol. Rev.*, vol. 99, pp. 21–78, 2019. [30] M. Sweeney, A. Sagare, and B. Zlokovic, “Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders,” *Nat. Rev. Neurol.*, vol. 14, pp. 133–150, 2018. [31] C. Zhao, J. Ma, Z. Wang, H. Li, H. Shen, X. Li, and G. Chen, “Mfsd2a attenuates blood-brain barrier disruption after sub-arachnoid hemorrhage by inhibiting caveolae-mediated transcellular transport in rats,” *Transl. Stroke Res.*, vol. 11, pp. 1012–1027, 2020. [32] A. Montagne, Z. Zhao, and B. Zlokovic, “Alzheimer’s disease: A matter of blood-brain barrier dysfunction?” *J. Exp. Med.*, vol. 214, pp. 3151–3169, 2017. [33] Y. Meng, S. Suppiah, S. Surendrakumar, L. Bigioni, and N. Lipsman, “Low-intensity MRI-guided focused ultrasound-mediated blood-brain barrier disruption for intracranial metastatic disease,” *Frontiers in Oncology*, vol. 8, p. 338, 2018. [34] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits,” *Radiology*, vol. 220, pp. 640–646, 2001. [35] ——, “Non-invasive opening of BBB by focused ultrasound,” *Acta Neurochirurgica. Supplementum*, vol. 86, pp. 555–558, 2003. [36] J. Park, Y. Zhang, N. Vykhodtseva, F. A. Jolesz, and N. J. McDannold, “The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound,” *Journal of Controlled Release*, vol. 162, no. 1, pp. 134–142, Aug. 2012. [37] W. Y. Chai, P. C. Chu, M. Y. Tsai, Y. C. Lin, J. J. Wang, K. C. Wei, Y. Y. Wai, and H. L. Liu, “Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery,” *Journal of Controlled Release*, vol. 192, pp. 1–9, Oct. 2014. [38] K. Hynynen, N. McDannold, N. A. Sheikov, F. A. Jolesz, and N. Vykhodtseva, “Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications,” *NeuroImage*, vol. 24, no. 1, pp. 12–20, Jan. 2005. [39] G. T. Clement, J. White, and K. Hynynen, “Investigation of a large-area phased array for focused ultrasound surgery through the skull,” *Physics in Medicine & Biology*, vol. 45, no. 4, pp. 1071–1083, Apr. 2000. [40] A. Alonso, “Ultrasound induced blood-brain barrier opening for drug delivery,” *Frontiers in Neurology and Neuroscience*, vol. 36, pp. 106–115, 2015. [41] N. Sheikov, N. McDannold, S. Sharma, and K. Hynynen, “Effect of focused ultrasound with ultrasound contrast agent on the integrity of brain microvascular endothelial tight junctions,” *Ultrasound in Medicine and Biology*, vol. 34, pp. 1093–1104, 2008. [42] N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of focused ultrasound-mediated blood-brain barrier opening,” *Ultrasound in Medicine and Biology*, vol. 30, pp. 979–989, 2004. [43] M. Aryal, K. Fischer, C. Gentile, S. Gitto, Y. Z. Zhang, and N. McDannold, “Impact of focused ultrasound and microbubbles on p-glycoprotein expression after blood-brain barrier disruption,” *PLoS ONE*, vol. 12, p. e0166061, 2017. [44] N. Ahmed, D. Gandhi, E. R. Melhem, and V. Frenkel, “MRI-guided focused ultrasound-mediated delivery of cells to the brain: A review of state-of-the-art methods and future applications,” *Frontiers in Neurology*, vol. 12, p. 669449, 2021. [45] K. T. Chen, Y. J. Lin, W. Y. Chai, C. J. Lin, P. Y. Chen, C. Y. Huang, J. S. Kuo, H. L. Liu, and K. C. Wei, “Neuronavigation-guided focused ultrasound (Navifus) for recurrent glioblastoma patients: Intracranial blood-brain barrier opening - clinical trial protocol,” *Annals of Translational Medicine*, vol. 8, p. 673, 2020. [46] G. Appelboom, A. Detappe, M. LoPresti, S. Kunjachan, S. Mitrasinovic, S. Goldman, S. D. Chang, and O. Tillement, “Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery,” *Neuro-Oncology*, vol. 18, pp. 1601–1609, 2016. [47] N. McDannold, Y. Zhang, J. G. Supko, C. Power, T. Sun, N. Vykhodtseva, A. J. Golby, and D. A. Reardon, “Clinical transcranial MRI-guided focused ultrasound system for destroying the blood-brain barrier and delivering irinotecan in a rat model,” *Scientific Reports*, vol. 10, p. 8766, 2020. [48] ——, “Blood-brain barrier disruption and delivery of irinotecan in a rat model using a clinical transcranial MRI-guided focused ultrasound system,” *Scientific Reports*, vol. 10, p. 8766, 2020. [49] D. S. Hersh, A. S. Wadajkar, N. Roberts, J. G. Perez, N. P. Connolly, V. Frenkel, J. A. Winkles, G. F. Woodworth, and A. J. Kim, “Evolving drug delivery strategies to overcome the blood-brain barrier,” *Current Pharmaceutical Design*, vol. 22, pp. 1177–1193, 2016. [50] Z. Song, Z. Wang, J. Shen, S. Xu, and Z. Hu, “Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats,” *International Journal of Nanomedicine*, vol. 12, pp. 1717–1729, 2017. [51] M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 103, pp. 11719–11723, 2006. [52] J. J. Choi, K. Selert, Z. Gao, G. Samiotaki, B. Baseri, and E. E. Konofagou, “Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies,” *Journal of Cerebral Blood Flow & Metabolism*, vol. 31, pp. 725–737, 2011. [53] B. Baseri, J. J. Choi, Y.-S. Tung, and E. E. Konofagou, “Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: A short-term study,” *Ultrasound in Medicine & Biology*, vol. 36 , pp. 1445–1459, 2010. [54] O. Güler and Z. Yaniv, “Image-guided navigation: A cost-effective practical introduction using the image-guided surgery toolkit (IGSTK),” *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, vol. 2012, pp. 6056–9, Aug 2012. [55] W. M. Pardridge, “The blood-brain barrier and neurotherapeutics,” *NeuroRx*, vol. 2, no. 1, pp. 1–2, Jan 2005. [56] P.-H. Hsu, K.-C. Wei, C.-Y. Huang, C.-J. Wen, T.-C. Yen, C.-L. Liu, Y.-T. Lin, J.-C. Chen, C.-R. Shen, and H.-L. Liu, “Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound,” *PLOS ONE*, vol. 8, no. 2, p. e57682, Feb. 2013. [57] C.-H. Fan, C.-Y. Ting, C.-Y. Lin, H.-L. Chan, Y.-C. Chang, Y.-Y. Chen, H.-L. Liu, and C.-Y. Yeh, “Noninvasive, targeted, and non-viral ultrasound-mediated GDNF plasmid delivery for treatment of Parkinson’s disease,” *Scientific Reports*, vol. 6, p. 19579, Jan. 2016. [58] S.-L. Huang, C.-L. Hsieh, R.-M. Wu, C.-H. Tai, C.-H. Lin, and W.-S. Lu, “Minimal detectable change of the Timed Up & Go test and the dynamic gait index in people with Parkinson disease,” *Physical Therapy*, vol. 91, no. 1, pp. 114–121, Jan 2011. [59] C. W. Christine, K. S. Bankiewicz, A. D. Van Laar, R. M. Richardson, B. Ravina, A. P. Kells, B. Boot, A. J. Martin, J. Nutt, M. E. Thompson, and P. S. Larson, “Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease,” *Annals of Neurology*, vol. 85, no. 5, pp. 704–714, 2019. [60] K. Albert, M. H. Voutilainen, A. Domanskyi, and M. Airavaara, “AAV vector-mediated gene delivery to substantia nigra dopamine neurons: Implications for gene therapy and disease models,” *Genes (Basel)*, vol. 8, no. 2, p. 63, Feb 2017. [61] Y. M.-H. T.-M. T. M. S. O. D. S. R. M. K. M. H. K. S. Ogawa K, Kato N, “Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain,” *J Control Release*, vol. 348, pp. 34–41, Aug 2022. [62] J. Tyler, Y. Yamamoto, M. Diksic, J. Théron, J. Villemure, C. Worthington, A. Evans, and W. Feindel, “Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET,” *Journal of Nuclear Medicine*, vol. 27, no. 6, pp. 775–780, 1986. [63] R. G. Crystal, “Adenovirus: The first effective in vivo gene delivery vector,” *Human Gene Therapy*, vol. 25, no. 1, pp. 3–11, Jan 2014. [64] P. Waghmare, S. Karve, T. Godbole, M. Pawar, S. Patil, K. Satpute, M. Joshi, and B. Garnaik, “Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects,” *Journal of Nanobiotechnology*, vol. 20, no. 1, pp. 1–25, 2022. [65] M. Wang, J. Etu, and S. Joshi, “Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits,” *Journal of Neurosurgical Anesthesiology*, vol. 19, no. 4, pp. 249–256, 2007. [66] R. Huang, J. Boltze, and S. Li, “Strategies for improved intra-arterial treatments targeting brain tumors: A systematic review,” *Frontiers in Oncology*, vol. 10, 2020. [67] Y. Arai, C. Kido, and Y. Ariyoshi, “Pharmacokinetics in arterial infusion chemotherapy,” *Gan To Kagaku Ryoho*, vol. 20, no. 12, pp. 1755–1761, 1993. [68] R. L. Dedrick, “Arterial drug infusion: Pharmacokinetic problems and pitfalls,” *Journal of the National Cancer Institute*, vol. 80, no. 2, pp. 84–89, 1988. [69] C. Charnsangavej, Y. Lee, C. Carrasco, L. Feun, R. Tang, K. Wright, S. Wallace, and C. Gianturco, “Supraclinoid intracarotid chemotherapy using a flow-directed soft-tipped catheter,” *Radiology*, vol. 155, no. 3, pp. 655–657, 1985. [70] N. McDannold, C. D. Arvanitis, N. Vykhodtseva, and M. S. Livingstone, “Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques,”*Cancer Research*, vol. 72, no. 14, pp. 3652–3663, Jul 2012. [71] K.-C. Wei, P.-C. Chu, H.-Y. Wang, C.-Y. Huang, P.-Y. Chen, H.-C. Tsai, Y.-J. Lu, P.-Y. Lee, I.-C. Tseng, L.-Y. Feng, P. W. Hsu, T.-C. Yen, and H.-L. Liu, “Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: A preclinical study,” *PLOS ONE*, vol. 8, no. 3, p. e58995, 2013. [72] M. A. O’Reilly, Y. Huang, and K. Hynynen, “The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model,” *Physics in Medicine & Biology*, vol. 55, no. 18, pp. 5251–5267, Sep 21 2010. [73] M. Schneider, “Characteristics of SonoVue™,” *Echocardiography*, vol. 16, no. s1, pp. 743–746. [74] H. Li, Y. Yang, M. Zhang, L. Yin, J. Tu, X. Guo, and D. Zhang, “Acoustic characterization and enhanced ultrasound imaging of long-circulating lipid-coated microbubbles: Acoustic characterization of microbubbles,” *Journal of Ultrasound in Medicine*, vol. 37, 11 2017. [75] M. A. O’Reilly, A. Muller, and K. Hynynen, “Ultrasound insertion loss of rat parietal bone appears to be proportional to animal mass at submegahertz frequencies,” *Ultrasound in Medicine Biology*, vol. 37, no. 11, pp. 1930–1937, Nov 2011. [76] “The laboratory mouse,” June 2012. [77] N. E. Everds, “Chapter 5 - Hematology of the laboratory mouse,” pp. 133–XVIII, 2007. [78] M. Sashindranath, S. A. Sturgeon, S. French et al., “The mode of anesthesia influences outcome in mouse models of arterial thrombosis,” *Research and Practice in Thrombosis and Haemostasis*, vol. 3, no. 2, pp. 197–206, Feb 2019. [79] A. Santillan, D. G. Rubin, C. P. Foley, D. Sondhi, R. G. Crystal, Y. P. Gobin, and D. J. Ballon, “Cannulation of the internal carotid artery in mice: A novel technique for intra-arterial delivery of therapeutics,” *Journal of Neuroscience Methods*, vol. 222, pp. 106–110, 2014. [80] L. Bertrand, F. Méroth, M. Tournebize, A. R.Leda, E. Sun, and M. Toborek, “Targeting the HIV-infected brain to improve ischemic stroke outcome,” *Nature Communications*, vol. 10, no. 1, p. 2009, May 2019. [81] H. Evans and W. Schulemann, “The action of vital stains belonging to the benzidine group,” *Science*, vol. 39, no. 1004, pp. 443–454, 1914. [82] L. Yao, X. Xue, P. Yu, Y. Ni, and F. Chen, “Evans blue dye: A revisit of its applications in biomedicine,” *Contrast Media & Molecular Imaging*, vol. 2018, p. 7628037, 2018. [83] N. R. Saunders, K. M. Dziegielewska, K. Møllgård, and M. D. Habgood, “Markers for blood-brain barrier integrity: How appropriate is Evans blue in the twenty-first century and what are the alternatives?” *Frontiers in Neuroscience*, vol. 9, p. 385, October 2015. [84] S. Becchi, A. Buson, and B. Balleine, “Inhibition of vascular adhesion protein 1 protects dopamine neurons from the effects of acute inflammation and restores habit learning in the striatum,” *Journal of Neuroinflammation*, vol. 18, no. 1, p. 233, 2021. [85] 陳鴻興, 胡國瑞, 孫沛立, 徐道義, 黃日鋒, 詹文鑫, and 羅梅君, *顯示色彩工程學(第三版)*. 全華圖書, 2022, 出版日期:2022/07/08. [86] J. R. N. Cooke, J. A. Ellis, S. S. Hossain, J. Nguyen, J. N. Bruce, and S. Joshi, “Computational pharmacokinetic rationale for intra-arterial delivery to the brain,” *Drug Delivery and Translational Research*, vol. 6, pp. 622 – 629, 2016. [87] J.-C. Lee, G.-S. Cho, B.-O. Choi, H. C. Kim, Y.-S. Kim, and W.-K. Kim, “Intracerebral hemorrhage-induced brain injury is aggravated in senescence-accelerated prone mice,” *Stroke*, vol. 37, no. 1, pp. 216–222, 2006. [88] K. Kinoshita, R. Ohtomo, H. Takase, G. Hamanaka, K. K. Chung, J. Lok, H. Katsuki, and K. Arai, “Different responses after intracerebral hemorrhage between young and early middle-aged mice,” *Neuroscience Letters*, vol. 735, p. 135249, September 2020. [89] R. S. D'Amico, D. Khatri, N. Reichman, N. V. Patel, T. Wong, S. R. Fralin, M. Li, J. A. Ellis, R. Ortiz, D. J. Langer, and J. A. Boockvar, “Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: Where are we now, and where we are going,” *Journal of Neuro-Oncology*, vol. 147, no. 2, pp. 261–278, Apr 2020. [90] R. Chopra, N. Vykhodtseva, and K. Hynynen, “Influence of exposure time and pressure amplitude on blood−brain-barrier opening using transcranial ultrasound exposures,” *ACS Chemical Neuroscience*, vol. 1, no. 5, pp. 391–398, 2010. [91] F.-Y. Yang, W.-M. Fu, R.-S. Yang, H.-C. Liou, K.-H. Kang, and W.-L. Lin, “Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption,” *Ultrasound in Medicine Biology*, vol. 33, no. 9, pp. 1421–1427, 2007. [92] F.-Y. Yang, C.-C. Chen, Y.-H. Kao, C.-L. Chen, C.-E. Ko, S.-C. Horng, and R.-C. Chen, “Evaluation of dose distribution of molecular delivery after blood-brain barrier disruption by focused ultrasound with treatment planning,” *Ultrasound in Medicine Biology*, vol. 39, no. 4, pp. 620–627, 2013. [93] P. Dayton, A. Klibanov, G. Brandenburger, and K. Ferrara, “Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles,” *Ultrasound in Medicine Biology*, vol. 25, no. 8, pp. 1195–1201, 1999. [94] M. Maciulevičius, R. Jurkonis, D. Jakovels, R. Raišutis, and M. Tamošiūnas, “The evaluation of microbubble concentration using the techniques of optical spectroscopy,”*Measurement*, vol. 228, p. 114372, 2024. [95] M. Lampaskis and M. Averkiou, “Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI,” *Ultrasound in Medicine Biology*, vol. 36, no. 2, pp. 306–312, 2010. [96] Q. Chen, Y. He, and K. Yang, “Gene therapy for Parkinson’s disease: Progress and challenges,” *Current Gene Therapy*, vol. 5, no. 1, pp. 71–80, 2005. [97] A. Di Stefano, P. Sozio, A. Iannitelli, and L. S. Cerasa, “New drug delivery strategies for improved Parkinson’s disease therapy,” *Expert Opinion on Drug Delivery*, vol. 6, no. 4, pp. 389–404, April 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95546 | - |
| dc.description.abstract | 血腦屏障 (blood-brain barrier, BBB) 結構基礎是具有緊密連接的毛細血管內皮細胞,可以有效防止分子擴散改變正常的腦功能。在維持高度精確的大腦微環境內支持神經元活動方面發揮著至關重要的保護作用。但通過輸送治療性納米粒子治療中樞神經系統疾病的有效性也受到了限制。聚焦式超音波 (Focused Ultrasound, FUS) 結合微氣泡 (Microbubbles, MBs) 開啟 BBB 作為一種新穎的開啟方式。其具有非侵入性,副作用小,可暫時開啟等優點。是未來腦部基因或藥物遞送之理想工具。然而過往微氣泡灌注有經過靜脈藥物灌注 (Intra-Venous, IV) 以及頸動脈藥物灌注 (Intra-Artery, IA) 二種方法,現今研究似乎未有詳細討論此二種微氣泡灌注途徑在開啟效能與全身藥物分布方面的綜合探討。在本研究中我們使用 FUS 開啟 BBB 來探討經由 IV 和 IA 藥物灌注途徑之差異使用小動物模型,並以伊文斯藍染劑 (Evans blue dye, EB) 作為經 IV 或 IA 灌注途徑的治療替代分子。以 EB 滲透濃度和免疫螢光染色來評估 FUS 開啟 BBB 的程度。與單獨使用 MBs 相比,FUS 結合 2.8 × 10^8 MBs/kg 的微氣泡濃度條件下顯著提高 IV(p = 0.00318) 或 IA 途徑 (p = 0.0006) 傳遞的 EB 滲透效率。並且在相同的微氣泡濃度下,IA 途徑的 EB 滲透效率高於 IV 途徑 (p = 0.0276)。將微氣泡濃度增加到 1.12 × 10^9 MBs/kg 進一步提高了 IV (p = 0.0023) 和 IA 組 (p = 0.0008) 的 EB滲透效率,IA 途徑達到了最高的 EB 滲透效率。另外還對不同 FUS 刺激時間進行了探討。其次進行了免疫螢光檢查,對 BBB 通透性的標誌物 IgG 進行亮度量化,在黑質 (Substantia nigra, SN) 腦區發現在高濃度微氣泡情況下,IA 組 BBB 開啟程度優於 IV 組。對 IV 與 IA 實驗組別的安全性也進行了評估,在相同實驗條件下IA 各實驗組別腦組織出血情況均明顯少於 IV 實驗組別。並且 IA 灌注相對 IV 灌注在全身藥物分佈方面也有更低的表現。綜上所述,我們顯示使用 IA 灌注藥物情況下,FUS 開啟 BBB 在增強靶向遞送至 SN 腦區優於 IV 灌注。藥物灌注途徑的選擇會影響 FUS 開啟 BBB 的效率,這對於後續優化神經疾病的基因/藥物傳遞可能至關重要。然而藥物灌注途徑如何影響 FUS 開啟 BBB 及全身藥物分布的背後機制仍需更多探討,具體使用何種基因藥物能夠與本研究相結合尚需更多研究與實驗。 | zh_TW |
| dc.description.abstract | The structural foundation of the blood-brain barrier (BBB) is composed of tightly connected capillary endothelial cells, which effectively prevent the diffusion of molecules that could alter normal brain function. It plays a crucial protective role in maintaining a highly precise brain microenvironment, supporting neuronal activity. However, this also limits the effectiveness of delivering therapeutic nanoparticles for the treatment of central nervous system diseases. Focused Ultrasound (FUS) combined with Microbubbles (MBs) to open the blood-brain barrier (BBB) represents a novel method. This technique is non-invasive, has minimal side effects, and can temporarily open the BBB. It is considered an ideal tool for future gene or drug delivery to the brain. However, in the past, there were two methods of microbubble infusion: Intra-Venous (IV) and Intra-artery (IA). Current research seems to have not discussed in detail the comprehensive discussion of the opening efficacy and systemic drug distribution of these two microbubble infusion methods. In this study, We used FUS open BBB and investigated the differences between intravenous IV and intra-arterial IA drug infusion routes using a small animal model. Evans blue(EB) dye was used as a therapeutic surrogate delivered via IV or IA routes. The extent of BBB opening was evaluated using EB permeability and immunofluorescence staining. Compared to using microbubbles (MBs) alone, the combination of 0.42 MI FUS irradiation and The combination of FUS stimulation and a concentration of 2.8 × 10^8 MBs/kg of MBs significantly increased the EB concentration delivered through IV increased(p = 0.00318) or IA routes(p = 0.0006). Notably, at the same MBs concentration, the IA group’s EB permeability was higher than that of the IV group(p = 0.0276). Increasing the MBs concentration to 1.12×10^9 MBs/kg under FUS further enhanced the EB permeability for both IV(p = 0.0023) and IA groups(p = 0.0008), The IA experimental group achieved the highest EB penetration efficiency. Different FUS stimulation times were also explored. Next, immunofluorescence examination was performed to quantify the brightness of IgG, a marker of BBB permeability. In the substantia nigra (SN) brain region, it was found that under the condition of high concentration of microbubbles, the degree of BBB opening in group IA was better than that in group IV. The safety of the IV and IA experimental groups was also evaluated. Under the same experimental conditions, the bleeding of brain tissue in each experimental group of IA was significantly less than that of the IV experimental group. And IA infusion also has lower performance in systemic drug distribution than IV infusion. The IA experimental group achieved the highest EB penetration efficiency. Additionally, different FUS stimulation times were explored. Immunofluorescence examination was conducted to quantify the brightness of the BBB permeability marker IgG. In the substantia nigra (SN) brain region, under high-concentration microbubble conditions, the IA group’s BBB opening degree was superior to that of the IV group. Finally, the safety of the IV and IA experimental groups was assessed, and under the same experimental conditions, the IA groups exhibited significantly less brain tissue hemorrhage than the IV groups. In conclusion, we demonstrated that drug infusion using IA in conjunction with FUS open BBB enhances targeted delivery to the SN brain region more effectively than IV infusion. The choice of drug infusion route affects the efficiency of BBB opening with FUS, which may be crucial for optimizing gene/drug delivery in the treatment of neurological diseases. However, how the drug infusion route affects the mechanism behind FUS opening of the BBB and systemic drug distribution still needs more exploration, and the specific genetic drugs used in conjunction with this study require more research and experiments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:26:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:26:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
Page 致謝 i 摘要 iii Abstract v 圖次 xi 表次 xiii 第一章研究背景 1 1.1 血腦屏障. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 開啟血腦屏障的方法. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 聚焦超音波開啟血腦屏障. . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 藥物灌注途徑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 研究目的與貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第二章材料與方法 10 2.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 聚焦式超音波系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 超音波硬體配置. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 3D 列印模具設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 聲場量測與強度換算. . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 微氣泡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 超音波刺激參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 動物準備及實驗分組. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.1 動物準備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2 實驗分組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.3 目標腦區選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 動物實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 藥物灌注方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7.1 尾靜脈灌注. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7.2 頸動脈內埋管. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 伊文思藍(Evan Blue, EB) 染劑. . . . . . . . . . . . . . . . . . . . . 28 2.8.1 腦組織EB 定量. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 免疫螢光染色. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9.1 腦組織切片. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.9.2 免疫螢光染色. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.9.3 免疫螢光染色BBB 通透率IgG 量化分析. . . . . . . . . . . . . 31 2.10 腦組織出血點量化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.11 器官組織EB 量化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11.1 器官組織拍照. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.11.2 器官EB 染色情況量化分析. . . . . . . . . . . . . . . . . . . . . 34 2.12 統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 第三章實驗配置與結果 38 3.1 實驗配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 超音波聚焦深度控制實驗. . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 腦組織EB 定量實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 FUS (+) 120 s 處理後EB 外滲量化. . . . . . . . . . . . . . . . . 39 3.3.2 FUS (+) 120 s 、150 s 處理後EB 外滲變化. . . . . . . . . . . . 41 3.3.3 FUS (+) 120 s 、150 s 、240 s 處理後EB 外滲變化. . . . . . . . 43 3.4 免疫螢光實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.1 腦切片螢光染色. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.2 各腦區BBB 通透率IgG 量化. . . . . . . . . . . . . . . . . . . . 48 3.5 腦組織出血量化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6 器官EB 染色情況量化分析. . . . . . . . . . . . . . . . . . . . . . . 58 第四章討論 62 4.1 藥物灌注途徑之BBB 通透性探討. . . . . . . . . . . . . . . . . . . 62 4.2 藥物灌注途徑之安全性探討. . . . . . . . . . . . . . . . . . . . . . 62 4.3 聚焦式超音波之開啟BBB 探討. . . . . . . . . . . . . . . . . . . . 63 4.4 微氣泡濃度之開啟BBB 探討. . . . . . . . . . . . . . . . . . . . . . 63 第五章結論與未來展望 65 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.1 探討IA 灌注在FUS 開啟BBB 的機制. . . . . . . . . . . . . . . 66 5.2.2 增加FUS 開啟BBB 驗證方法. . . . . . . . . . . . . . . . . . . 66 5.2.3 驗證IA 藥物灌注途徑結合FUS 之安全性於其他大動物模型. . 67 5.2.4 評估IA 灌注途徑結合FUS 用於遞送多種藥物在多種神經系統 疾病中的治療效果. . . . . . . . . . . . . . . . . . . . . . . . . . 67 參考文獻 68 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 血腦屏障 | zh_TW |
| dc.subject | 動脈內藥物灌注 | zh_TW |
| dc.subject | 靜脈內藥物灌注 | zh_TW |
| dc.subject | 聚焦式超音波 | zh_TW |
| dc.subject | 藥物遞送 | zh_TW |
| dc.subject | Intra-venous injection | en |
| dc.subject | Drug/Gene Delivery | en |
| dc.subject | Focused ultrasound | en |
| dc.subject | blood-brain barrier | en |
| dc.subject | Intra-artery injection | en |
| dc.title | 聚焦式超音波開啟小鼠黑質區血腦屏障:動脈與靜脈 藥物灌注路徑之差異探討 | zh_TW |
| dc.title | Focused Ultrasound Blood-Brain Barrier Opening in the Substantia Nigra of Mice: An Investigation of Differences between Arterial and Venous Routes of Drug Infusion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林靜嫻;葉秩光;范景翔;謝寶育 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Hsien Lin;Chih-Kuang Yeh;Ching-Hsiang Fan;Bao-Yu Hsieh | en |
| dc.subject.keyword | 藥物遞送,聚焦式超音波,血腦屏障,動脈內藥物灌注,靜脈內藥物灌注, | zh_TW |
| dc.subject.keyword | Drug/Gene Delivery,Focused ultrasound,blood-brain barrier,Intra-artery injection,Intra-venous injection, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202403340 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2027-08-06 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2027-08-06 | 21.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
